周于然,李瑛(遵義醫(yī)學(xué)院,貴州遵義653000;遵義醫(yī)學(xué)院附屬醫(yī)院)
脊髓小膠質(zhì)細(xì)胞在神經(jīng)病理性疼痛發(fā)生發(fā)展過(guò)程中的作用機(jī)制研究進(jìn)展
周于然1,李瑛2
(1遵義醫(yī)學(xué)院,貴州遵義653000;2遵義醫(yī)學(xué)院附屬醫(yī)院)
脊髓小膠質(zhì)細(xì)胞是神經(jīng)病理性疼痛的發(fā)生過(guò)程中發(fā)揮重要的關(guān)鍵細(xì)胞之一。脊髓小膠質(zhì)細(xì)胞中單核細(xì)胞趨化蛋白-1、趨化因子配體-2、基質(zhì)金屬蛋白酶-9 和 絲裂原激活蛋白激酶類家族蛋白參與了脊髓小膠質(zhì)細(xì)胞激活進(jìn)而導(dǎo)致神經(jīng)病理性疼痛產(chǎn)生的過(guò)程。
神經(jīng)病理性疼痛;小膠質(zhì)細(xì)胞;脊髓;單核細(xì)胞趨化蛋白1;趨化因子配體2;基質(zhì)金屬蛋白酶9 ;絲裂原激活蛋白激酶類家族蛋白
慢性疼痛是疼痛刺激因素消除之后而疼痛持續(xù)存在的一種病理狀態(tài),主要包括炎性痛和神經(jīng)病理性疼痛。神經(jīng)病理性疼痛,常發(fā)生于神經(jīng)損傷或某些疾病之后,比如癌癥、感染、自身免疫性疾病、創(chuàng)傷和糖尿病。神經(jīng)病理性疼痛不僅僅是疾病的一個(gè)癥狀,更可能是神經(jīng)系統(tǒng)功能紊亂導(dǎo)致的結(jié)果[1]。除了自發(fā)性疼痛和痛覺(jué)過(guò)敏,神經(jīng)病理性疼痛患者對(duì)正常的無(wú)傷害性刺激也會(huì)產(chǎn)生痛覺(jué)過(guò)敏。神經(jīng)病理性疼痛患者痛覺(jué)超敏的發(fā)生不僅有神經(jīng)元的參與,小膠質(zhì)細(xì)胞亦參與其中[2]。近年研究發(fā)現(xiàn),脊髓小膠質(zhì)細(xì)胞是神經(jīng)病理性疼痛發(fā)生過(guò)程中的關(guān)鍵細(xì)胞之一。脊髓小膠質(zhì)細(xì)胞中的單核細(xì)胞趨化蛋白1(MCP-1)、趨化因子配體2(CCL2)和基質(zhì)金屬蛋白酶9 (MMP-9)、絲裂原激活蛋白激酶類家族(MAPKs)參與其中?,F(xiàn)綜述如下。
趨化因子和趨化因子受體廣泛表達(dá)于中樞神經(jīng)系統(tǒng),趨化因子信號(hào)通路在神經(jīng)炎癥反應(yīng)調(diào)解中發(fā)揮關(guān)鍵作用。脊髓小膠質(zhì)細(xì)胞表達(dá)的CCR2在痛覺(jué)過(guò)敏的發(fā)生和維持過(guò)程中發(fā)揮著積極作用[3]。CCR2基因敲除小鼠機(jī)械性結(jié)扎坐骨神經(jīng)后小鼠沒(méi)有出現(xiàn)觸誘發(fā)痛[3],而MCP-1過(guò)表達(dá)可以增加疼痛的敏感性[4],藥物阻斷CCR2可以抑制痛覺(jué)超敏[5]。研究證實(shí)正常大鼠鞘內(nèi)注射MCP-1也可以激活脊髓小膠質(zhì)細(xì)胞[6]。神經(jīng)元表達(dá)的MCP-1以活性依賴地方式釋放到脊髓背角[6],趨化因子依賴性小膠質(zhì)細(xì)胞的激活是神經(jīng)病理性疼痛的發(fā)病機(jī)制,脊髓背角包含表達(dá)CCR2的小膠質(zhì)細(xì)胞[7]。為了進(jìn)一步確認(rèn)CCR2信號(hào)通路在慢性疼痛中的作用,Zhang等[8]研究發(fā)現(xiàn)在CCR2基因敲除小鼠不能形成慢性疼痛模型,可能是因?yàn)镃CR2基因敲除小鼠鞘內(nèi)注射MCP-1不能引起小膠質(zhì)細(xì)胞激活。CCR2激活小膠質(zhì)細(xì)胞觸發(fā)促疼痛介質(zhì)和物質(zhì)的釋放,隨后引起星形膠質(zhì)細(xì)胞激活,最終有助于慢性疼痛的形成[4]。
