• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      On Weakly J#-clean Rings

      2017-04-11 02:40:56HAOYapuCHENHuanyin
      關(guān)鍵詞:理學(xué)院師范大學(xué)杭州

      HAO Yapu, CHEN Huanyin

      (School of Science, Hangzhou Normal University,Hangzhou 310036, China)

      On Weakly J#-clean Rings

      HAO Yapu, CHEN Huanyin

      (School of Science, Hangzhou Normal University,Hangzhou 310036, China)

      weakly J#-clean ring; clean ring; weakly nil clean;S=R[D,C] ring; idempotent; Jacobson radical

      1 Introduction

      Following W. K. Nicholson[1], we call a ringRis clean if every elementa∈Rcan be written in the form ofa=e+uwhereeis an idempotent anduis a unit. Later, A. J. Diesl[2]replaced units to nilpotent elements and then extended the clean rings to nil clean rings. A ringRis called a nil clean ring if every elementa∈Rcan be written in the form ofa=e+wwhereeis an idempotent andwis a nilpotent. Recently, S. Breaz, P. Danchev and Y. Zhou[3]introduced weakly nil clean rings. A ringRis called a weakly nil clean ring if every elementa∈Rcan be written in the form ofa=e+wora=-e+wwhereeis an idempotent andwis a nilpotent element. On the other hand, J-clean rings are studied by Chen[4]. A ringRis called a J-clean ring if every elementa∈Rcan be written in the form ofa=e+jwhereeis an idempotent andjbelongs to Jacobson radical. Recently, Shen[5]introduced weakly J-clean rings. A ringRis called a weakly J-clean ring if every elementa∈Rcan be written in the form ofa=e+jora=-e+jwhereeis an idempotent andjbelongs to Jacobson radical. Inspired by the weakly nil cleanness and J#-cleanness, we introduce a new type of ring. We call a ringRis weakly J#-clean if for anya∈R, there existse∈Id(R) such thata-e∈J#(R) ora+e∈J#(R). Here,J#(R)={x∈R|?n, such thatxn∈J(R)}. We prove in the following that a ringRis weakly nil-clean if and only ifRis weakly J#-clean andJ(R) is nil. Then we imply that these rings are equivalent to each other with some other conditions. We also discuss various properties of such rings.

      Throughout this paper, the rings that we discussed are associative rings with an identity.Id(R) denotes the idempotents ofR,J(R) denotes the Jacobson radicals ofR,J#(R)={x∈R|?n, such thatxn∈J(R)},U(R) denotes the units ofR,N(R) denotes the nilpotent elements ofR,P(R) denotes the intersection of all prime ideals ofRand we useTn(R) to stand for the ring of alln×nupper triangular matrices over a ringR.

      2 Examples

      Definition 1 A ringRis called a weakly J#-clean ring if every elementa∈Rcan be written in the form ofa=e+jora=-e+jwheree∈Id(R) andj∈J#(R).

      Proposition 1 IfN(R) forms an ideal, then every weakly J#-clean ring is clean ring.

      Proof Leta∈Rthena=e+jora=-e+jwheree∈Id(R) andjn∈J(R) sinceRis weakly J#-clean. Ifa=e+jthena=(2e-1+j)+(1-e), (1-e)∈Id(R), as (2e-1)(2e-1)=1, we know that (2e-1) is a unit, so (2e-1+j)=(2e-1)[1+(2e-1)j]∈U(R) sinceN(R) forms an ideal, soais clean. Ifa=-e+jthena=(1-e)+(j-1) where (j-1)∈U(R) and (1-e)∈Id(R), soais clean. Therefore we get the result.

      The following example shows that the converse of Proposition 1 is not true.

      Example 1 Z5is a field, so Z5is clean. But Z5is not weakly J#-clean. As Z5is field, 0 and 1 are the all idempotents in Z5and 0 is the only element in the Jacobson radical of Z5, so 0+0=0,-0+0=0,1+0=1,-1+0=-1=4, we can see that 2 and 3 can not be written in the form ofe+jor -e+j. In conclusion, Z5is clean but not weakly J#-clean.

