王 婧,張 文,陳麗萌
(中國醫(yī)學科學院 北京協(xié)和醫(yī)學院 北京協(xié)和醫(yī)院腎內(nèi)科, 北京 100730)
ChinJAllergyClinImmunol,2017,11(2):166- 173
原發(fā)干燥綜合征是一種慢性炎癥性自身免疫性疾病,我國人群的患病率為0.3%~0.7%[1]。其病理基礎(chǔ)是自身免疫性上皮炎[2]。干燥綜合征的常見臨床癥狀是唾液腺及淚腺受累所致的口眼干燥,伴隨疼痛、乏力等,20%~40%的患者會出現(xiàn)多系統(tǒng)器官受累,包括淋巴結(jié)腫大、皮膚血管炎、關(guān)節(jié)炎、肌炎以及肺部、肝臟、腎臟和神經(jīng)等系統(tǒng)損傷,嚴重者可發(fā)展為淋巴瘤[3]。但其發(fā)病機制并不清楚,推測是在遺傳因素背景下,多種環(huán)境因素,特別是病毒感染等誘因的共同作用結(jié)果,體液免疫和細胞免疫同時參與其中。生發(fā)中心位于外周淋巴樣組織(如脾臟、淋巴結(jié)等)中,B細胞在此增殖、分化、經(jīng)歷選擇過程而產(chǎn)生抗原特異性高親和力抗體,如果出現(xiàn)在經(jīng)典淋巴組織之外,則稱為異位生發(fā)中心[4],是多種自身免疫性疾病中重要的免疫激活場所。本研究將簡述異位生發(fā)中心形成及炎癥反應在干燥綜合征靶器官損傷中的作用。
脾臟和淋巴小結(jié)等次級淋巴樣器官的生發(fā)中心內(nèi),存在活化誘導胞嘧啶脫氨酶(activation-induced cytidine deaminase, AID)和濾泡樹突細胞網(wǎng)狀結(jié)構(gòu)[5],B細胞在其中接受抗原刺激和T細胞的輔助活化,發(fā)生體細胞高頻突變(somatic hypermutation, SHM)和免疫球蛋白基因類別轉(zhuǎn)換重組(class switch recombination, CSR)等過程,經(jīng)歷陽性及陰性選擇,具備產(chǎn)生高親和力抗體的能力[6]。生發(fā)中心由位于中心的B細胞聚集區(qū)(暗區(qū))和位于外周的T細胞聚集區(qū)(明區(qū))組成(模式圖見圖1)。自身免疫性疾病的受累靶器官中也有這種結(jié)構(gòu),因位于經(jīng)典淋巴器官之外而稱為異位生發(fā)中心[4],可以發(fā)生類似的反應使得體液免疫持續(xù)活化,始動因素是樹突細胞募集進行抗原呈遞,而其關(guān)鍵環(huán)節(jié)是B細胞在多種炎癥因子和趨化信號下定向遷移、活化。
圖1 生發(fā)中心模式圖[4]Fig 1 Germinal center pattern[4]T cell:T細胞; fDC:濾泡樹突細胞; B cell:B細胞
異位生發(fā)中心的標志之一是抗原長期存在,持續(xù)激活局部免疫反應。作為體內(nèi)已知功能最強的專職抗原呈遞細胞,樹突狀細胞(dendritic cell, DC)是啟動、調(diào)控和維持免疫應答的中心環(huán)節(jié)[7]。濾泡樹突細胞(follicular dendritic cell, fDC)分布于淋巴濾泡區(qū),是異位生發(fā)中心的標記之一。人類樹突細胞均起源于造血前體細胞,下游分為淋巴樣前體細胞和髓樣前體細胞,前者分化為漿細胞樣樹突細胞(plasmacytoid dendritic cell, pDC),主要存在于血液和淋巴樣組織中,經(jīng)血液循環(huán)進入淋巴小結(jié);后者分化為髓系樹突細胞(myeloid dendritic cell, mDC),主要存在于淋巴樣和非淋巴樣組織中[8]。三者分工合作,共同完成抗原呈遞過程,啟動異位生發(fā)中心炎癥反應。
fDC維持異位生發(fā)中心反應:fDC是一類非造血來源的特殊樹突樣細胞,它源自表達PDGFRβ的血管旁細胞[9],主要位于淋巴濾泡B細胞區(qū)。fDC在生發(fā)中心反應中的關(guān)鍵性作用主要體現(xiàn)在長期保有抗原和募集淋巴細胞兩方面。首先,fDC高表達補體受體CR1 (CD35)和CR2 (CD21),能夠長期保有并持續(xù)呈遞抗原。無論是將補體C3還是將CR2基因敲除,小鼠體內(nèi)的fDC均會喪失長期保有抗原的功能,生發(fā)中心反應難以維持[10]。此外,fDC還表達多種生發(fā)中心微環(huán)境形成所必需的趨化因子或黏附分子,例如CXCL13,它可以與Tfh細胞和濾泡B細胞表面的CXCR5相互作用,促進這些免疫細胞歸巢[11],這一作用在類風濕關(guān)節(jié)炎小鼠模型中已被證實[12]。