陳璐瑤, 楊 洋,安 輸,郭曉汐,郝 倩,徐天瑞,劉 瑩
(昆明理工大學生命科學與技術(shù)學院信號傳導實驗室,云南 昆明 650500)
G蛋白偶聯(lián)受體與酪氨酸激酶受體之間的信號交流在腫瘤治療中的作用
陳璐瑤, 楊 洋,安 輸,郭曉汐,郝 倩,徐天瑞,劉 瑩
(昆明理工大學生命科學與技術(shù)學院信號傳導實驗室,云南 昆明 650500)
G蛋白偶聯(lián)受體(GPCRs)和酪氨酸激酶受體(RTKs)細胞膜受體,它們之間可以利用共同的信號轉(zhuǎn)導途徑實現(xiàn)信號交流。該文主要闡述GPCRs與RTKs兩者之間的信號交流在腫瘤發(fā)生和治療中的作用,為臨床腫瘤治療提供理論基礎(chǔ)。
G蛋白偶聯(lián)受體;酪氨酸激酶受體;信號交流;腫瘤治療;反式激活;反向調(diào)節(jié)
腫瘤發(fā)生過程中,腫瘤細胞利用正常細胞介導的信號通路來實現(xiàn)自身的細胞增殖,遷移和(或)抗凋亡,從而獲得較正常細胞的生長優(yōu)勢。研究發(fā)現(xiàn),這些信號通路的一部分是由細胞膜受體所介導的[1]。目前研究最多的兩大類膜受體即GPCRs和RTKs。隨著腫瘤發(fā)病率的增高,GPCRs與RTKs之間的信號交流及其在腫瘤發(fā)生和治療中的作用越來越引起人們的關(guān)注。
G蛋白偶聯(lián)受體(G protein coupled receptors,GPCRs)是細胞膜表面最大的受體家族,它參與了胃癌、大腸癌、肺癌和乳腺癌等多種腫瘤的發(fā)生和發(fā)展過程,具有促進腫瘤生長的作用[2]。此外,GPCRs與腫瘤細胞的增殖、侵襲和轉(zhuǎn)移等多種惡性生物學行為密切相關(guān),涉及到多種信號傳導通路[3]。GPCRs激動劑或者拮抗劑與受體結(jié)合后,通過啟動細胞內(nèi)相應(yīng)的信號轉(zhuǎn)導通路影響腫瘤的生長,因此GPCRs是優(yōu)異的腫瘤藥物作用靶點。
酪氨酸激酶受體(receptor tyrosine kinases,RTKs)是另一類重要的膜受體家族,包括大多數(shù)的生長因子受體,介導細胞的增殖、分化、遷移以及存活等過程[4]。它既是受體,又是酶, 能夠與配體結(jié)合,并誘導靶蛋白的酪氨酸殘基磷酸化。近年研究發(fā)現(xiàn),許多腫瘤中酪氨酸激酶受體呈現(xiàn)過度表達,例如:在神經(jīng)母細胞瘤(neuroblastoma,NB)、多發(fā)性骨髓瘤(multiple myeloma,MM) 中常伴有原肌球蛋白受體激酶B(tropomyosin receptor kinase B,TrkB)的過表達或異常激活;在上皮細胞腫瘤中常伴有表皮生長因子受體(epidermal growth factor receptor, EGFR)的過表達;此外,在膠質(zhì)瘤中常伴有血小板衍生因子受體(platelet derived growth factor receptor,PDGFR)的過表達。因此,RTKs亦是腫瘤臨床治療中潛在的靶點。
通常,一個細胞能夠同時表達GPCRs和RTKs,并且響應(yīng)不同的外部信號。最近研究發(fā)現(xiàn)作為典型RTKs的胰島素樣生長因子1型受體(insulin like growth factor 1 receptor,IGF-1R)具備了某些GPCRs功能[1],這一現(xiàn)象提示GPCRs與RTKs兩個受體之間存在信號交流,可能介導共同的信號轉(zhuǎn)導途徑。這種信號交流的設(shè)想目前已被證實,但其作用機制尚不明確。主要原因可能是GPCRs與RTKs介導的信號通路有重疊,經(jīng)典的信號途徑ERK/MAPK通路,以往研究表明ERK/MAPK是RTKs特異性介導的,但近期越來越多的研究表明GPCRs也可以激活該通路[5-6]。GPCRs被激活后能迅速誘導接頭蛋白SHC的磷酸化、SHC-Grb2-Sos復合物形成以及ERK/MAPK的激活,這一結(jié)果提示可能有一種或幾種RTKs與GPCRs共同介導ERK/MAPK通路的促增殖作用[7]。1 GPCRs與RTKs之間的信號交流
