• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      召10區(qū)塊開發(fā)井網(wǎng)優(yōu)化及加密調(diào)整分析

      2017-04-07 09:21:09郭平顧蒙彭松孫振成育紅汪周華
      石油鉆采工藝 2017年1期
      關(guān)鍵詞:井井直井井網(wǎng)

      郭平顧蒙彭松孫振,成育紅汪周華

      1.西南石油大學(xué)油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室;2.中原油田勘探開發(fā)研究院;3.中國(guó)石油長(zhǎng)慶油田分公司第五采氣廠

      召10區(qū)塊開發(fā)井網(wǎng)優(yōu)化及加密調(diào)整分析

      郭平1顧蒙1彭松2孫振1,3成育紅3汪周華1

      1.西南石油大學(xué)油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室;2.中原油田勘探開發(fā)研究院;3.中國(guó)石油長(zhǎng)慶油田分公司第五采氣廠

      召10區(qū)塊原設(shè)計(jì)井網(wǎng)密度較小,并且由于滾動(dòng)開發(fā)及集中建產(chǎn),目前井網(wǎng)分布極不均衡。為提高區(qū)塊開發(fā)效果,在新的地質(zhì)及動(dòng)態(tài)特征認(rèn)識(shí)基礎(chǔ)上,采用氣藏工程、數(shù)值模擬、經(jīng)濟(jì)評(píng)價(jià)等多種方法對(duì)原有井網(wǎng)方案進(jìn)行優(yōu)化調(diào)整。研究結(jié)果表明:對(duì)于未布井區(qū)域,直井井網(wǎng)密度可調(diào)整為3.33口/km2,相應(yīng)井排距為500 m×600 m;在目前600 m×800 m井網(wǎng)模式下直接進(jìn)行規(guī)則加密雖可一定程度提高氣藏采收率,但經(jīng)濟(jì)不可行。直井垂向儲(chǔ)量動(dòng)用具有優(yōu)勢(shì),水平井平面儲(chǔ)量動(dòng)用程度更高,并且水平井可有效提高單井產(chǎn)量,因此區(qū)塊最終可采用直井+水平井混合井網(wǎng),此井網(wǎng)可使區(qū)塊采收率提高到46.9%。

      致密砂巖氣田;開發(fā)井網(wǎng);井網(wǎng)優(yōu)化;泄流半徑;水平井;采收率;蘇里格氣田;鄂爾多斯盆地

      召10區(qū)塊位于蘇里格氣田東區(qū),屬于典型的致密砂巖氣藏,儲(chǔ)層有效砂體規(guī)模小、連續(xù)性和連通性差[1-3]。致密氣單井控制范圍小、產(chǎn)量低、遞減快[4-5],根據(jù)國(guó)內(nèi)外類似氣田開發(fā)經(jīng)驗(yàn),致密砂巖氣田多采用小井距開采,依靠井間接替來(lái)保持氣田穩(wěn)產(chǎn)[6-7]。如美國(guó)德州Ozona氣田在60年代開發(fā)井距離1 100 m,然后加密到8 00 m和5 00 m,在1995年,進(jìn)一步加密到了400 m[8]。美國(guó)圣胡安氣田初期基礎(chǔ)井網(wǎng)井距1 200 m,80年代第一次井網(wǎng)加密到800 m,2000年以來(lái),加密調(diào)整和擴(kuò)邊滾動(dòng)開發(fā),井距又加密到500 m[9]。我國(guó)新場(chǎng)氣田致密氣藏原始開發(fā)方案是以700~800 m井距均勻布井開發(fā),在開發(fā)過(guò)程中改為非均勻布井,設(shè)計(jì)井距500~600 m[10]。因此為實(shí)現(xiàn)蘇東區(qū)塊的產(chǎn)量接替,延長(zhǎng)氣田穩(wěn)產(chǎn)期,提高氣田最終采收率,有必要對(duì)氣田開發(fā)早期確定的井網(wǎng)進(jìn)行評(píng)價(jià)。從氣藏工程、數(shù)值模擬及經(jīng)濟(jì)評(píng)價(jià)多個(gè)方面研究分析了現(xiàn)有井網(wǎng)的適應(yīng)性,評(píng)價(jià)井網(wǎng)加密的可能性。此外,水平井開發(fā)作為提高單井產(chǎn)量及采收率的重要手段已在鄂爾多斯盆地得到推廣應(yīng)用,近年來(lái)鄂爾多斯盆地水平井所占生產(chǎn)井比例越來(lái)越來(lái)高[11-13],而李躍剛、王國(guó)勇等人研究多側(cè)重于全直井開發(fā)井網(wǎng)優(yōu)化[14-17],因此不僅對(duì)直井井網(wǎng)進(jìn)行優(yōu)化調(diào)整,同時(shí)也進(jìn)行了全水平井以及直井+水平井混合井網(wǎng)優(yōu)化論證。