又如在核因子κB(nuclear factor-κB,NF-κB)信號作用下fDC高表達整合素受體細胞間黏附分子- 1(intercellular adhesion molecular- 1,ICAM- 1)和血管內(nèi)皮細胞黏附分子- 1(vascular cell adhesion molecular- 1,VCAM- 1),在NF-κB信號通路受抑制的小鼠模型中使得ICAM- 1/VCAM- 1表達降低,發(fā)現(xiàn)fDC仍然能夠保有抗原,但形成的生發(fā)中心結(jié)構(gòu)較小,B細胞凋亡增加,IgG免疫活性也降低[13]。
pDC募集并參與局部抗原呈遞:pDC的免疫表型是CD4+CD45RA+IL- 3Rα(CD123)+ILT1-CD11c-Lineage-。新近研究提示,pDC除參與固有免疫途徑外,在接受病毒感染等刺激后還會發(fā)生形態(tài)和表型轉(zhuǎn)化,高表達主要組織相容性復合體(major histocompa-tibility complex,MHC) Ⅰ和MHCⅡ分子,呈遞內(nèi)源性抗原[14- 15];并表達多種C型凝集素或唾液酸結(jié)合免疫球蛋白樣受體[16],具備和經(jīng)典樹突細胞相類似的捕獲、加工并呈遞外源性抗原的能力。pDC的另一特點是遷移能力。在接受活化信號之后可直接從外周循環(huán)經(jīng)高內(nèi)皮小靜脈遷移進入發(fā)生炎癥反應的局部淋巴小結(jié)[17]。自身免疫性疾病的受累靶器官往往是pDC趨化募集的場所。在干燥綜合征患者中,流式細胞學[18]和質(zhì)譜流式細胞技術(shù)[19]都證實疾病早期外周血pDC比例下降,同時涎腺組織中可見BECA2+pDC浸潤[20],但異位生發(fā)中心反應中pDC介導的靶器官損傷的具體作用并不清楚。
mDC直接誘導異位生發(fā)中心反應啟動:mDC作為經(jīng)典的樹突細胞,具有很強的加工和呈遞抗原的能力[21]。外周血中的mDC處于未成熟狀態(tài),起前哨細胞的作用,當受到抗原刺激時可以迅速分化成熟并遷移到炎癥組織,通過多種模式識別受體蛋白捕獲抗原并有效激活T細胞[22]。mDC在外周組織微環(huán)境的誘導下可進一步分化為單核細胞來源樹突細胞(monocyte-derived dendritic cell,mo-DC)[8],直接參與炎癥反應誘導生發(fā)中心形成的過程。Ludewig等建立胰島β細胞表達淋巴細胞性腦膜炎糖蛋白的轉(zhuǎn)基因小鼠模型,發(fā)現(xiàn)反復用表達相同病毒蛋白表位的樹突細胞免疫后,胰島間質(zhì)生發(fā)中心反應啟動,胰島β細胞破壞,小鼠可發(fā)生自身免疫性糖尿病[4]。另一項研究則發(fā)現(xiàn),小鼠在被流感病毒感染后,肺臟出現(xiàn)異位生發(fā)中心(即黏膜相關(guān)淋巴組織),此時若清除體內(nèi)CD11c+mDC,該結(jié)構(gòu)不能維持;將肺臟組織中的CD11b+mDC從體內(nèi)分離,雖然其抗原呈遞能力消失,但仍能產(chǎn)生各種淋巴毒素和趨化因子,誘導異位生發(fā)中心的產(chǎn)生[23]。但目前還缺乏mDC與干燥綜合征異位生發(fā)中心形成的關(guān)系的研究。
生發(fā)中心是B細胞分化成熟的場所[24]。B細胞在生發(fā)中心的增殖分化是一個動態(tài)過程。受到抗原刺激的生發(fā)中心前體B細胞首先進入“暗區(qū)”,作為生發(fā)中心母細胞,在增殖同時發(fā)生體細胞高頻突變,B細胞受體(B cell receptor,BCR) V(D)J區(qū)基因重排,而后遷移至“明區(qū)”接受陽性選擇,篩選出較高親和力B細胞即生發(fā)中心B細胞,再次回到“暗區(qū)”進一步增殖并發(fā)生體細胞突變,這一“增殖分化-篩選”的過程循環(huán)往復,最終篩選出與抗原親和力很高的BCR,分化成為記憶B細胞或漿細胞[25]。在這個過程中,濾泡T輔助細胞(follicular T helper cell, Tfh)和細胞因子白細胞介素(Interleukin,IL)- 21起到了關(guān)鍵性作用。