G蛋白偶聯(lián)受體與酪氨酸激酶受體之間的信號交流是非常普遍的一種現(xiàn)象,在許多類型的細胞中被發(fā)現(xiàn),G蛋白偶聯(lián)受體能夠反式激活酪氨酸激酶受體,而酪氨酸激酶受體也能夠利用經(jīng)典的G蛋白偶聯(lián)受體信號通路來介導其下游信號轉(zhuǎn)導通路。
1.1 GPCRs激活的RTKs 一般情況下,RTKs的配體通過結(jié)合到細胞外結(jié)構(gòu)域來誘導受體的二聚化和胞質(zhì)域的酪氨酸殘基自磷酸化而激活受體。近期研究發(fā)現(xiàn),G蛋白偶聯(lián)受體可以激活酪氨酸激酶受體并調(diào)節(jié)G蛋白偶聯(lián)受體的下游信號通路。例如:溶血磷脂酸(lysophosphatidic acid,LPA)與其受體溶血磷脂酸受體(lysophosphatidic acid receptor,LPAR)結(jié)合后,激活表皮生長因子(EGFR)并促進MEK/ERK以及PKC通路活化(Tab 1)[8];原肌球蛋白受體激酶A(atropomyosin receptor kinase A,TrkA)也可以被LPA激活,并激活下游ERK1/2通路(Tab 1)[9];血小板衍生因子受體β (platelet-derived growth factor receptor,PDGFRβ)可以被多巴胺4激活并促進ERK1/2通路激活(Tab 1)[10];IGF-1R可以被γ-氨基丁酸(GABA)激活并介導Akt信號通路激活(Tab 1)等[11]。因此,GPCRs能夠“綁架”RTKs進行信號轉(zhuǎn)導,即在無外加RTKs配體情況下RTKs可以被GPCRs反式激活(transactivation),并介導下游信號通路的激活。
1.1.1 溶血磷脂酸受體1與原肌球蛋白激酶A之間的信號交流 LPA是具有生物活性的溶血磷脂,通過與其受體LPAR1-6結(jié)合來調(diào)節(jié)細胞增殖、分化和遷移[21]。LPAR1-6是GPCRs家族的成員。TrkA是RTKs家族的成員之一,屬于神經(jīng)生長因子(nerve growth factor,NGF)的受體[22-23]。Nan等[9]研究發(fā)現(xiàn),LPA時間和劑量依賴性地促進TrkA Y674/Y675的磷酸化,推測是 LPA1與TrkA結(jié)合形成了二聚體。在二聚體形成過程中,LPA1的C末端發(fā)揮至關(guān)重要的作用,同時LPA1與TrkA的信號交流可以調(diào)節(jié)LPA1的內(nèi)在化。LPA對TrkA反式激活的影響是局部的,主要發(fā)生在質(zhì)膜上,該過程體現(xiàn)了在肺上皮細胞新型的配體-受體之間的關(guān)聯(lián)。并且在整個實驗過程中并沒有NGF的參與。
Tab 1 Biological functions of GPCRs transactivate RTKs
細胞遷移是正常胚胎發(fā)育、系統(tǒng)功能和血管生成、以及肺上皮傷口修復損傷后所必需的。Nan等[9]將MLE12細胞在細胞培養(yǎng)皿中劃線,通過觀察并測量在傷口閉合區(qū)域的細胞遷移距離,發(fā)現(xiàn)LPA能夠誘導肺細胞的遷移并一定程度的促進傷口的愈合 。進一步研究發(fā)現(xiàn),在遷移細胞中LPA能夠增加皮層蛋白與F-肌動蛋白的共定位,但是這種共定位的效果可以被TrkA小干擾RNA(TrkAi)抑制。這一發(fā)現(xiàn)與之前有關(guān)LPA促進細胞遷移的報道是一致的[24]。以上數(shù)據(jù)表明,在肺上皮細胞中LPA1和TrkA之間的信號交流在LPA誘導細胞遷移過程中發(fā)揮至關(guān)重要的作用。