CCL2和MCP-1一樣,是趨化因子家族的成員,可以特異性引導(dǎo)單核細(xì)胞到炎癥、感染、創(chuàng)傷、毒素暴露與缺血部位。CCL2主要存在于小型和中型的脊髓和背根神經(jīng)節(jié)神經(jīng)元,尤其是那些含有P物質(zhì)和降鈣素基因相關(guān)肽(CGRP)的神經(jīng)元;在延髓,CCL2表達(dá)于神經(jīng)元和星形膠質(zhì)細(xì)胞[9]。CCL2可以與多種受體結(jié)合,包括CCR1、CCR2和CCR4,其中CCL2的生物學(xué)效應(yīng)主要由CCR2介導(dǎo)[10]。CCL2-CCR2信號(hào)通路參與調(diào)解神經(jīng)炎癥和慢性疼痛。研究表明延髓背角CCL2和CCR2參與調(diào)解三叉神經(jīng)病理性疼痛[11]。在神經(jīng)病理?xiàng)l件下,脊髓CCL2表達(dá)也上調(diào)[6]。Thacker等[6]研究證實(shí)L5脊神經(jīng)結(jié)扎切斷模型中,損傷的L5脊神經(jīng)和未損傷的L4脊神經(jīng)背根神經(jīng)節(jié)均產(chǎn)生CCL2。臨床研究證實(shí)CCL2在腰椎間盤突出患者疼痛維持中發(fā)揮著重要作用[12]。動(dòng)物實(shí)驗(yàn)也證實(shí)背根神經(jīng)節(jié)和脊髓的CCL2和CCR2信號(hào)通路在大鼠腰椎間盤突出癥模型疼痛維持中發(fā)揮關(guān)鍵作用,CCL2/CCR2信號(hào)通路直接參與大鼠脊髓調(diào)解傷害性信息的傳遞[13]。此外,在神經(jīng)病理性疼痛模型中脊髓小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞CCL2表達(dá)上調(diào)[3,13]。小膠質(zhì)細(xì)胞的特異性抑制劑米諾環(huán)素不僅可以有效緩解坐骨神經(jīng)損傷引起的神經(jīng)病理性疼痛,而且還降低神經(jīng)損傷引起的脊髓CCL2和CCR2表達(dá)水平升高[14]。Thacker等[6]發(fā)現(xiàn)脊髓內(nèi)注射CCL2可以引起同側(cè)脊髓背角小膠質(zhì)細(xì)胞的廣泛激活,表明CCL2/CCR2信號(hào)通路參與神經(jīng)元-小膠質(zhì)細(xì)胞的相互作用。盡管以上研究證實(shí)CCL2可通過(guò)神經(jīng)元、星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞上的CCR2受體調(diào)解神經(jīng)病理性疼痛的敏感性,但具體機(jī)制仍有待進(jìn)一步研究。
基質(zhì)金屬蛋白酶(MMPs)家族由一大類內(nèi)肽酶組成,它們需要Zn2+維持酶的活性。MMPs通過(guò)裂解細(xì)胞外基質(zhì)蛋白、細(xì)胞因子和趨化因子在炎癥調(diào)解過(guò)程中發(fā)揮著至關(guān)重要的作用[15]。研究證實(shí)正常大鼠鞘內(nèi)注射MMP-9可以激活小膠質(zhì)細(xì)胞[6],其機(jī)制可能與趨化因子、白介素1β(IL-1β)和腫瘤壞死因子α有關(guān)[16]。Kawasaki等[17]研究結(jié)果表明抑制MMP-9有利于緩解神經(jīng)病理性疼痛。米諾環(huán)素除了影響內(nèi)源性強(qiáng)啡肽水平,還強(qiáng)烈抑制MMP-9 mRNA的表達(dá),可能是其發(fā)揮鎮(zhèn)痛和神經(jīng)保護(hù)效應(yīng)的機(jī)制[18]。鞘內(nèi)注射MMP-9抑制劑可以減弱CCI模型大鼠的機(jī)械痛和熱痛,效果類似于注射米諾環(huán)素[19]。坐骨神經(jīng)擠壓后MMP-9表達(dá)上調(diào),降解髓鞘堿性蛋白導(dǎo)致神經(jīng)脫髓鞘病變[20]。脊神經(jīng)結(jié)扎(SNL)引起背根神經(jīng)節(jié)MMP-9快速(< 1 d)而短暫(< 3 d))的表達(dá)上調(diào),MMP-9抑制劑可以減輕神經(jīng)病理性疼痛;相反,鞘內(nèi)注射MMP-9可以誘發(fā)類似機(jī)械性觸誘發(fā)痛神經(jīng)癥狀[17]。MMP-9 和 IL-1β共表達(dá)在背根神經(jīng)節(jié)相同神經(jīng)元上,MMP-9似乎通過(guò)IL-1β誘導(dǎo)神經(jīng)病理性疼痛癥狀[17],因?yàn)橹泻涂贵w可部分阻斷MMP-9誘導(dǎo)的異常性疼痛。此外,MMP-9引起的脊髓神經(jīng)元連接異常在神經(jīng)病理性疼痛的發(fā)生中也非常重要[21]。