      1 單井控制儲(chǔ)量及泄流半徑

      Individual-well controlled reserves and individual-well drainage radius

      氣藏是否需要進(jìn)行開發(fā)井網(wǎng)調(diào)整,主要從2方面考慮,一是目前井網(wǎng)條件下是否已將所有儲(chǔ)量都充分動(dòng)用,二是加密井是否滿足經(jīng)濟(jì)井距界限值。因此,需要計(jì)算研究工區(qū)內(nèi)所有生產(chǎn)井單井控制儲(chǔ)量,評(píng)價(jià)目前區(qū)塊儲(chǔ)量動(dòng)用程度;計(jì)算生產(chǎn)井泄流半徑,分析現(xiàn)井網(wǎng)的適應(yīng)性,評(píng)價(jià)加密的可能性。

      1.1 單井控制儲(chǔ)量

      Individual-well controlled reserves

      研究工區(qū)面積為117 km2,共有生產(chǎn)井90口,井型為直井和斜井。由于儲(chǔ)層有效砂體規(guī)模小、變化快、平面非均質(zhì)性強(qiáng)等原因,各井生產(chǎn)情況存在較大差異。因此,以平均日產(chǎn)氣量作為指標(biāo)對(duì)氣井進(jìn)行分類,研究分類井的生產(chǎn)規(guī)律。

      利用流動(dòng)物質(zhì)平衡法和現(xiàn)代產(chǎn)量遞減分析方法[18-20](Blasingame、Agarwal-Gardner、NPI和Transient)對(duì)工區(qū)生產(chǎn)井動(dòng)態(tài)控制儲(chǔ)量進(jìn)行計(jì)算。計(jì)算結(jié)果如表1所示,90口氣井累計(jì)動(dòng)態(tài)控制儲(chǔ)量為23.33×108m3,地質(zhì)儲(chǔ)量(190.06×108m3)控制程度低,僅為12.28%。

      表1 90口生產(chǎn)井泄流半徑計(jì)算結(jié)果Table 1 Calculated drainage radius of 90 production wells

      1.2 單井泄流半徑

      Individual-well drainage radius

      單井泄流半徑是確定合理井距以及井間挖潛的重要參考指標(biāo)。由各氣井動(dòng)態(tài)控制儲(chǔ)量結(jié)果,結(jié)合各井射孔厚度、孔隙度、含氣飽和度等參數(shù),根據(jù)容積法原理反推氣井的泄流半徑,結(jié)果如表1所示。Ⅰ類井泄流半徑大,在現(xiàn)有井網(wǎng)條件下(600 m×800 m)加密的可能性小,部分Ⅱ類井和Ⅲ類井控制面積小,目前井網(wǎng)條件下井間未動(dòng)用的儲(chǔ)量較多,理論上具有加密和挖潛的可能性,可進(jìn)行局部加密調(diào)整。

      為總結(jié)快速預(yù)測(cè)氣井泄流半徑經(jīng)驗(yàn)公式,繪制氣井泄流半徑與單位射孔厚度累計(jì)產(chǎn)氣量之間的散點(diǎn)圖(圖1),回歸結(jié)果顯示泄流半徑與單位射孔厚度累計(jì)產(chǎn)量之間呈現(xiàn)良好的冪函數(shù)關(guān)系。分別回歸了Ⅰ類、Ⅱ類、Ⅲ類氣井關(guān)系式。為了檢驗(yàn)回歸公式預(yù)測(cè)的泄流半徑準(zhǔn)確程度,采用回歸的公式計(jì)算了各類氣井的泄流半徑,并與動(dòng)態(tài)控制儲(chǔ)量反推的泄流半徑(基準(zhǔn)值)進(jìn)行對(duì)比,結(jié)果見(jiàn)圖2。