1.1.2 GABAB受體與IGF-1R之間的信號交流 GABA是脊椎動物中樞神經(jīng)系統(tǒng)中主要的抑制性神經(jīng)遞質(zhì),并通過GABAB受體介導緩慢長突觸抑制作用,該作用涉及多種型的有害反應(yīng),如認知障礙、癲癇、痙攣和藥物成癮。GABAB受體屬于C類的GPCRs。IGF-1是正常腦發(fā)育所必需的,并促進神經(jīng)元存活,觸發(fā)其同源的酪氨酸激酶受體的IGF-1R的磷酸化,激活Src和Akt用于神經(jīng)保護。據(jù)報道,血管緊張素II的 1型受體(AT1Rs)可反式激活I(lǐng)GF-1R介導的下游信號[9]。兩個受體之間可能是通過直接或間接相互作用來實現(xiàn)功能的信號交流。Haijun等采用免疫共沉淀的方法證明IGF-1R和GABAB是相同信號復合物的一部分。GABAB受體的激動劑,如GABA、巴氯芬或CGP7930均可誘導IGF-1R的反式激活。巴氯芬或CGP7930可引起磷酸化的IGF-1R升高,而不改變IGF-1R蛋白的表達水平,并且這種作用能夠被CGP54626(GABAB受體的競爭性拮抗劑)和百日咳毒素(PTX)(GABAB受體 Gαi/o型蛋白拮抗劑)抑制。因此GABAB受體Gαi/o型蛋白的活化可誘導配體非依賴性的IGF-1R受體的反式激活。此外,GABAB受體誘導IGF-IR的反式激活是由PLC介導的FAK1活化實現(xiàn)的,該過程依賴細胞內(nèi)Ca2+參與,并且GABAB受體反式激活I(lǐng)GF-1R可誘導Src激酶的磷酸化(Fig 1)??傊?,GABAB受體能夠反式激活I(lǐng)GF-1R,而IGF-1并未參與GABAB受體反式激活I(lǐng)GF-1R的過程。
近期研究發(fā)現(xiàn)IGF-1R在GABAB受體介導的神經(jīng)保護作用中是必須的。首先,IGF-1R的抑制劑AG1024可反向降低由GABA、巴氯芬或者CGP7930誘導的蛋白酶-3(caspase-3)的活化。其次,AG1024可抑制巴氯芬對人小腦顆粒神經(jīng)元凋亡的保護作用。因此,GABAB與IGF-1R之間信號交流可用于人小腦顆粒神經(jīng)元的保護。
1.1.3 G蛋白偶聯(lián)受體激動劑對表皮生長因子受體的激活 Daub等發(fā)現(xiàn),在Rat-1成纖維細胞中GPCRs的多種激動劑如內(nèi)皮素、溶血磷脂酸、血栓素等刺激因素均可誘導EGFR酪氨酸磷酸化,并且EGFR的酪氨酸激酶活性對GPCRs激活ERK/MAPK通路是必需的[25]。同時研究發(fā)現(xiàn)EGFR能夠通過與G蛋白偶聯(lián)而參與調(diào)節(jié)第二信使cAMP的釋放。此外,一些GPCRs的配體,如血管緊張素、緩激肽和蛙皮素(Bombesin,BB),借助Ca2+通道或Src的磷酸化反式激活EGFR[26](Fig 2)。在細胞表面GPCRs的活化可通過特定的基質(zhì)金屬蛋白酶誘導表皮生長因子釋放[27],EGF的釋放激活進而激活EGFR。因此,GPCRs的配體能夠促進EGFR的激活。
Fig 1 Signalings of GABAB receptor transactivation of IGF-1R in CGN neuroprotective effects
GABA activated GABABreceptors leads to Gβγ subunit and Gαi/o dissociation, then activated PLC/Ca2+-dependent FAK1 pathway. Furthermore, the FAK transactivation of IGF-IR, then induced activation of PI3K/Akt signaling, caspase-3 activation and resulted in cell apoptosis.