小膠質(zhì)細(xì)胞內(nèi)的P2X4受體蛋白主要位于溶酶體內(nèi),在溶酶體的蛋白水解環(huán)境中P2X4受體蛋白仍保持穩(wěn)定狀態(tài)[22]。研究表明CCL2通過(guò)CCR2增加小膠質(zhì)細(xì)胞表面P2X4受體蛋白表達(dá)水平,但不影響其總表達(dá)量[23]。因此,CCL2可能通過(guò)胞外分泌方式上調(diào)了小膠質(zhì)細(xì)胞表面P2X4受體蛋白的表達(dá)。利用單分子成像技術(shù)追蹤小膠質(zhì)細(xì)胞P2X4受體蛋白的表達(dá)過(guò)程,研究發(fā)現(xiàn)激活態(tài)小膠質(zhì)細(xì)胞內(nèi)P2X4受體蛋白的橫向移動(dòng)能力被p38增強(qiáng),p38為絲裂原激活蛋白激酶類家族(MAPKs)的一個(gè)成員[24]。在不同類型神經(jīng)病理性疼痛模型中均發(fā)現(xiàn)脊髓小膠質(zhì)細(xì)胞p38被激活。注射p38抑制劑可以減弱外周神經(jīng)損傷[25]和糖尿病[26]引起的觸覺(jué)誘發(fā)疼痛。因此,p38的激活在神經(jīng)病理性疼痛的發(fā)病機(jī)理中占據(jù)重要地位。在周圍神經(jīng)損傷之前用布比卡因阻滯坐骨神經(jīng),可以阻止脊髓小膠質(zhì)細(xì)胞p38的激活[27]。組織蛋白酶S鞘內(nèi)注射后迅速誘導(dǎo)脊髓小膠質(zhì)細(xì)胞磷酸化,這種效應(yīng)依賴于趨化因子和其受體信號(hào)通路[28]。此外,此外,嘌呤P2Y12R也可能參與脊髓小膠質(zhì)細(xì)胞p38的激活[29]。
MAPKs家族的另外一個(gè)成員胞外信號(hào)調(diào)節(jié)蛋白酶ERK,神經(jīng)損傷后不久首先出現(xiàn)在脊髓背角神經(jīng)元,幾天后主要出現(xiàn)在小膠質(zhì)細(xì)胞,3周后則出現(xiàn)在星形膠質(zhì)細(xì)胞[30]。Xu等[31]研究發(fā)現(xiàn)db/db小鼠ERK激活發(fā)生在脊髓神經(jīng)元和星形膠質(zhì)細(xì)胞,抑制ERK可以減弱機(jī)械性觸覺(jué)誘發(fā)疼痛。促炎性因子,IL-1b、IL-6和腫瘤壞死因子被認(rèn)為可能是MAPKs調(diào)解疼痛的中介分子[32]。
[1] Beggs S, Trang T, Salter MW. P2X4R+microglia drive neuropathic pain[J]. Nature Neuroscience, 2012,15(8):1068-1073.
[2] Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia[J]. Nature Neuroscience, 2007,10(11):1361.
[3] White FA, Feldman P, Miller RJ. Chemokine signaling and the management of neuropathic pain[J]. Molecul Inter, 2009,9(4):188-195.
[4] Menetski J, Mistry S, Lu M, et al. Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display enhanced nociceptive responses[J]. Neuroscience, 2007,149(3):706-714.
[5] Jung H, Bhangoo S, Banisadr G, et al. Visualization of chemokine receptor activation in transgenic mice reveals peripheral activation of CCR2 receptors in states of neuropathic pain[J]. J Neurosci, 2009,29(25):8051-8062.