Tfh細胞參與生發(fā)中心B細胞選擇:Tfh特征性表達CXCR5,程序性死亡受體1(programmed death 1,PD- 1),SAP(SLAM-associated protein)和ICOS(inducible costimulator)等表面分子,并且大量分泌IL- 21[26]。其主要特點包括定向遷移和參與B細胞陽性選擇。定向遷移是指具備CXCR5highCCR7low表型的Tfh細胞在趨化因子配體CXCL13的引導下定向移動到淋巴濾泡明區(qū)和暗區(qū)的交界處,得以與受到抗原刺激的B細胞接觸并提供輔助信號[27],這與生發(fā)中心反應強度相關(guān),研究顯示敲除CXCR5后生發(fā)中心反應強度下降2倍[28]。不同于傳統(tǒng)抗原競爭學說,新近的T細胞信號競爭學說認為,所有接受陽性選擇的B細胞都可以按照其BCR的親和力高低成比例地結(jié)合抗原,獲得足以保證其存活的抗原信號強度;但只有親和力高的B細胞可以獲取到更多抗原,從而將加工后的抗原多肽通過MHCⅡ呈遞給T細胞,競爭到足夠的T細胞信號而存活下來。因此,抗原傳遞的只是生存信號,提供B細胞存活的必要條件;T細胞傳遞的才是選擇信號,是決定B細胞存活或凋亡的限制性步驟[29- 30]。 而Tfh細胞能夠高表達PD- 1、ICOS等共刺激分子,正是B細胞完成生發(fā)中心反應必需的選擇信號。
IL- 21直接活化生發(fā)中心B細胞:IL- 21是具有多種免疫效應的炎癥因子,可由多個亞群的活化T細胞產(chǎn)生[31]。 IL- 21/IL- 21R通路通過JAK-STAT胞內(nèi)信號途徑激活下游基因的轉(zhuǎn)錄,與自身免疫反應密切相關(guān)[32]。在異位生發(fā)中心內(nèi)IL- 21同時參與T細胞區(qū)和B細胞區(qū)免疫反應的維持放大。首先,IL- 21可以正反饋調(diào)節(jié)Tfh細胞。它通過自分泌方式激活CD4+T細胞內(nèi)Bcl- 6的轉(zhuǎn)錄,促進其表達CXCR5、PD- 1及ICOS,分化成為Tfh細胞[33- 34]。在BXD2-IL21(-/-)小鼠體內(nèi)轉(zhuǎn)入AdIL- 21,可以觀察到脾臟內(nèi)Tfh和生發(fā)中心B細胞比例升高,同時具有免疫抑制效應的調(diào)節(jié)性濾泡T細胞(follicular regulatory T cells,Tfr)的表型也向Tfh轉(zhuǎn)變,促進自身抗體產(chǎn)生[35]。其次,IL- 21能夠直接作用于B細胞,IL- 21R在生發(fā)中心B細胞和活化的記憶B細胞中表達水平均顯著上調(diào)是直接的證據(jù)[36]。體外實驗中,IL- 21能夠刺激受到CD40-CD40L信號活化的純真B細胞產(chǎn)生IgG1/IgG3抗體[37];IL- 21和BCR信號的共同刺激還可以使得B細胞中B細胞成熟蛋白 1(Blymphocyte maturation protein1,BLIMP1)和活化誘導胞嘧啶核苷脫氨酶(activation-induced cytidine deaminase,AID)的轉(zhuǎn)錄被激活,誘導其分化為漿細胞[38- 39]。IL- 21轉(zhuǎn)基因小鼠會出現(xiàn)高γ球蛋白血癥,B細胞類別轉(zhuǎn)換頻率增加,漿細胞比例升高;而IL- 21R缺乏的小鼠在受到病毒感染后體液免疫水平降低,BCR親和力成熟,分化為記憶B細胞或漿細胞的過程均被抑制[40]。特異性敲除B細胞表面IL- 21R的實驗進一步證實,生發(fā)中心結(jié)構(gòu)的形成直接決定于B細胞IL- 21/IL- 21R信號[41]。
IL- 17主要由Th17細胞產(chǎn)生,可在病理條件下介導炎癥反應放大和組織損傷, IL- 17A是其家族主要成員[42]。很多證據(jù)都提示Th17/IL- 17和異位生發(fā)中心炎癥反應的關(guān)系密切。首先,Th17細胞與異位生發(fā)中心形成早期必需的淋巴組織誘導(Lymphoid tissue inducer, LTi)細胞有共同的發(fā)育起源和表面標記。有證據(jù)表明,Th17在分化過程中會表達LTi細胞特征性的核受體RORγt,將RORγt基因敲除后,小鼠將缺乏淋巴小結(jié)及Peyer斑等次級淋巴樣組織結(jié)構(gòu)[42]。二者還具有相同的表面分子LTα1β2、CCR6、TLR和IL- 17R等,并且都能夠在IL- 23刺激下分泌IL- 17。其次,在動物模型中Th17/IL- 17能夠直接促進異位生發(fā)中心結(jié)構(gòu)的形成。