      Following Shen[5], an elementaof a ringRis weakly J-clean in case there is an idempotente∈Rand a Jacobson radicalj∈Rsuch thata=e+jora=-e+j. Every weakly J-clean ring is weakly J#-clean. However weakly J#-clean rings maybe not weakly J-clean rings as the following shows.

      Example 2M2(Z3) is weakly J#-clean, but it is not weakly J-clean.

      In fact, we have the following inclusions:J(R)J#(R)Rqnil

      Remark1LetSbeacommutativeringandR=M2(S).By[7,Example4.3],wehaveJ#(R)=Rqnil.

      Example5Herearesomeexamples:

      1)AnyquotientofweaklyJ#-cleanringisweaklyJ#-clean.

      2) R[x]iscertainlyneveraweaklyJ#-cleanasitisnotcleanring.

      3) R[x]/(xn)isweaklyJ#-cleanifandonlyifsoisR.

      3 Elementary Propositions

      Thefollowingtheoremrevealstherelationshipbetweenweaklynil-cleanringsandweaklyJ#-cleanrings.

      Theorem1LetRbearing.ThenRisweaklynil-cleanifandonlyifRisweaklyJ#-cleanandJ(R)isnil.

      ProofLeta∈J(R)thena=e+wora=-e+wwheree∈Id(R)andw∈N(R)sinceRisweaklynil-clean.Ifa=e+wthene=a-w, e=en=(a-w)n∈J(R), e=0.Soa=w, J(R)isnil.Similarly,ifa=-e+wthene=w-a.Wecanalsogeta=w, J(R)isnil.SoRisweaklyJ#-clean.

      Conversely,ifRisweaklyJ#-clean,thenforanya∈R, a=e+jora=-e+jwheree∈Id(R)andj∈J#(R).AndJ(R)isnil,weget(jn)m=0,soj∈N(R).ThusRisweaklynil-clean.

      AringRiscalledaJ#-cleanringifeveryelementa∈Rcanbewrittenintheformofa=e+jwheree∈Id(R)andj∈J#(R).

      Theorem2LetRbeacleanring.ThenRisJ#-cleanifandonlyif

      1) RisweaklyJ#-clean;

      2) 2∈J(R).

      ProofSupposeRisJ#-clean,itisobviousthatRisweaklyJ#-clean.Write2=e+jnwheree∈Id(R)andjn∈J(R). 1-e=jn-1∈U(R)isbothanidempotentandaunit,hencee=0, 2=jn∈J(R).So2∈J(R).

      Thefollowingassertionisusefulforapplications.

      Lemma1EveryhomomorphicimageofaweaklyJ#-cleanringisweaklyJ#-clean.

      ProofItisobvious.

      Theorem3LetRbeacleanring.ThenRisweaklyJ#-cleanifandonlyifR/J(R)isweaklynil-clean.

      Corollary1LetRbearing.ThenRisJ#-cleanifandonlyif

      1) Risclean;

      2) R/J(R)isJ#-clean.

      ProofSupposeRisJ#-clean, R/J(R)isJ#-cleansinceR/J(R)isthehomomorphicimageofR.Soeveryelement1+a∈Rcanbewrittenintheformof1+a=e+j,thatisa=e+(j-1)wheree∈Id(R)andjn∈J(R), jn-1∈U(R), j-1∈U(R).SoRisclean.

      Theorem4LetRbearing.ThenRisweaklyJ#-cleanifandonlyifR/P(R)isweaklyJ#-clean.

      ProofThenecessitybeinganelementaryconsequenceofLemma1.

      Theorem5LetIbenilpotent.ThenRisweaklyJ#-cleanifandonlyifR/IisweaklyJ#-clean.