在很多腫瘤細胞中,都存在EGFR過表達或持續(xù)的激活。而EGFR表達水平增高、突變或者信號失調(diào)控均可促進某些腫瘤的發(fā)生和發(fā)展。EGFR持續(xù)激活能阻止受損傷的或發(fā)生惡性病變的細胞進入凋亡途徑而使之停留在細胞旺盛增殖階段。因而在腫瘤治療中,EGFR的信號通路必須受到嚴格調(diào)控??顾幮允悄[瘤藥物治療的主要障礙,導致癌細胞對靶向抑制劑和(或)常規(guī)化學治療藥物不敏感。Zhan等[28]研究發(fā)現(xiàn),GPCRs信號途徑通過激活Hh(Hedgehog)信號通路下游轉(zhuǎn)錄因子Gli促進腫瘤細胞獲得耐藥性。GPCRs和EGFR/ErbB過表達往往有助于腫瘤的生長。GPCRs和EGFR/ErbB二者之間在受體水平的信號交流通過GPCRs配體觸發(fā)EGFR/ErbB的信號促進頭部和頸部鱗狀細胞癌(HNSCC)的發(fā)生發(fā)展[29]。另有研究發(fā)現(xiàn)在一些腫瘤細胞中,LPA也能夠反式激活EGFR促進癌癥的發(fā)展,包括增殖、遷移和侵襲[13]。因此,GPCRs與EGFR的信號交流促進了腫瘤的發(fā)生及發(fā)展。
1.2 RTKs激活的GPCRs 傳統(tǒng)觀念認為只有GPCRs可以激活RTKs,而RTKs并不能反式調(diào)節(jié)GPCRs。陳躍軍[30]首次發(fā)現(xiàn)RTKs信號通路的激活可以調(diào)節(jié)GPCRs。
The BB2R interacts with Gq leading to PLC activation and PIP2 metabolism. The products IP3 causes calcium release from the endoplasmic reticulum (ER) whereas DAG activates PKC, triggering Src, PYK2, FAK and paxillin phosphorylation. When Src is phosphorylated it activates MMP causing TGF release from lung cancer cells. The TGF activates RTK such as the EGFR which can form heterodimers with HER2. The activated EGFR interacts with Shc, Grb2 and SOS leading to Ras and Raf activation, followed by phosphorylation of MEK and ERK. The activated EGFR interacts with PI3K leading to PIP3 formation and Akt as well as mTOR tyrosine phosphorylation altering cancer cell survival, proliferation and gene expression.
1.2.1 EGFR反向調(diào)節(jié)阿片受體 阿片受體主要包括δ、μ、κ三種類型,屬于GPCRs超家族成員。陳躍軍[30]發(fā)現(xiàn)表皮生長因子受體(EGFR)可以反向調(diào)節(jié)阿片受體。EGF募集G蛋白偶聯(lián)受體激酶2(GRK2)上膜進而磷酸化激活GRK2,GRK2與EGFR形成復合體,反向調(diào)節(jié)δ阿片受體和μ阿片受體的內(nèi)吞。在此過程中,GRK2可能是RTKs信號通路調(diào)節(jié)GPCRs信號通路的關(guān)鍵中介分子。GRK2是EGFR的底物,EGF刺激誘導GRK2的膜轉(zhuǎn)位及GRK2-EGFR復合物的形成。EGF亦能刺激誘導GRK2氨基端的酪氨酸殘基發(fā)生磷酸化。在該過程中,GRK2通過它的催化域和EGFR相互作用。
最近研究表明,δ、μ、κ三種阿片受體亞型在非小細胞肺癌和其他腫瘤細胞中均有表達,并且膜表面阿片受體的表達量和腫瘤細胞的生長呈負相關(guān),而這些細胞中均檢測到EGFR的突變或過表達。以上結(jié)果提示EGFR對阿片受體的反向調(diào)節(jié)可能在腫瘤發(fā)生中發(fā)揮了重要的作用,EGFR對阿片受體的調(diào)節(jié)作用可能是一個普遍的現(xiàn)象。
1.2.2 IGF-1R反向調(diào)節(jié)G蛋白偶聯(lián)受體的功能 研究發(fā)現(xiàn)IGF-1R可以和G蛋白相偶聯(lián),而下游信號通路的轉(zhuǎn)導需要Gαi和Gβγ蛋白的參與,筒箭毒堿(tubocurarine)處理后,IGF-1R下游信號轉(zhuǎn)導明顯被抑制[31]。進一步的研究表明,IGF-1刺激促進了GPCRs和Gβγ蛋白的解離,提示Gβγ亞單位可能參與了IGF-1R下游信號的轉(zhuǎn)導[32]。IGF-1R與G蛋白的結(jié)合說明IGF-1R可以直接激活G蛋白并激活下游信號通路,而這一過程中并沒有GPCRs的參與。
在細胞的惡性轉(zhuǎn)化、增殖、轉(zhuǎn)移和惡性表型維持過程中IGF-1R也起到重要的作用[31]。靶向IGF-1R治療實體腫瘤是近年來的一個研究熱點,而針對IGF-1R的單克隆抗體是發(fā)展較快的一個分支。張鐵紅[1]研究發(fā)現(xiàn)IGF-1R的表達是食管癌完全切除患者的一個獨立預后指標。體外實驗結(jié)果顯示IGFR的單抗CP對食管癌具有一定的治療作用。而IGF-1R/GPCRs信號交流的復合體在IGF-1R靶向治療中的功能及調(diào)控機制可能對IGF-1R靶向治療具有增敏作用。