Randoll等發(fā)現(xiàn)即便在LTi細胞存在的情況下,IL- 17A基因敲除的小鼠仍然不能受LPS刺激而在支氣管黏膜組織中產(chǎn)生具有免疫應答功能的異位生發(fā)中心,并推測這一過程依賴于IL- 17A誘導CXCL13、CCL21等趨化因子的表達[43- 44]。Kuchroo等證明在誘導產(chǎn)生自身免疫性腦炎的小鼠模型中,Th17細胞通過分泌IL- 17并特異性表達Podoplanin蛋白促進中樞性經(jīng)系統(tǒng)血管周異位生發(fā)中心的形成[45]。Stockinger等在IL- 17基因熒光素報告小鼠模型中觀察到Th17細胞會選擇性歸巢至小腸Peyer斑,分化為Tfh細胞表型而直接活化B細胞產(chǎn)生抗體[46],說明IL- 17不僅促進生發(fā)中心形成,還參與其免疫效應。第三,Th17/IL- 17與自身免疫性疾病組織損傷密切相關(guān)。在類風濕關(guān)節(jié)炎滑膜組織中,異位生發(fā)中心相關(guān)的IL- 17可以直接作用于成纖維細胞和巨噬細胞,誘導TNF- α、IL- 1β、IL- 6等多種炎癥因子表達上調(diào),募集中性粒細胞并介導滑膜及軟骨損傷[47- 48]。在涎腺形成生發(fā)中心時,局部IL- 17蛋白和mRNA水平均更高[49- 50],并且和病理損傷程度正相關(guān)[50],這說明IL- 17通路在涎腺病變中能同時介導異位生發(fā)中心反應和上皮細胞損傷。我們在前期研究中發(fā)現(xiàn),干燥綜合征合并膜性腎病患者的腎臟組織IL- 17A與共刺激分子B7- 1的表達呈顯著正相關(guān),提示腎臟局部抗原可能呈遞給Th17細胞而參與球-管損傷。但IL- 17A在干燥腎損害中的直接作用同樣還有待進一步探索。
異位生發(fā)中心是機體通過不斷加強局部免疫反應,對各種應激刺激產(chǎn)生適應的一種機制,在不同情況下作用各異。當機體遭遇細菌或病毒感染時,感染灶局部形成的異位生發(fā)中心可以有效地局限并清除病原體,起到保護性作用[51- 52];而在自身免疫性疾病和移植排異反應中,針對自身抗原不斷增強的免疫反應則會導致組織病理損傷。
目前已經(jīng)在多種自身免疫性疾病中發(fā)現(xiàn)有異位生發(fā)中心結(jié)構(gòu)存在,包括類風濕關(guān)節(jié)炎的滑膜組織[53]、系統(tǒng)性紅斑狼瘡的腎臟間質(zhì)[54]、多發(fā)性硬化的腦膜組織[55]、干燥綜合征的涎腺組織[4]、橋本甲狀腺炎的甲狀腺組織[56]以及自身免疫性糖尿病小鼠的胰島間質(zhì)組織[57]等。有證據(jù)表明,這些具有生發(fā)中心結(jié)構(gòu)和功能的淋巴樣組織并非是炎癥刺激下發(fā)生的非特異性反應,而可以針對局部抗原產(chǎn)生組織特異性抗體,引起各靶器官損傷。
在腎臟,Clark等用顯微切割技術(shù)獲取系統(tǒng)性紅斑狼瘡合并間質(zhì)性腎炎患者腎臟異位生發(fā)中心的CD38+Ki67+B細胞,制備細胞內(nèi)克隆增殖免疫球蛋白的可變區(qū)單抗,利用質(zhì)譜和蛋白質(zhì)組方法,發(fā)現(xiàn)其共同自身抗原是波形蛋白,同時免疫組化結(jié)果顯示這類患者的腎間質(zhì)波形蛋白高表達,外周血抗波形蛋白抗體 (anti-vimentin antibodies,AVA)滴度與腎間質(zhì)損害程度正相關(guān),從而證實了異位生發(fā)中心可以產(chǎn)生針對局部組織特異的致病性自身抗體[58]。在關(guān)節(jié)滑膜,Humby等建立了類風濕關(guān)節(jié)炎和重癥聯(lián)合免疫缺陷嵌合體小鼠模型,這種小鼠缺少次級淋巴組織,但其滑膜組織的異位生發(fā)中心結(jié)構(gòu)內(nèi)仍然可以發(fā)生持續(xù)活躍的體細胞高頻突變和免疫球蛋白類別轉(zhuǎn)換,產(chǎn)生抗瓜氨酸合成蛋白抗體 (Anti citrullinated protein/peptide antibodies,ACPA)[59],導致滑膜病理損傷。