      ProofThenecessitybeinganelementaryconsequenceofLemma1,weconcentrateonthesufficiency.Tothataim,leta∈R,thena+I∈R/Iandbyhypothesis, a+I=(b+e)+Iora+I=(b-e)+I,whereb+I∈J#(R/I)ande+I∈Id(R/I).AsIisnilpotent,itisobviousthatb∈J#(R).Asfore,itiswellknownthatidempotentsliftmoduloanynilideal,sothatthisfollowstoassumethate∈Id(R).So, RisweaklyJ#-clean,asdesired.

      1)R/Iis weakly J#-clean ;

      2)R/Inis weakly J#-clean for alln≥1.

      Proof SupposeR/Iis weakly J#-clean. Write eithera+I=(b+I)+(e+I)=(b+e)+Iora+I=(b+I)-(e+I)=(b-e)+I, whereb+I∈J#(R/I) ande+I∈Id(R/I). AndIis an ideal ofR, soa+In=(b+e)+In=(b+In)+(e+In) ora+In=(b-e)+In=(b+In)-(e+In), whereb+In∈J#(R/In) ande+In∈Id(R/In). SoR/Inis weakly J#-clean for alln≥1.

      Conversely, it is obvious when we choosen=1.

      1)R/(IJ) is weakly J#-clean;

      2)R/(I∩J) is weakly J#-clean.

      Proof SupposeR/(IJ) is weakly J#-clean. SinceR/(I∩J)?R/(IJ)/(I∩J)/(IJ) andR/(IJ)/(I∩J)/(IJ) is the homomorphic image ofR/(IJ), as required.

      Conversely, (I∩J/IJ)2?(I∩J)(I∩J)/IJ?IJ/IJ=0. SoR/(IJ) is weakly J#-clean by Theorem 5.

      1)R/(IJ) is J#-clean;

      2)R/(I∩J) is J#-clean.

      Proof By Corollary 3 and induction, we easily obtain this result.

      4 Extensions

      In this section, we further consider weak J#-cleanness for various related rings.

      Theorem7LetRbearing.Thenthefollowingareequivalent:

      (1) RisweaklyJ#-clean;

      (2) R[[x]]isweaklyJ#-clean.

      (1)?(2)Letf(x)=a0+a1x+a2x2+…∈R[[x]].SupposethatRisweaklyJ#-clean,fora0∈R,wehavea0=e+jora0=-e+jwheree∈Id(R)andj∈J#(R).Ifa0=e+j,thenf(x)=a0+a1x+a2x2+…=e+j+(a1x+a2x2+…)=e+α(x)whereα(x)=j+a1x+a2x2+….Similarly,ifa0=-e+j,thenf(x)=-e+α(x).Itiseasytoknowα(x)∈J#(R[[x]]),hence, R[[x]]isweaklyJ#-clean.

      Corollary5LetRbearing.Thenthefollowingareequivalent:

      1) RisweaklyJ#-clean;

      2) R[[x1,x2,…xn]]isweaklyJ#-clean.

      ProofByTheorem7andinduction,weeasilyobtainthisresult.

      Theorem8LetRbearing.Thenthefollowingareequivalent:

      (1) RisJ#-clean;

      (2)Thereisanintegern≥1suchthatTn(R)isJ#-clean;

      (3)Thereisanintegern≥2suchthatTn(R)isweaklyJ#-clean.

      (2)?(3)Itisobvious.

      Lemma2SupposeR=∏i∈IRiisadirectproductofringsRi?Rforalli∈IsuchthatIisfiniteand|I|≥2.ThenRisweaklyJ#-cleanifandonlyifRiisJ#-clean.

      ProofOnedirectionisobvious.IfRiisJ#-cleanforalli∈I,thenR=∏i∈IRiisJ#-clean,ofcourseitisweaklyJ#-clean.