腫瘤的發(fā)生發(fā)展涉及到一系列的事件,從腫瘤發(fā)生到轉(zhuǎn)移,每一步都可能通過關(guān)鍵信號轉(zhuǎn)導途徑促進腫瘤的進程[33]。GPCRs與RTKs的信號交流在協(xié)同下游信號分子轉(zhuǎn)導的過程中具有重要作用,這些信號最終參與了腫瘤的發(fā)生發(fā)展和惡性表型的維持,并且可能對相關(guān)的靶向治療敏感性發(fā)揮重要的調(diào)節(jié)作用。目前,研究腫瘤中靶向GPCRs和RTKs及其信號轉(zhuǎn)導通路中的其他組成部分是一個重要的研究領(lǐng)域[3]。許多大型制藥公司都擁有正在進行臨床試驗或臨床試驗的試劑(主要是抗體和蛋白激酶抑制劑)(Tab 2)。但是,成功的靶向GPCRs和RTKs需要建立在對受體良好認知的基礎(chǔ)上。尤其是明確其信號交流在正常細胞和腫瘤進展的不同階段的機制是必須的。而調(diào)控信號交流的蛋白也有可能成為新的靶點,或許最終可能會成為比GPCRs或RTKs更好的治療靶點。
Tab 2 Treatment of cancer antibodies and drugs
[1] 張鐵紅.IGF-1R/GPCR串話在靶向IGF-1R治療腫瘤中的作用及機制研究[D].山東大學,2015.
[1] Zhang T H.The role of IGF-1R/GPCR cross-talk in the treatment of cancer via targeting IGF-1R[D]. Shandong Universiy,2015.
[2] 劉路路,蔡 欣,張 寧,等.GPCR偏向性配體介導的選擇性功能[J].中國藥理學通報, 2012, 28(12):1643-7.
[2] Liu L L,Cai X,Zhang N,et al. GPCR biased ligand mediated selective function[J].ChinPharmacolBull, 2012, 28(12):1643-7.
[3] 許云吉,王 松,梁慶模.G蛋白偶聯(lián)受體與腫瘤發(fā)生發(fā)展相關(guān)性研究現(xiàn)狀[J].中華腫瘤防治志,2013,20(9):712-6.
[3] Xu Y J,Wang S,Liang Q M.Relation between G protein-couple receptor and development of tumour[J].ChinCancerPreventTreat, 2013,20(9):712-6.
[4] Wetzker R, B?hmer F D. Transactivation joins multiple tracks to the ERK/MAPK cascade[J].NatRevMolCellBiol, 2003, 4(8):651-7.
[5] Bonfini L, Migliaccio E, Pelicci G,et al. Not all Shc’s roads lead to Ras[J].TrendsBiochemSci, 1996,21(7):257-61.
[6] Chen Y, Grall D, Salcini A E, et al.Obberghen-schilling E Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-couple thrombin receptor[J].EmboJ,1996,15(5):1037-44.
[7] Azad A, Lawen A, Keith J M. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling[J].BmcSystBiol,2015, 9(1):1-17.
[8] Kassel K M,Jacobs A C,Toews M L. LPA regulates EGFR binding in airway epithelial cells via ERK and PKC[J].JPharmacolExpTher, 2007, 21(5):A428.
[9] Nan L,Wei J,Jacko A M,et al. Cross-talk between lysophosphatidic acid receptor 1 and tropomyosinreceptor kinase A promotes lung epithelial cell migration[J].BiochimBiophysActa, 2016,1986(2): 229-35.
[10] Gill R S, Hsiung M S, Sum C S, et al.The dopamine D4 receptor activates intracellular platelet-derived growth factor receptor beta tostimulate ERK1/2[J].CellSignal, 2010,22(2): 285-90.
[11] Lin X,Li X,Jiang M,et,al. An activity-based probe reveals dynamic protein-protein interactionsmediating IGF-1R transactivation by the GABA(B) receptor[J].BiochemJ, 2012,443(3):627-34.
[12] Zhao Y, He D, Saatian B, et al. Regulation of lysophosphatidic acid-induced epidermal growth factor receptor transactivation and interleukin-8 secretion in human bronchial epithelial cells by protein kinase Cdelta Lyn kinase, and matrix metalloproteinases[J].JBiolChem, 2006, 281(28): 19501-11.