在涎腺,還缺少動物模型為異位生發(fā)中心與組織損傷提供直接證據(jù),但一些研究線索具有提示意義。首先,涎腺淋巴組織在結(jié)構(gòu)和功能上同時具備生發(fā)中心的特點。早在1998年,即有學者通過對干燥患者涎腺淋巴浸潤灶中B細胞IgV基因的克隆和測序,證明這些B細胞在局部抗原驅(qū)動下,發(fā)生了IgV基因重排和免疫球類型轉(zhuǎn)換,而并非由臨近的淋巴組織遷移而來[60];此后,進一步發(fā)現(xiàn)該微環(huán)境內(nèi)AID高表達,B細胞能夠完成分化增殖過程,產(chǎn)生特異性抗體[61]。其次,病毒感染是干燥綜合征發(fā)病的誘因之一[62],可能通過異位生發(fā)中心起作用。Bombardieri等用復制功能缺陷的腺病毒(adenovirus,AdV)特異性感染野生型C57BL/6小鼠的涎腺,發(fā)現(xiàn)這些小鼠的涎腺有功能完善的異位生發(fā)中心結(jié)構(gòu)形成,局部產(chǎn)生抗AdV抗體和抗核抗體,并且出現(xiàn)唾液流率降低等表現(xiàn)[63]。更有力的證據(jù)來自EB病毒相關(guān)研究,在干燥患者涎腺生發(fā)中心內(nèi)不僅能檢測到潛伏的EB病毒感染,在部分漿細胞中還觀察到其裂解活化的過程[64],而這些漿細胞對干燥綜合征相關(guān)抗原Ro52具有特異的反應性。將有EB病毒陽性異位生發(fā)中心的涎腺移植到嚴重聯(lián)合免疫缺陷小鼠體內(nèi)構(gòu)建嵌合體,發(fā)現(xiàn)仍持續(xù)有抗Ro/La抗體產(chǎn)生[65]。第三,多項研究結(jié)果提示涎腺異位生發(fā)中心形成也具有臨床意義。據(jù)文獻報道其在小涎腺活檢中陽性率為18.3%~33.3%,平均為(25.1±5.0)%。薈萃分析結(jié)果顯示,生發(fā)中心陽性與腺體病理損傷中,唾液流率低,抗Ro/SSA和抗La/SSB水平升高相關(guān)[66],還是腺體外多器官系統(tǒng)受累重的獨立相關(guān)因素[67]。此外,伴有生發(fā)中心形成的患者血清中具有免疫激活效應多種炎癥因子,如IL- 1β、IL- 1RA、IL- 4、IL12p40、IL17、α干擾素(Interferon-alpha,IFN-α)、γ干擾素(Interferon-gamma,IFN-γ)、B細胞活化因子受體 (B-Cell Activation Factor Receptor,BAFF)等和CCL- 2、CCL- 11等趨化因子表達水平都有顯著升高[68- 69]。一項納入175例患者的回顧性隊列研究發(fā)現(xiàn),隨訪期間發(fā)生非霍奇金淋巴瘤患者起病初期涎腺生發(fā)中心的陽性率明顯偏高[70];近期薈萃分析結(jié)果也提示生發(fā)中心形成對遠期出現(xiàn)淋巴瘤有較高的預測值[71]。最近一項隨機雙盲、安慰劑對照臨床實驗觀察到,使用CD20單抗(利妥昔單抗)治療12周后重復行腮腺活檢,生發(fā)中心個數(shù)明顯減少,直接說明B細胞與生發(fā)中心形成的因果關(guān)系,且可能是靶向治療關(guān)鍵位點。
干燥綜合征是以自身免疫性上皮炎為病理基礎(chǔ)的疾病,異位生發(fā)中在多種自身免疫性疾病靶器官受累中的作用已經(jīng)被證實,而在干燥腎損傷中的作用并不清楚,干燥綜合征時靶器官局部的抗原呈遞,B細胞募集活化,原位自身抗體的產(chǎn)生等可能是關(guān)鍵的切入點,現(xiàn)階段仍需要進一步評價異位生發(fā)中心與干燥綜合征靶器官損害臨床病理及預后的關(guān)系,探索其中起到關(guān)鍵性作用的分子或炎癥介質(zhì),為靶向治療提供潛在的干預位點。
[1]中華醫(yī)學會風濕病學分會.干燥綜合征診治指南(草案)[J].中華風濕病學雜志,2003,7:446- 448.
[2]Moutsopoulos HM. Sjogren’s syndrome: autoimmune epithelitis[J]. Clin Immunol Immunopathol, 1994, 72: 162- 165.
[3]Seror R, Ravaud P, Bowman SJ, et al. EULAR Sjogren’s syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjogren’s syndrome[J]. Ann Rheum Dis, 2010, 69: 1103- 1109.
[4]Pitzalis C, Jones GW, Bombardieri M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity[J]. Nat Rev Immunol, 2014, 14: 447- 462.
[5]Muramatsu M, Sankaranand VS, Anant S, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells[J]. J Biol Chem, 1999, 274: 18470- 18476.