      圖1 泄流半徑與單位射孔厚度累計(jì)產(chǎn)氣量關(guān)系Fig. 1 Relationship of drainage radius vs. cumulative gas production of unit perforation thickness

      圖2 不同類氣井泄流半徑計(jì)算值與反推值對(duì)比Fig. 2 Comparison between calculated drainage radius and backstepped drainage radius of various gas wells

      從圖2可以看出,Ⅰ類井和Ⅱ類井回歸公式計(jì)算的泄流半徑偏差基本上在工程誤差范圍(±10%)內(nèi),而Ⅲ類井泄流半徑的計(jì)算結(jié)果大都超出了工程誤差范圍。因此,Ⅰ類井和Ⅱ類井的回歸公式可以較準(zhǔn)確地快速預(yù)測(cè)該種類型氣井的泄流半徑,而Ⅲ類井的回歸公式預(yù)測(cè)準(zhǔn)確度較低。

      2 開發(fā)井網(wǎng)優(yōu)化

      Optimization of development well pattern

      2.1 開發(fā)井網(wǎng)形式

      Form of development well pattern

      蘇里格氣田儲(chǔ)層為河流相,儲(chǔ)層基本呈南北向條帶狀分布,試井解釋也得到同樣認(rèn)識(shí),所以在方案設(shè)計(jì)中采用長(zhǎng)條形井網(wǎng)[14]。長(zhǎng)條形井網(wǎng)可以表現(xiàn)為矩形井網(wǎng)和平行四邊形井網(wǎng)兩種形式,從兩者對(duì)砂體的控制程度看,平行四邊形井網(wǎng)優(yōu)于矩形井網(wǎng),可以最大程度地控制儲(chǔ)量。同時(shí),平行四邊形井網(wǎng)有利于均衡開采,地層壓力下降更均勻,控制范圍更合理。因此,召10區(qū)塊采用平行四邊形井網(wǎng),南北向排距大于東西向井距。

      2.2 井距、排距優(yōu)化

      Spacing optimization

      2.2.1 氣藏工程方法 區(qū)塊地質(zhì)儲(chǔ)量為190.06× 108m3,含氣面積131.45 km2。鉆探加密井過(guò)程中要涉及到經(jīng)濟(jì)極限井網(wǎng)密度和合理井網(wǎng)密度。由氣藏工程方法計(jì)算不同采收率下不同井型經(jīng)濟(jì)極限及經(jīng)濟(jì)最佳井網(wǎng)密度,并由加三分之一差法[21],計(jì)算出合理井網(wǎng)密度,結(jié)果見(jiàn)表2、表3。其中直井井距排距按現(xiàn)有井網(wǎng)600 m×800 m折算,水平井按600 m×1 700 m折算。

      根據(jù)國(guó)內(nèi)外同類型氣藏開發(fā)井網(wǎng)調(diào)整的調(diào)研結(jié)果,再考慮到實(shí)施過(guò)程中的不確定性因素,建議直井(包括定向井)實(shí)施井距取500 m×600 m(對(duì)應(yīng)井網(wǎng)密度為3.33口/km2),水平井的實(shí)施井距取500 m×1700 m(對(duì)應(yīng)井網(wǎng)密度為1.18 口/km2)。

      表2 直井/定向井合理井網(wǎng)密度與井距計(jì)算結(jié)果Table 2 Rational well spacing density and calculated well spacing of vertical/directional wells

      表3 水平井合理井網(wǎng)密度與井距計(jì)算結(jié)果Table 3 Rational well spacing density and calculated well spacing of horizontal wells

      2.2.2 數(shù)值模擬方案預(yù)測(cè)與優(yōu)選 (1)直井方案。設(shè)計(jì)不同的排距和井距進(jìn)行組合,形成9套布井方案進(jìn)行模擬計(jì)算,方案預(yù)測(cè)年限20年。通過(guò)模擬結(jié)果對(duì)比,優(yōu)選合理的排距、井距,從而確定最優(yōu)井網(wǎng)。