      Conversely,ifR=∏i∈IRiisweaklyJ#-clean.Weassumethereisani∈IsuchthatRiisweaklyJ#-clean,thenallRiareweaklyJ#-cleansinceRi?R.Thusthereexistr1∈Ri1andr2∈Ri2suchthatr1≠e+jandr2≠-e+jwheree∈Id(R)andj∈J#(R).Thenwegetthat(r1,r2)isnotweaklyJ#-cleaninRi1×Ri2,acontradiction.

      Theorem9LetRbearing.Thenthefollowingareequivalent:

      (1) RisJ#-clean;

      (2)Thereisanintegern≥1suchthat×nRisJ#-clean;

      (3)Thereisanintegern≥2suchthat×nRisweaklyJ#-clean.

      Proof(1)?(2)Foranyelement(a1,a2,...,an)∈×nR, aicanbewrittenintheformofai=ei+jiwhereei∈Id(R)andji∈J#(R)foranyi∈N*, 1≤i≤nsinceRisJ#-clean.Then(a1,a2,...,an)canbewrittenintheformof(a1,a2,...,an)=(e1,e2,...,en)+(j1,j2,...,jn)where(e1,e2,...,en)∈Id(×nR)and(j1,j2,...,jn)∈J#(×nR),so×nRisJ#-clean.

      (2)?(3)Itisobvious.

      (3)?(1)ByLemma2andinduction,weeasilyobtainthisresult.

      Theorem10SupposeR=∏i∈IRiisadirectproductofringsRi?Rforalli∈IsuchthatIisfiniteand|I|≥2.ThenRisweaklyJ#-cleanifandonlyifthereexistsk∈IsuchthatRkisweaklyJ#-cleanandRjisJ#-cleanforallj≠k.

      ProofSupposethatRisweaklyJ#-clean.AsanimageofR,eachRiforalli∈IisweaklyJ#-cleanasaconsequenceofLemma1.Assumethatthereexisttwoindicesi1andi2suchthatneitherRi1norRi2areJ#-clean.Thenthereexistr1∈Ri1andr2∈Ri2suchthatr1≠e+jandr2≠-e+jwheree∈Id(R)andj∈J#(R).Thus(r1,r2)isnotweaklyJ#-cleaninRi1×Ri2,acontradiction.

      Conversely,ifeveryRiisJ#-clean,byLemma2,soRisweaklyJ#-clean.SupposethatRkisweaklyJ#-cleanbutnotJ#-cleanandalltheotherRjareJ#-clean.Letx=(xi)∈R=∏i∈IRi,thenxk=jk+ekorxk=jk-ekwhereek∈Id(Rk)andjk∈J#(Rk).Ifxk=jk+ek,thenforj≠kandRjisJ#-clean,wemusthavexi=ji+eiwhereei∈Id(Ri)andji∈J#(Ri).Ifnowxk=jk-ek,thenforj≠kandRjisJ#-clean,wecanwritexi=ji-eiwhereei∈Id(Ri)andji∈J#(Ri).Therefore, xisweaklyJ#-cleaninR,asexpected.

      LetDbearing, CbeasubringofDand1D∈C,write:

      S=R[D,C]={(d1,...,dn,c,c,...)|di∈D,c∈C,n≥1}

      S′=R{D,C}={(d1,...,dn,cn+1,cn+2,...)|di∈D,cj∈C,n≥1}

      Lemma3 1) J(S)=R[J(D),J(D)∩J(C)]. 2) J(S′)=R{J(D),J(D)∩J(C)}.

      Proof See [8, Theorem 2.1.14].

      Lemma 4 LetS=R[D,C], thenDis isomorphic to an internal direct sum ofSandCis the epimorphism ofS.

      Proof See [8, Proposition 2.1.1].

      Theorem 11 The following conditions are equivalent:

      (1)S=R[D,C] is weakly J#-clean;

      (2) (a)Dis weakly J#-clean; (b)For anya∈C, there existsf∈Id(C), such thata+f∈J#(D)∩J#(C) ora-f∈J#(D)∩J#(C).