[6]Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease[J]. Nat Rev Immunol, 2009, 9: 845- 857.
[7]Banchereau J, Steinman RM. Dendritic cells and the control of immunity[J]. Nature, 1998, 392: 245- 252.
[8]Noessner E, Lindenmeyer M, Nelson PJ, et al. Dendritic cells in human renal inflammation—Part Ⅱ[J]. Nephron Exp Nephrol, 2011, 119: e91- 98.
[9]Krautler NJ, Kana V, Kranich J, et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors[J]. Cell, 2012, 150: 194- 206.
[10] Fischer MB, Goerg S, Shen L, et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival[J]. Science, 1998, 280: 582- 585.
[11] Aguzzi A, Krautler NJ. Characterizing follicular dendritic cells: A progress report[J]. Eur J Immunol, 2010, 40: 2134- 2138.
[12] Victoratos P, Kollias G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells[J]. Immunity, 2009, 30: 130- 142.
[13] Victoratos P, Lagnel J, Tzima S, et al. FDC-specific functions of p55TNFR and IKK2 in the development of FDC networks and of antibody responses[J]. Immunity, 2006, 24: 65- 77.
[14] Bendriss-Vermare N, Barthelemy C, Durand I, et al. Human thymus contains IFN-alpha-producing CD11c(-), myeloid CD11c(+), and mature interdigitating dendritic cells[J]. J Clin Invest, 2001, 107: 835- 844.
[15] Young LJ, Wilson NS, Schnorrer P, et al. Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells[J]. Nat Immunol, 2008, 9: 1244- 1252.
[16] Blasius A, Vermi W, Krug A, et al. A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha[J]. Blood, 2004, 103: 4201- 4206.
[17] Sozzani S, Vermi W, Del Prete A, et al. Trafficking properties of plasmacytoid dendritic cells in health and disease[J]. Trends Immunol, 2010, 31: 270- 277.
[18] Vogelsang P, Brun JG, Oijordsbakken G, et al. Levels of plasmacytoid dendritic cells and type- 2 myeloid dendritic cells are reduced in peripheral blood of patients with primary Sjogren’s syndrome[J]. Ann Rheum Dis, 2010, 69: 1235- 1238.