      圖3 不同布井方案開發(fā)效果模擬Fig. 3 Simulation on the development results of different well pattern plans

      圖4 不同布井方案20年末廢棄井比例Fig. 4 Ratio of abandoned wells at the end of 20th year in different well pattern plans

      (2)水平井方案。對(duì)比分析不同直井井網(wǎng)布置方案,發(fā)現(xiàn)不論以何種方案布置,各小層對(duì)總產(chǎn)氣量的貢獻(xiàn)大致相同,其中盒8下貢獻(xiàn)量最大(盒8下1為13%、盒8下2為35%),幾乎占總產(chǎn)氣量的一半。由模擬結(jié)果結(jié)合現(xiàn)場(chǎng)水平井實(shí)際鉆遇情況,在水平井方案中設(shè)置水平井主要?jiǎng)佑脤游粸楹?下2,水平段長(zhǎng)度1 000 m,井網(wǎng)為400 m×1 600 m、500 m×1 700 m,采用交錯(cuò)布井方式,方案預(yù)測(cè)年限為20年。從表4中可以看出,水平井方案采收率僅達(dá)到33%左右,開發(fā)效果低于全直井開發(fā),但水平井能顯著提高平均單井累產(chǎn)氣量。

      表4 不同水平井布井方案模擬結(jié)果Table 4 Simulation results of different patterns of horizontal wells

      (3)混合井網(wǎng)。由模擬結(jié)果可知,直井井網(wǎng)方案(500 m×600 m)整個(gè)區(qū)塊采收率為45.19%,水平井井網(wǎng)(500 m×1 700 m)為31.81%,直井方案采收率高出14.73%。由于受有效砂體分布、水平井鉆遇條件和射孔層位影響,直井垂向儲(chǔ)量動(dòng)用具有優(yōu)勢(shì)。主力貢獻(xiàn)層盒8下2相應(yīng)直井井網(wǎng)方案采收率為52.44%,水平井井網(wǎng)方案為65.89%,高出13.45%,平面儲(chǔ)量動(dòng)用程度更高。因此為充分發(fā)揮兩種井的優(yōu)勢(shì),滿足垂向與平面的立體動(dòng)用,區(qū)塊井網(wǎng)最終可采用直井+水平井的混合井網(wǎng)的方式。

      部署思路:(1)以500 m×600 m的直井井網(wǎng)及已有老井為基礎(chǔ)井網(wǎng);(2)統(tǒng)計(jì)500 m×1 700 m水平井井網(wǎng)各井單井累產(chǎn)氣量,篩選累產(chǎn)氣量高的水平井進(jìn)行布井,替代500 m×600 m直井井網(wǎng)中的井。數(shù)值模擬中分別統(tǒng)計(jì)各小層采收率可知,相比500 m×600 m直井井網(wǎng),混合井網(wǎng)中水平井主要?jiǎng)佑脤雍?下2,采收率從52.44%增加到62.17%,增加了近10%。如表5所示,混合井網(wǎng)區(qū)塊最終累計(jì)采氣量89.17×108m3,采收率達(dá)到46.87 %。

      表5 不同井網(wǎng)方案開發(fā)指標(biāo)對(duì)比Table 5 Development index comparison of different well pattern plans

      2.3 目前井網(wǎng)加密可行性論證

      Demonstration on feasibility of well infill

      由數(shù)值模擬計(jì)算可知,采用圖5所示的加密方式,經(jīng)過(guò)規(guī)則井網(wǎng)加密后,加密方式一區(qū)塊采收率為44.75%,稅后內(nèi)部收益率為7.06%,加密方式二分別為44.07%、6.94%,加密方式三分別為44.36%、7.16%。區(qū)塊采收率都從35.43%提高到44%左右,但是稅后內(nèi)部收益率均小于12%。