[13] Shida D,Fang X,Kordula T,et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates Up-regulation of sphingosine Kinase 1 to promote gastric cancer cell motility and invasion[J].CancerRes, 2008,68(16): 6569-77.
[14] Sabri A, Guo J, Elouardighi H, et al. Mechanisms of protease-actvated receptor-4 actions in cardiomyocytes: role of Src tyrosine kinase[J].JBiolChem, 2003, 278(13): 11714-20.
[15] Flamant M, Tharaux P L,Placier S, et al. Epidermal growth factor receptor transactivationmediates the tonic and fibrogenic effects of enodthelin in theaortic wall of transgenic mice[J].FASEBJ, 2003,17(2), 327-9.
[16] Shah B H, Catt K J. Matrix metalloproteinase-dependent EGF receptor activation inhypertension and left ventricular hypertrophy[J].TrendsEndocrinolMetab, 2004,15(6): 241-3.
[17] 謝克強,曹 彥,馮林音.腺苷A1受體轉(zhuǎn)移激活表皮生長因子受體的機制研究[J].中國藥理通訊, 2008, 25(3): 14.
[17] Xie K Q,Cao Y,Feng L Y. Mechanism of adenosine A1 receptor activation of epidermal growth factor receptor[J].ChinPharmacologist, 2008, 25(3): 14.
[18] Tu H J,Xu C J,Zhang W H,et al. GABABreceptor activation protects neurons from apoptosis via IGF-1 receptor transactivation[J].JNeurosci,2010, 30(2):749-59.
[19] Zahradka P, Litchie B, Storie B, Helwer G.Transactivation of the insulin-like growth factor-I receptor by angiotensin II mediates downstream signaling from the angiotensin II type 1 receptor to phosphatidylinositol 3-kinase[J].Endocrinology, 2013,145 (6):2978 -87.
[20] Rajagopal R, Chen Z Y, Lee F S, Chao M V. Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes[J].JNeurosci,2004,24(30):6650-8.
[21] 陶晨潔,呂廣梅,龔涌靈.內(nèi)皮分化基因受體介導溶血磷脂酸在人胰腺癌的作用及其機制[J].中華胰腺病雜志,2012, 12(3):216-8.
[21] Tao C J,Lyu G M,Gong Y L. Endothelial differentiation gene mediated by lysophosphatidic acid receptor in human pancreatic cancer and its effect mechanism[J].ChinJPancreatol, 2012, 12(3): 216-8.
[22] Bartkowska K, Paquin A, Gauthier A S,et al. Trk signaling regulatesneural precursor cell proliferation and differentiation during cortical development[J].Development, 2007, 134(34): 4369-80.
[23] Zhang Y, Moheban D B, Conway B R, et al. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation[J].JNeurosci, 2000, 20(15):5671-8.
[24] Willier S, Butt E, Grunewald T G. Lysophosphatidic acid (LPA) signalling in cell migrationand cancer invasion: a focussed review and analysis of LPA receptor gene expressionon the basis of more than 1700 cancer microarrays[J].BiolCell,2013,105(8): 317-33.
[25] Inglese J,Freedman N J,Koch W J,Lefkowitz R J. Structure and mechanism of the G protein-couple receptor kinases[J].JBiolChem,1993,268(32): 23735-8.
[26] Hackel P O, Zwick E, Prenzel N, Ullrich A. Epidermal growth factor receptors: critical mediators of multiple receptor pathways[J].CurrOpinCellBiol, 1999,11(2):184-9.
[27] Prenzel N, Zwick E, Daub H, et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF[J].Nature,1999, 402(6764): 884-8.
[28] Zhan X, Wang J, Liu Y,et al. GPCR-like signaling mediated bysmoothened contributes to acquired chemoresistance through activating. Gli[J].MolCancer, 2014,13(1):1-13.
[29] Thomas A, O’Hara B, Ligges U, Sturtz S. Making BUGS Open[J].RNews,2006,6(1):12-7.
[30] 陳躍軍.表皮生長因子受體反式調(diào)節(jié)G蛋白偶聯(lián)受體功能的研究[D].上海:復旦大學,2008.
[30] Chen Y J. Epidermal growth factor receptor trans regulates the function of G protein coupled receptors[D].Shanghai: Fudan University,2008.
[31] Tolcher A W, Sarantopoulos J, Papadopoulos K,et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1[J].JClinOncol,2009,27 (34): 5800-7.
[32] Camidge D R, Dziadziuszko R, Hirsch F R. The rational and development of therapeutic insulin-like growth factor axis inhibition for lung and other caners[J].ClinLungCancer, 2009,3(1):19-29.