[19] Mingueneau M, Boudaoud S, Haskett S, et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation[J]. J Allergy Clin Immunol, 2016.
[20] Ozaki Y, Ito T, Son Y, et al. Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjogren’s syndrome but not in the maintenance[J]. Clin Exp Immunol, 2010, 159: 315- 326.
[21] Merad M, Sathe P, Helft J, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting[J]. Annu Rev Immunol, 2013, 31: 563- 604.
[22] Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood[J]. Blood, 2010, 116: e74- 80.
[23] Geurtsvankessel CH, Willart MA, Bergen IM, et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice[J]. J Exp Med, 2009, 206: 2339- 2349.
[24] Maclennan IC. Germinal centers[J]. Annu Rev Immunol, 1994, 12: 117- 139.
[25] De Silva NS, Klein U. Dynamics of B cells in germinal centres[J]. Nat Rev Immunol, 2015, 15: 137- 148.
[26] Schaerli P, Willimann K, Lang AB, et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function[J]. J Exp Med, 2000, 192: 1553- 1562.
[27] Hardtke S, Ohl L, Forster R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help[J]. Blood, 2005, 106: 1924- 1931.
[28] Haynes NM, Allen CD, Lesley R, et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene- 1high germinal center-associated subpopulation[J]. J Immunol, 2007, 179: 5099- 5108.
[29] Chan TD, Brink R. Affinity-based selection and the germinal center response[J]. Immunol Rev, 2012, 247: 11- 23.
[30] Victora GD, Nussenzweig MC. Germinal centers[J]. Annu Rev Immunol, 2012, 30: 429- 457.
[31] Spolski R, Leonard WJ. Interleukin- 21: basic biology and implications for cancer and autoimmunity[J]. Annu Rev Immunol, 2008, 26: 57- 79.
[32] Milner JD, Vogel TP, Forbes L, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations[J]. Blood, 2015, 125: 591- 599.
[33] Nurieva RI, Chung Y, Martinez GJ, et al. Bcl6 mediates the development of T follicular helper cells[J]. Science, 2009, 325: 1001- 1005.
[34] Yu D, Rao S, Tsai LM, et al. The transcriptional repressor Bcl- 6 directs T follicular helper cell lineage commitment[J]. Immunity, 2009, 31: 457- 468.
[35] Ding Y, Li J, Yang P, et al. Interleukin- 21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice[J]. Arthritis Rheumatol, 2014, 66: 2601- 2612.
[36] Jin H, Carrio R, Yu A, et al. Distinct activation signals determine whether IL- 21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis[J]. J Immunol, 2004, 173: 657- 665.
[37] Pene J, Gauchat JF, Lecart S, et al. Cutting edge: IL- 21 is a switch factor for the production of IgG1 and IgG3 by human B cells[J]. J Immunol, 2004, 172: 5154- 5157.
[38] Ettinger R, Sims GP, Fairhurst AM, et al. IL- 21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells[J]. J Immunol, 2005, 175: 7867- 7879.
[39] Bryant VL, Ma CS, Avery DT, et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL- 21 produced by CXCR5+ T follicular helper cells[J]. J Immunol, 2007, 179: 8180- 8190.
[40] Zotos D, Coquet JM, Zhang Y, et al. IL- 21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism[J]. J Exp Med, 2010, 207: 365- 378.
[41] Bessa J, Kopf M, Bachmann MF. Cutting edge: IL- 21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner[J]. J Immunol, 2010, 184: 4615- 4619.
[42] Grogan JL, Ouyang W. A role for Th17 cells in the regulation of tertiary lymphoid follicles[J]. Eur J Immunol, 2012, 42: 2255- 2262.
[43] Rangel-Moreno J, Carragher DM, De La Luz Garcia-Hernandez M, et al. The development of inducible bronchus-associated lymphoid tissue depends on IL- 17[J]. Nat Immunol, 2011, 12: 639- 646.
[44] Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity[J]. Nat Med, 2004, 10: 927- 934.
[45] Peters A, Pitcher LA, Sullivan JM, et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation[J]. Immunity, 2011, 35: 986- 996.
[46] Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses[J]. Nat Immunol, 2013, 14: 372- 379.
[47] Katz Y, Nadiv O, Beer Y. Interleukin- 17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a “fine-tuning cytokine” in inflammation processes[J]. Arthritis Rheum, 2001, 44: 2176- 2184.