      圖5 不同加密方式示意圖Fig. 5 Schematic map of different well infill modes

      在目前600 m×800 m井網(wǎng)模式下直接進(jìn)行規(guī)則加密不可行。因此在儲(chǔ)層三維地質(zhì)建模、數(shù)值模擬研究及單井泄流半徑計(jì)算結(jié)果的基礎(chǔ)上,采用預(yù)計(jì)累產(chǎn)氣量、殘余氣飽和度、有效厚度等對(duì)加密井進(jìn)行篩選,根據(jù)可靠程度提交18口井位。

      3 結(jié)論

      Conclusions

      本項(xiàng)目在施工中不可避免會(huì)涉及到機(jī)械設(shè)備、材料拉運(yùn)、建筑物構(gòu)筑、砼拌合、設(shè)備加工、人員活動(dòng)、日常生活所產(chǎn)生的噪聲、廢水、廢氣、廢渣、生活垃圾等,但由工程性質(zhì)決定了三廢污染較小,且隨著施工結(jié)束而自動(dòng)消失。本項(xiàng)目規(guī)定將所有治理河渠和保護(hù)生態(tài)環(huán)境所需的裝置、設(shè)備、監(jiān)測(cè)手段和工程設(shè)施,均列為環(huán)保投資。經(jīng)估算環(huán)境保護(hù)總投資為10.21萬(wàn)元。

      (1)工區(qū)內(nèi)目前生產(chǎn)井地質(zhì)儲(chǔ)量控制程度僅為12.28%。Ⅰ類井泄流半徑大,在現(xiàn)有井網(wǎng)條件下加密的可能性小,部分Ⅱ類井和Ⅲ類井控制面積小,目前井網(wǎng)條件下井間未動(dòng)用的儲(chǔ)量較多,理論上具有加密和挖潛的可能性。結(jié)合氣藏工程、數(shù)值模擬及經(jīng)濟(jì)評(píng)價(jià)計(jì)算結(jié)果,推薦直井調(diào)整采用500 m×600 m井網(wǎng)。

      (2)直井垂向儲(chǔ)量動(dòng)用具有優(yōu)勢(shì),水平井平面儲(chǔ)量動(dòng)用程度更高。因此,區(qū)塊井網(wǎng)最終可采用直井+水平井的混合井網(wǎng)?;旌暇W(wǎng)中主力貢獻(xiàn)層盒28下的采收率相比500 m×600 m直井井網(wǎng)增加近10%。混合井網(wǎng)方案最終累計(jì)采氣量為89.17×108m3,采收率達(dá)46.87%

      (3)目前600 m×800 m井網(wǎng)模式下規(guī)則井網(wǎng)加密后,區(qū)塊采收率有所增加,但經(jīng)濟(jì)不可行。可在深化儲(chǔ)層地質(zhì)認(rèn)識(shí)的基礎(chǔ)上,結(jié)合單井泄流半徑計(jì)算及數(shù)值模擬結(jié)果,有選擇地進(jìn)行井網(wǎng)不規(guī)則局部加密調(diào)整。

      References:

      [1] 賈愛(ài)林,唐俊偉,何東博,嵇業(yè)成,程立華. 蘇里格氣田強(qiáng)非均質(zhì)致密砂巖儲(chǔ)層的地質(zhì)建模[J]. 中國(guó)石油勘探,2007,12(1):12-16. JIA Ailin, TANG Junwei, HE Dongbo, JI Yecheng, CHENG Lihua. Geological modeling for sandstone reservoirs with low permeability and strong heterogeneity in Sulige Gas Field[J]. China Petroleum Exploration, 2007, 12(1): 12-16.

      [2] 徐明華,朱心萬(wàn),王達(dá)明,費(fèi)懷義,蒙杉. 蘇里格氣田蘇5區(qū)塊儲(chǔ)層地震反演預(yù)測(cè)技術(shù)[J]. 天然氣工業(yè),2007,27(12):33-35. XU Minghua, ZHU Xinwan, WANG Daming, FEI Huaiyi, MENG Shan. Seismic reservoir inversion and prediction technique for the Block Su-5, Sulige Gas Field[J]. Natural Gas Industry, 2007, 27(12): 33-35.