[33] Logue J S, Morrison D K. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy[J].GenesDev,2012,26(7): 641-50.
[34] 黃曉東,易俊林,高 黎,等.抗表皮生長因子受體單克隆抗體h-R3聯(lián)合放療治療晚期鼻咽癌的Ⅱ期臨床研究[J].中華腫瘤雜志, 2007, 29(3):197-201.
[34] Huang X D,Yi J L,Gao L,et al. Multi-center phase Ⅱ clinical trial of humanized anti-epidermal factor receptor monoclonal antibody h-R3 combined with radiotherapy for locoregionally advanced nasopharyngeal carcinoma[J].ChinJOncol, 2007, 29(3):197-201.
[35] 任新玲,沈麗英,金伯泉.表皮生長因子受體單克隆抗體抗肺癌作用的研究[J].腫瘤, 2000, 20(1):35-7.
[35] Ren X L,Shen L Y,Jin B Q.Efficacy of epidermal growth factor receptor antibody against lung cancer in vitro and in nude mice[J].Tumor, 2000, 20(1):35-7.
[36] 曹夢苒,李小燕,鄭大勇,等.抗表皮生長因子受體單抗對人結(jié)腸癌化療敏感性的影響及其機制[J].南方醫(yī)科大學學報, 2010,30(8):1817-9.
[36] Cao M R,Li X Y,Zheng D Y,et al. Effect of anti-EGFR monoclonal antibody on chemosensitivity of human colon cancer cells and the mechanism[J].JClinExpMed, 2010,30(8):1817-9.
[37] 王肇炎,王爾兵.治療結(jié)腸直腸癌的靶向藥物帕尼單抗臨床評價[J].世界臨床藥物, 2008, 29(2):91-3.
[37] Wang Z Y,Wang E B. The treatment of colorectal cancer targeted drugs panitumumab clinical evaluation[J].WorldClinlDrugs, 2008, 29(2):91-3.
[38] 吳 亮,鄭民華.抗表皮生長因子受體單克隆抗體-妥昔單抗在結(jié)直腸癌治療中的臨床進展[J]. 中國臨床藥理學與治療學, 2008, 13(7):837-40.
[38] Wu L,Zheng M H. Clinical progress of monoclonal antibodies against epidermal growth factor receptor monoclonal antibody in the treatment of colorectal cancer[J].ChinJClinPharmacolTherap, 2008,13(7):837-40.
[39] 陸 舜,李子明,成柏君,等.厄洛替尼治療復治晚期非小細胞肺癌的臨床分析[J].中國癌癥雜志, 2007, 17(9): 711-5.
[39] Lu S,Li Z M,Cheng B J,et al. The evaluations of advanced non-small cell lung cancer patients treated with erlotnib[J].ChinaOncol,2007, 17(9): 711-5.
[40] 何 怡,王 東,張沁宏,等. EGFR抑制劑吉非替尼對肝癌細胞增殖和凋亡的影響[J]. 第三軍醫(yī)大學學報, 2006,28(2):125-8.
[40] He Y,Wang D,Zhang Q H,et al. Effect of EGFR inhibitor ge6tinib on proliferation and apoptosis of hepatocellular carcinoma cells[J].JThirdMilMedUniv, 2006,28(2):125-8.
[41] 陳建華,羅永忠,王 偉,等.鹽酸埃克替尼治療晚期非小細胞肺癌Ⅲ期臨床試驗[J]. 腫瘤藥學, 2011, 1(5): 441-3.
[41] Chen J H,Luo Y Z,Wang W,et al. A phase Ⅲ study on Icotinib Hydrochloride for non-small cell lung cancer[J].Anti-tumorPharmacy, 2011, 1(5):441-3.
[42] 楊 艷,陳 靜,王 娟,等.EGFR抑制劑AG1478對子宮內(nèi)膜癌細胞上皮-間質(zhì)轉(zhuǎn)化的影響[J].現(xiàn)代婦科進展, 2012, 21(4):75-9.
[42] Yang Y,Chen J,Wang J,et al. The influence of EGFR inhibitor AG1478 on epithelial-mesenchymal transition in endometrial carcinoma cells[J].ProgObstGynecol, 2012, 21(4):75-9.
[43] 楊曉虹.小分子IGF-1R抑制劑的研究進展[J].藥學學報,2008,43(10): 979-84.
[43] Yang X H. Progress in the studies on small molecule IGF-1R inhibitors[J].ActaPharmSin, 2008,43(10): 979-84.