[48] Koshy PJ, Henderson N, Logan C, et al. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines[J]. Ann Rheum Dis, 2002, 61: 704- 713.
[49] Fei Y, Zhang W, Lin D, et al. Clinical parameter and Th17 related to lymphocytes infiltrating degree of labial salivary gland in primary Sjogren’s syndrome[J]. Clin Rheumatol, 2014, 33: 523- 529.
[50] Katsifis GE, Rekka S, Moutsopoulos NM, et al. Systemic and local interleukin- 17 and linked cytokines associated with Sjogren’s syndrome immunopathogenesis[J]. Am J Pathol, 2009, 175: 1167- 1177.
[51] Khader SA, Rangel-Moreno J, Fountain JJ, et al. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity[J]. J Immunol, 2009, 183: 8004- 8014.
[52] Slight SR, Rangel-Moreno J, Gopal R, et al. CXCR5(+) T helper cells mediate protective immunity against tuberculosis[J]. J Clin Invest, 2013, 123: 712- 726.
[53] Manzo A, Bombardieri M, Humby F, et al. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling[J]. Immunol Rev, 2010, 233: 267- 285.
[54] Chang A, Henderson SG, Brandt D, et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis[J]. J Immunol, 2011, 186: 1849- 1860.
[55] Serafini B, Rosicarelli B, Franciotta D, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain[J]. J Exp Med, 2007, 204: 2899- 2912.
[56] Armengol MP, Juan M, Lucas-Martin A, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers[J]. Am J Pathol, 2001, 159: 861- 873.
[57] Astorri E, Bombardieri M, Gabba S, et al. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets[J]. J Immunol, 2010, 185: 3359- 3368.
[58] Kinloch AJ, Chang A, Ko K, et al. Vimentin is a dominant target of in situ humoral immunity in human lupus tubulointerstitial nephritis[J]. Arthritis Rheumatol, 2014, 66: 3359- 3370.
[59] Humby F, Bombardieri M, Manzo A, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium[J]. PLoS Med, 2009, 6: e1.
[60] Stott DI, Hiepe F, Hummel M, et al. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren’s syndrome[J]. J Clin Invest, 1998, 102: 938- 946.
[61] Bombardieri M, Barone F, Humby F, et al. Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjogren’s syndrome[J]. J Immunol, 2007, 179: 4929- 4938.
[62] Lucchesi D, Pitzalis C, Bombardieri M. EBV and other viruses as triggers of tertiary lymphoid structures in primary Sjogren’s syndrome[J]. Expert Rev Clin Immunol, 2014, 10: 445- 455.
[63] Bombardieri M, Barone F, Lucchesi D, et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice[J]. J Immunol, 2012, 189: 3767- 3776.
[64] Croia C, Serafini B, Bombardieri M, et al. Epstein-Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis[J]. Ann Rheum Dis, 2013, 72: 1559- 1568.
[65] Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren’s syndrome[J]. Arthritis Rheumatol, 2014, 66: 2545- 2557.
[66] Risselada AP, Looije MF, Kruize AA, et al. The role of ectopic germinal centers in the immunopathology of primary Sjogren’s syndrome: a systematic review[J]. Semin Arthritis Rheum, 2013, 42: 368- 376.
[67] Carubbi F, Alunno A, Cipriani P, et al. Is minor salivary gland biopsy more than a diagnostic tool in primary Sjogrens syndrome? Association between clinical, histopathological, and molecular features: a retrospective study[J]. Semin Arthritis Rheum, 2014, 44: 314- 324.
[68] Reksten TR, Jonsson MV, Szyszko EA, et al. Cytokine and autoantibody profiling related to histopathological features in primary Sjogren’s syndrome[J]. Rheumatology (Oxford), 2009, 48: 1102- 1106.
[69] Szodoray P, Alex P, Jonsson MV, et al. Distinct profiles of Sjogren’s syndrome patients with ectopic salivary gland germinal centers revealed by serum cytokines and BAFF[J]. Clin Immunol, 2005, 117: 168- 176.
[70] Theander E, Vasaitis L, Baecklund E, et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjogren’s syndrome[J]. Ann Rheum Dis, 2011, 70: 1363- 1368.
[71] Nishishinya MB, Pereda CA, Munoz-Fernandez S, et al. Identification of lymphoma predictors in patients with primary Sjogren’s syndrome: a systematic literature review and meta-analysis[J]. Rheumatol Int, 2015, 35: 17- 26.