      [3] 劉建新,雍學(xué)善,吳會(huì)良,劉軍迎,張繼娟,郭旋. 蘇里格氣田盒8段地震多技術(shù)儲(chǔ)層沉積相研究[J]. 巖性油氣藏,2007,19(2):80-83. LIU jianxin, YONG xueshan, WU huiliang, LIU Junying, ZHANG Jijuan, GUO Xuan. Study on sedimentary facies by seismic multiple techniques in the eighth member of Shihezi Formation, Sulig Gas Field[J]. Lithologic Reservoirs, 2007, 19(2): 80-83.

      [4] 王衛(wèi)紅,沈平平,馬新華,范麗紅,唐俊偉. 非均質(zhì)復(fù)雜低滲氣藏動(dòng)態(tài)儲(chǔ)量的確定[J]. 天然氣工業(yè),2004,24(7):80-82. WANG Weihong, SHEN Pingping, MA Xinhua, FAN Lihong, TANG Junwei. Verification of dynamic reserves for heterogeneous complex gas reservoirs with low permeability[J]. Natural Gas Industry, 2004, 24(7): 80-82.

      [5] 趙會(huì)濤,王懷廠,劉健,丁雪峰,劉燕. 鄂爾多斯盆地東部地區(qū)盒8段致密砂巖氣低產(chǎn)原因分析[J]. 巖性油氣藏,2014,26(5):75-79. ZHAO huitao, WANG huaichang, LIU jian, DING Xuefeng, LIU Yan. Reasons of low yield of tight sandstone gas of He 8 member in eastern Ordos Basin[J]. Lithologic Reservoirs, 2014, 26(5): 75-79.

      [6] 雷群,萬(wàn)玉金,李熙喆,胡勇. 美國(guó)致密砂巖氣藏開發(fā)與啟示[J]. 天然氣工業(yè),2010,30(1):45-48. LEI qun, WAN yujin, LI xiezhe, HU Yong. A study on the development of tight gas reservoirs in the USA[J]. Natural Gas Industry, 2010, 30(1): 45-48.

      [7] 馬新華,賈愛(ài)林,譚健,何東博. 中國(guó)致密砂巖氣開發(fā)工程技術(shù)與實(shí)踐[J]. 石油勘探與開發(fā),2012,39(5):572-579. MA Xinhua, JIA ailin, TAN jian, HE Dongbo. Tight sand gas development technologies and practices in China[J]. Petroleum Exploration and Development, 2012, 39(5): 572-579.

      [8] CIPOLLA C L, WOOD M C. A statistical approach to infill drilling studies: Case history of the Ozona Canyon sands[J]. SPE Reservoir Engineering, 1996, 11(3): 196-202.

      [9] CIPOLLA C L, MAYERHOFER M. Infill drilling & reserve growth determination in lenticular tight gas sands[R]. SPE 36735-MS, 1996.

      [10] 劉成川. 新場(chǎng)氣田沙溪廟組多層致密氣藏開發(fā)調(diào)整方案研究[D]. 成都:成都理工大學(xué),2007. LIU Chengchuan. Research on development adjustment plan for the Shaximiao tight gas reservoir with multilayers in Xinchang Gas Field[D]. Chengdu: Chengdu University of Technology, 2007.

      [11] 李建奇,楊志倫,陳啟文,王贊,周通. 蘇里格氣田水平井開發(fā)技術(shù)[J]. 天然氣工業(yè),2011,31(8):60-64. LI Jiangqi, YANG Zhilun, CHEN Qiwen, WANG Zan, ZHOU Tong. Horizontal well technology for the development of the Sulige Gas Field[J]. Natural GasIndustry, 2011, 31(8): 60-64.

      [12] 盧濤,張吉,李躍剛,王繼平,萬(wàn)單夫,朱亞夫,李達(dá). 蘇里格氣田致密砂巖氣藏水平井開發(fā)技術(shù)及展望[J].天然氣工業(yè),2013,33(8):38-43. LU Tao, ZHANG Ji, LI Yuegang, WANG Jiping, WAN Danfu, ZHU Yajun, LI Da. Horizontal well development technology for tight sandstone gas reservoirs in the Sulige Gas Field, Ordos Basin[J]. Natural Gas Industry, 2013, 33(8): 38-43.