      (3)S′=R{D,C} is weakly J#-clean.

      or

      or

      SoSis weakly J#-clean.

      (3)?(2) It is similar to (1)?(2).

      Corollary 6 IfS=R[D,C] is weakly J#-clean, thenDandCare weakly J#-clean.

      ProofItisobviousthatDisweaklyJ#-cleanbyTheorem8.Forany

      thereexistsanidempotente∈Rsuchthata+e∈J#(R)ora-e∈J#(R).Then

      or

      SoS=R[D,C]isaweaklyJ#-cleanring.

      [1]NICHOLSONWK.Liftingidempotentsandexchangerings[J].TransactionsoftheAmericanMathematicalSocity,1977,229(5):269-278.

      [2]DIESLAJ.Nilcleanrings[J].Algebra,2013,383(6):197-211.

      [3] BREAZ S, DANCHEV P, ZHOU Y. Rings in which every element is either a sum or a difference of a nilpotent and an idempotent[J]. Journal of Algebra and Its Applications,2016,15(8):410-422.

      [4] CHEN H Y. On strongly J-clean rings[J]. Comm Algebra,2010,38(10):3790-3804.

      [5] SHEN H D, CHEN H Y. On weakly J-clean rings[J]. Journal of Hangzhou Normal University(Natiral Science Edition),2015,14(6):616-624.

      [6] HARTE R E. On quasinilpotents in rings[J]. Panamerican Math,1991,1(1):10-16.

      [7] WANG Z, CHEN J L. Pseudo Drazin inverses in associative rings and Banach algebras[J]. Linear Algebra Appl,2012,437(6):1332-1345.

      [8] CHENG G P, CHEN J L. The Structure of RingR[D,C] and Its Characterizations[J]. Journal Nanjing University(Natural Sciences Edition),2007,24(1):20-28.

      關(guān)于Weakly J#-clean環(huán)

      郝亞璞, 陳煥艮

      (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

      weakly J#-clean環(huán);clean環(huán);weakly nil clean 環(huán);S=R[D,C]環(huán);冪等元;Jacobson 根

      2016-05-04

      Foundation item:Supported by the Natural Science Foundation of Zhejiang Province (LY17A010018).

      CHEN Huanyin(1963—),male,Professor,Ph.D.,majored in algebra of basic mathematics. E-mail:huanyinchen@aliyun.com

      10.3969/j.issn.1674-232X.2017.02.010

      O153.3 MSC2010: 16U99,16N40,16U10 Article character: A

      1674-232X(2017)02-0173-08

      Received date:2016-05-25

      猜你喜歡
      理學(xué)院師范大學(xué)杭州
      昆明理工大學(xué)理學(xué)院學(xué)科簡介
      昆明理工大學(xué)理學(xué)院簡介
      杭州
      幼兒畫刊(2022年11期)2022-11-16 07:22:36
      Study on the harmony between human and nature in Walden
      長江叢刊(2018年8期)2018-11-14 23:56:26
      西安航空學(xué)院專業(yè)介紹
      ———理學(xué)院
      Balance of Trade Between China and India
      商情(2017年9期)2017-04-29 02:12:31
      G20 映像杭州的“取勝之鑰”
      Courses on National Pakistan culture in Honder College
      杭州
      汽車與安全(2016年5期)2016-12-01 05:21:55
      Film Music and its Effects in Film Appreciation
      徐汇区| 平凉市| 垫江县| 青河县| 溧水县| 延边| 崇仁县| 奉新县| 仪陇县| 黔江区| 五家渠市| 灵石县| 彭水| 临高县| 河北省| 精河县| 包头市| 丹寨县| 嘉峪关市| 行唐县| 安平县| 婺源县| 嘉峪关市| 碌曲县| 上饶市| 汝南县| 永仁县| 吴忠市| 北海市| 滦平县| 雷山县| 勃利县| 万载县| 牡丹江市| 庆元县| 汉沽区| 中超| 台中县| 集安市| 萍乡市| 桑日县|