[44] 王 巍. IGF-1R抗體抑制Herceptin耐藥卵巢癌細胞的機制研究[D].鄭州:河南大學,2015.
[44] Wang W.Mechanism research of an anti-IGF-1R monoclon alantibody to inhibit the trastuzumab-resistant ovarian cancer cells [D]. Zhengzhou: Henan University,2015.
[45] 田冬冬,聶麗霞,楊保仲,郜旭萍. 阿片受體及阿片類藥物治療癌痛的研究進展[J]. 腫瘤研究與臨床,2016, 28(9):645-8.
[45] Tian D D,Nie L X,Yang B Z,Gao X P. Progress in opioid receptor and opioids for the treatment of cancer pain[J].CancerResClinic, 2016, 28(9): 645-8.
[46] 趙麗娟,張雪花.原發(fā)性肝癌晚期應(yīng)用鹽酸哌替啶致呼吸抑制1例[J]. 放軍醫(yī)學院學報,2011, 32(11):1175.
[46] Zhao L J,Zhang X H. Treatment of 1 cases of respiratory depression induced by hydrochloric acid in the late stage of primary liver cancer[J].JChinPLAPostgradMedSchool, 2011, 32(11):1175.
[47] 王 波,岳天孚.他莫昔芬的婦科效應(yīng)[J].國際婦產(chǎn)科學雜志, 2002, 29(1):49-50.
[47] Wang B,Yue T F. Gynecologic effects of tamoxifen[J].JIntObstGynecol, 2002, 29(1):49-50.
[48] Gonzalez N, Mantey S A, Pradhan T K,et al. Characterization of putative GRP-and NMB receptor antagonist’s interaction with human receptors[J].Peptides, 2009,30(8): 1473-86.
[49] Moody T, Chan D, Mantey S,et al. SR48692 inhibits non-small-cell lung cancer proliferation in an EGFR-dependent manner[J].LifeSci,2014, 100(1): 25-34.
[50] Cheng-Hsien C, Yung-Ho H, Yuh-Mou S, et al. Src homology 2-containing phosphotyrosine phosphatase regulates endothelin-1-induced epidermal growth factor receptor transactivation in rat renal tubular cell NRK-52E[J].PflugersArch, 2006,452(1): 16-24.
Cross-talk of GPCRs and RTKs and its effects on oncotherapy
CHEN Lu-yao,YANG Yang,AN Shu,GUO Xiao-xi,HAO Qian, XU Tian-rui,LIU Ying
(CellSignalingLaboratory,F(xiàn)acultyofLifeScienceandTechnology,KunmingUniversityofScienceandTechnology,Kunming650500,China)
G protein-coupled receptors (GPCRs) are the largest cell surface receptor family, which mediates activities of almost all known cellular response to ligands, including hormones release, neurotransmitters and sensory input. GPCRs can promote development and progression of gastric cancer, colorectal cancer, lung cancer and breast cancer and other tumors. Tyrosine kinase receptors (RTKs) are another important family of membrane receptors, which can regulate cell proliferation, differentiation, migration and survival. Overexpression of RTKs has been found in many cancer cells. Therefore, GPCRs and RTKs are equally important in the clinical treatment of cancer therapeutic. However, GPCRs and RTKs are not independent, and they can use common signal transduction. The present study show that crosstalk between GPCRs and RTKs can facilitate migration of lung epithelial cells, increasing survival of nerve cells and promoting tumor occurrence and development. This article mainly focuses on crosstalk between GPCRs and RTKs and their roles in tumorigenesis and oncotherapy.
G protein coupled receptors;receptor tyrosine kinases;signaling crosstalk;oncotherapy;transactivation; trans-regulation
時間:2017-3-13 8:38
http://kns.cnki.net/kcms/detail/34.1086.R.20170324.1247.006.html
2016-10-08,
2016-12-24
國家自然科學基金資助項目( No 81560455, 81460417,81460253,81473342,U130225);云南省高端科技人才基金(No 2012HA008)
陳璐瑤(1993-),女,碩士生,研究方向:細胞信號傳導,E-mail:862851468@qq.com; 徐天瑞(1969-),男,博士,教授,研究方向:細胞信號傳導,通訊作者,E-mail: xtrgfq@hotmail.com; 劉 瑩(1980-),女,博士,講師,研究方向:細胞信號傳導,通訊作者,E-mail: lyhj_2002@163.com
10.3969/j.issn.1001-1978.2017.04.003
A
1001-1978(2017)04-0454-07
R392.11;R730.5;R977.3;R977.6