      [13] 彭嬌,周德勝,張博. 鄂爾多斯盆地致密油層混合壓裂簇間干擾研究[J]. 石油鉆采工藝,2015,37(5):78-81,88. PENG Jiao, ZHOU Desheng, ZHANG Bo. Inter-cluster interference in hybrid fracturing of tight oil reservoirs in Ordos Basin[J]. Oil Drilling & Production Technology , 2015, 37(5): 78-81, 88.

      [14] 李躍剛,徐文,肖峰,劉莉莉,劉仕鑫,張偉. 基于動(dòng)態(tài)特征的開發(fā)井網(wǎng)優(yōu)化——以蘇里格致密強(qiáng)非均質(zhì)砂巖氣田為例[J]. 天然氣工業(yè),2014,34(11):56-61. LI Yuegang, XU Wen, XIAO Feng, LIU Lili, LIU Shixin, ZHANG Wei. Development well pattern optimization based on dynamic characteristics: A case study from the Sulige tight sandstone gas field with great heterogeneity[J]. Natural Gas Industry, 2014, 34(11): 56-61.

      [15] 王國(guó)勇,劉天宇,石軍太. 蘇里格氣田井網(wǎng)井距優(yōu)化及開發(fā)效果影響因素分析[J]. 特種油氣藏,2008,15(5):76-79. WANG Guoyong, LIU Tianyu, SHI Juntai, Pattern well spacing optimization and analysis of factors affecting development effect in Sulige Gas Field[J]. Special Oil & Gas Reservoirs, 2008, 15(5): 76-79.

      [16] 唐俊偉,賈愛(ài)林,蔡磊,郭建林,魏鐵軍. 蘇里格氣田強(qiáng)非均質(zhì)性致密砂巖儲(chǔ)層開發(fā)井網(wǎng)優(yōu)化[J]. 東北石油大學(xué)學(xué)報(bào),2007,31(5):73-77. TANG Junwei, JIA Ailin, CAI Lei, GUO Jianlin, WEI Tiejun. Well pattern optimization for the Sulige gas field with low permeability and strong heterogeneity[J]. Journal of Northeast Petroleum University, 2007, 31(5): 73-77.

      [17] 王文環(huán),彭緩緩,李光泉,雷征東,呂文峰.長(zhǎng)慶特低滲透油藏注水動(dòng)態(tài)裂縫及井網(wǎng)加密調(diào)整模式研究[J].石油鉆探技術(shù),2015,43(1):106-110. WANG Wenhuan, PENG Huanhuan, LI Guangquan, LEI Zhengdong, LYU Wenfeng. Research on water flooding dynamic fractures to optimize infill drilling spacing in ultra-low permeability reservoirs, Changqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 106-110.

      [18] AGARWAL R G, GARDNER D C, KLEINSTEIBER S W, FUSSELL D D. Analyzing well production data using combined-type-curve and decline-curve analysis concepts[J]. SPE Reservoir Evaluation & Engineering, 2000, 2(5): 478-486.

      [19] BLASINGAME T A, MCCRAY T L, LEE W J, MCCRAY T L. Decline curve analysis for variable pressure drop/variable flowrate systems[R]. SPE 21513-MS, 1991.

      [20] FETKOVICH M J, VIENOT M E, BRADLEY M D, KIESOW U G. Decline-curve analysis using type curves: case histories[J]. SPE Formation Evaluation, 1987, 2(4): 637-656.

      [21] 李士倫. 氣田開發(fā)方案設(shè)計(jì)[M]. 北京:石油工業(yè)出版社,2006:107-116. LI Shilun. The development plan design for gas fields[M]. Beijing: Petroleum Industry Press, 2006: 107-116.