[6] Thacker M, Clark AT, Grist J, et al. CCL2 is a key mediator of microglia activation in neuropathic pain states[J]. Eur J Pain, 2009,13(3):263-272.
[7] Abbadie C, Lindia JA, Cumiskey AM, et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2[J]. Proceed Nation Acad Sci, 2003,100(13):7947-7952.
[8] Zhang J, Shi XQ, Echeverry S, et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain[J]. J Neurosci, 2007,27(27):12396-12406.
[9] Mika J, Zychowska M, Popiolek-Barczyk K, et al. Importance of glial activation in neuropathic pain[J]. Eur J Pharmacol, 2013,716(1-3):106-119.
[10] Miller R J, Rostene W, Apartis E, et al. Chemokine Action in the Nervous System[J]. J Neurosci, 2011,28(28):11792-11795.
[11] Zhang ZJ, Dong YL, Ying L, et al. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain[J]. J Neuroinflam, 2012,9(1):136-136.
[12] Peng ZY, Chen R, Wang XY, et al. Increased local expressions of CX3CL1 and CCL2 are related to clinical severity in lumbar disk herniation patients with sciatic pain[J]. J Pain Res, 2017,25(10):157-165.
[13] Zhu X, Cao S, Zhu MD, et al. Contribution of chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal cord to the maintenance of neuropathic pain in a rat model of lumbar disc herniation[J]. J Pain, 2014, 15(5):516-526.
[14] Piotrowska A, Kwiatkowski K, Rojewska E, et al. Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain -In vivo, and in vitro, evidence[J]. J Neuroimmunol, 2016,29(7):9-19.
[15] Manicone AM, Mcguire JK. Matrix metalloproteinases as modulators of inflammation[J]. Sem Cell Dev Biol, 2008,19(1):34-41.
[16] Suter MR. Do glial cells control pain[J]. Neuron Glia Biol, 2007,3(3):255.
[17] Kawasaki Y, Xu ZZ, Wang X, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain[J]. Nature Med, 2008,14(3):331-336.
[18] Machado LS, Kozak A, Ergul A, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke[J]. BMC Neurosci, 2006,7(1):56.
[19] Rojewska E, Makuch W, Przewlocka B, et al. Minocycline prevents dynorphin-induced neurotoxicity during neuropathic pain in rats[J]. Neuropharmacol, 2014,86(2):301-310.
[20] Chattopadhyay S, Myers RR, Janes J, et al. Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve[J]. Brain Behav Immun, 2007,21(5):561-568.
[21] Komori K, Nonaka T, Okada A, et al. Absence of mechanical allodynia and Aβ-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase[J]. Feb Lett, 2004,557(1-3):125-128.
[22] Qureshi OS, Paramasivam A, Yu JC, et al. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis[J]. J Cell Sci, 2007,120(21):3838.
[23] Toyomitsu E, Tsuda M, Yamashita T, et al. CCL2 promotes P2X4 receptor trafficking to the cell surface of microglia[J]. Purinerg Signal, 2012,8(2):301.
[24] Toulme E, Khakh BS. Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK[J]. J Biolog Chem, 2012,287(18):14734-14748.
[25] Terayama R, Omura S, Fujisawa N, et al. Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury[J]. Neurosci Res, 2009,65(4):178-179.
[26] Wodarski R, Clark AK, Grist J, et al. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats[J]. Eur J Pain, 2009,13(8):807.
[27] Wen YR, Suter MR, Kawasaki Y, et al. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model[J]. Anesthesiol, 2007,107(2):312-321.
[28] Clark AK, Ping KY, Grist J, et al. Inhibition of Spinal Microglial Cathepsin S for the Reversal of Neuropathic Pain[J]. Proceed Nation Acad Sci U S A, 2007,104(25):10655-10660.
[29] Kobayashi K, Yamanaka H, Fukuoka T, et al. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain[J]. J Neurosci, 2008,28(11):2892-2902.
[30] Zhuang ZY, Gerner P, Woolf CJ, et al. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model[J]. Pain, 2005,114(1-2):149-159.
[31] Xu X, Chen H, Ling BY, et al. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes.[J]. Neurosci Bullet, 2014,30(1):53-66.
[32] Inoue K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release[J]. Pharmacol Therap, 2006,109(1-2):210-226.
李瑛(E-mail: 359062449@qq.com )
10.3969/j.issn.1002-266X.2017.11.034
R741.02
A
1002-266X(2017)11-0105-03
2016-09-22)