      (修改稿收到日期 2016-12-13)

      〔編輯 朱 偉〕

      Optimization and infill adjustment of development well patterns in Zhao 10 Block

      GUO Ping1, GU Meng1, PENG Song2, SUN Zhen1,3, CHENG Yuhong3, WANG Zhouhua1

      1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China; 2. Exploration and Development Research Institute, SINOPEC Zhongyuan Oilfield Company, Puyang 457000, Henan, China; 3. No.5 Gas Production Plant, CNPC Changqing Oilfield Company, Uxin Banner 017300, Inner Mongolia, China

      In Zhao 10 Block, the well patterns were originally designed with small spacing density, and progressive development and concentrated construction were carried out, so at present, the distribution of well patterns is quite uneven. In order to improve the development results of this block, the original well pattern plans were optimized and adjusted by means of multiple methods (e.g. gas reservoir engineering, numerical simulation and economic evaluation) after the geological and dynamic characteristics were newly understood. It is indicated that in the areas where no well is arranged, the spacing density of vertical well patterns can be set at 3.33 wells/ km2with the corresponding spacing of 500 m×600 m. For the well patterns with spacing of 600 m×800 m, regular infilling can, to some extent, increase the recovery factor of gas reservoirs, but it is economically infeasible. Vertical wells are advantageous in vertical reserves producing and horizontal wells are higher in areal reserve producing degree. Besides, horizontal wells can increase individual-well production rate effectively. Therefore, combined well patterns of vertical well+horizontal well can be ultimately used in this block, which can increase the recovery factor to 46.9%.

      tight sandstone gas field; development well pattern; well pattern optimization; drainage radius; horizontal well; recovery factor; Sulige Gasfield; Ordos Basin

      郭平,顧蒙,彭松,孫振,成育紅,汪周華.召10區(qū)塊開發(fā)井網(wǎng)優(yōu)化及加密調(diào)整分析[J] .石油鉆采工藝,2017,39(1):14-19.

      TE324

      A

      1000 – 7393( 2017 ) 01 – 0014 – 06

      10.13639/j.odpt.2017.01.003

      : GUO Ping, GU Meng, PENG Song, SUN Zhen, CHENG Yuhong, WANG Zhouhua. Optimization and infill adjustment of development well patterns in Zhao 10 Block[J]. Oil Drilling & Production Technology, 2017, 39(1): 14-19.

      國(guó)家留學(xué)基金“西部地區(qū)人才培養(yǎng)特別項(xiàng)目”(編號(hào):201508515157);國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目“基于密度泛函理論研究頁(yè)巖氣藏氣固吸附微觀機(jī)理”(編號(hào):51204141)。

      郭平(1965-),教授,博士生導(dǎo)師,主要從事油氣藏流體相態(tài)、氣田及凝析氣田開發(fā)、油氣藏工程、注氣提高采收率、儲(chǔ)氣庫(kù)及油氣開發(fā)基礎(chǔ)問(wèn)題等研究工作。通訊地址:(610500)四川省成都市新都區(qū)西南石油大學(xué)。電話:028-83032346。E-mail:guopingswpi@vip.sina.com

      猜你喜歡
      井井直井井網(wǎng)
      海上調(diào)整井井槽高效利用技術(shù)創(chuàng)新與實(shí)踐
      水平井、直井聯(lián)合開發(fā)壓力場(chǎng)及流線分布研究
      基于壓裂效果評(píng)價(jià)的頁(yè)巖氣井井距優(yōu)化研究
      超低滲透油藏水平井注采井網(wǎng)設(shè)計(jì)優(yōu)化研究
      泄水建筑物斜向進(jìn)水消力井井深設(shè)計(jì)研究
      各向異性油藏菱形反九點(diǎn)井網(wǎng)合理井排距研究
      井下作業(yè)修井井控工作探討
      柳林區(qū)塊煤層氣直井排采技術(shù)分析
      沁水煤層氣田開發(fā)直井全生命周期產(chǎn)量預(yù)測(cè)方法
      G9區(qū)塊井網(wǎng)優(yōu)化設(shè)計(jì)
      彭水| 石城县| 福建省| 贵阳市| 华池县| 石门县| 莱阳市| 丹巴县| 芒康县| 江油市| 都昌县| 松滋市| 仙游县| 彭泽县| 广西| 房产| 岢岚县| 保德县| 建始县| 江孜县| 昆山市| 全椒县| 宁安市| 瑞金市| 尉犁县| 满城县| 定州市| 达孜县| 济阳县| 修水县| 阜平县| 揭东县| 阳谷县| 股票| 彝良县| 比如县| 黄大仙区| 榆中县| 东阿县| 平武县| 镇远县|