劉 穎,闞曉敏,李曉力,張巨文
(渤海大學(xué) 化學(xué)化工學(xué)院,遼寧 錦州 121000)
?
一系列基于吡啶-2,3-二羧酸的銅-稀土異金屬配位聚合物
劉 穎,闞曉敏,李曉力,張巨文*
(渤海大學(xué) 化學(xué)化工學(xué)院,遼寧 錦州 121000)
通過LnCl3·nH2O,Cu(NO3)2·3H2O,吡啶-2,3-二羧酸(2,3-H2pydc)和N,N′-二(4H-1,2,4-三唑)己酰胺(dth)的水熱反應(yīng)合成了一系列銅-稀土異金屬配位聚合物(CPs),即 [LnCu(2,3-pydc)2(adi)0.5(H2O)3]·2H2O [Ln = La (1), Pr (2), Nd (3), H2adi = 己二酸]和[Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O [Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11)]。通過單晶X-射線衍射,粉末X-射線衍射,元素分析,紅外和熱重分析對其表征。配位聚合物1-11顯示兩種具有不同拓?fù)涞娜S(3D)結(jié)構(gòu)。adi陰離子源于dth的原位水解。研究了配合物1-11的電化學(xué)性質(zhì)被研究。
銅;稀土;配位聚合物;電化學(xué)性質(zhì)
In the past decade, 3d-4f heterometallic coordination polymers (CPs) have been widely investigated due to their interesting structures and potential applications in magnetism, luminescence, catalysis, adsorption, and so on[1-7]. Although a large number of 3d-4f heterometallic CPs have been reported, the construction of 3d-4f heterometallic CPs remains still a challenge because the competitive reactions of transition metal and lanthanide ions with the same ligand often result in the formation of alternative homometallic products. Thus, the choice of organic ligand plays an important role in the design and synthesis of 3d-4f heterometallic CPs. A useful method for constructing 3d-4f heterometallic CPs is to select organic compounds containing both N- and O-donors as bridging ligands because the 3d ions have a strong coordination tendency to N-donors while the 4f ions have a strong affinity to O-donors[8-9]. As a family of bridging ligands containing both N- and O-donors, N-containing carboxylic acids have been widely employed for the syntheses of 3d-4f heterometallic CPs[10-13].
As one type of N-containing carboxylic acid, pyridine-2,3-dicarboxylic acid has been used for constructing 3d-4f heterometallic CPs. Cai and Shi and their co-workers reported some 3d-4f heterometallic CPs based on pyridine-2,3-dicarboxylic acid[14-15]. We also carried out some work in this field[16]. Recently, the introduction of the second ligand is utilized to tune the structures and functionalities of 3d-4f heterometallic CPs based on N-containing carboxylic acids[17]. We obtained a series of 3d-4f heterometallic CPs by introducing the second ligand into the pyridine-2,3-dicarboxylate-based 3d-4f reaction system[18]. As part of our ongoing interest in this field, herein, we selected N,N′-di(4H-1,2,4-triazole)hexanamide (dth) as the second ligand to synthesize a series of pyridine-2,3-dicarboxylate-based copper-lanthanide heterometallic CPs [LnCu(2,3-pydc)2(adi)0.5(H2O)3]·2H2O [Ln = La (1), Pr (2), Nd (3)] and [Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O [Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11)]. The adi anion originates from the in situ hydrolysis of dth. In addition, although the magnetism, luminescence, catalysis, adsorption of 3d-4f heterometallic CPs have been well documented, their electrochemical properties have been less developed[16]. In this work, we investigated systematically the electrochemical properties of 1-11.
The dth ligand was synthesized according to the literature methods[19-20]. LnCl3·nH2O were prepared by the reactions of Ln2O3and hydrochloric acid in aqueous solution. Other chemicals were obtained commercially and used without further purification. Elemental analyses (C, H, and N) were carried out on a Perkin-Elmer 2400 CHN elemental analyzer. IR data were collected on a Magna FT-IR 560 spectrometer with KBr plate in the range of 400-4 000 cm-1. Powder X-ray diffraction (PXRD) data were measured on a Bruker AXS D8-Advanced diffractometer with Cu Kα (λ=0.154 06 nm) radiation. Thermogravimetric analyses (TGA) and differential thermoanalyses (DTA) were performed on a Pyris-Diamond thermal analyzer in the temperature range of 30-880 ℃ with a heating rate of 10 ℃ min-1under a nitrogen atmosphere. Electrochemical measurements were made on a LK 2005A electrochemical workstation. A conventional three-electrode system was used with a saturated calomel electrode (SCE) as reference electrode, a platinum wire as auxiliary electrode, and the carbon paste electrodes (CPEs) bulk-modified with 1-11 as the working electrodes, respectively.
1.2 Syntheses of 1-11
All CPs were synthesized via the same hydrothermal method in 25 mL Teflon reactors. A mixture of LnCl3·nH2O (0.1 mmol, Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, or Lu), Cu(NO3)2·3H2O (0.1 mmol), 2,3-H2pydc (0.15 mmol), dth (0.1 mmol), H2O (5.4 mL), and aqueous solution of NaOH (5.6 mL, 0.1 mol L-1) was sealed in a 25 mL Teflon reactor, and then heated for 4 days at 120 ℃. After slow cooling to room temperature, dark blue (1-3) and light blue (4-11) block crystals were collected by filtration and washed with distilled water. Elemental analysis (%) calcd. for 1: C, 29.39; H, 2.90; N, 4.03. Found: C, 29.21; H, 2.76; N, 4.18. Calcd. for 2: C, 29.30; H, 2.89; N, 4.02. Found: C, 29.12; H, 2.78; N, 4.07. Calcd. for 3: C, 29.16; H, 2.88; N, 4.00. Found: C, 29.02; H, 2.74; N, 4.09. Calcd. for 4: C, 27.93; H, 3.01; N, 4.65. Found: C, 28.06; H, 2.89; N, 4.52. Calcd. for 5: C, 27.88; H, 3.01; N, 4.64. Found: C, 28.01; H, 2.84; N, 4.62. Calcd. for 6: C, 27.72; H, 2.99; N, 4.62. Found: C, 27.56; H, 2.80; N, 4.49. Calcd. for 7: C, 27.67; H, 2.99; N, 4.61. Found: C, 27.49; H, 2.87; N, 4.46. Calcd. for 8: C, 27.56; H, 2.97; N, 4.59. Found: C, 27.35; H, 2.83; N, 4.48. Calcd. for 9: C, 27.41; H, 2.96; N, 4.57. Found: C, 27.36; H, 2.85; N, 4.38. Calcd. for 10: C, 27.24; H, 2.94; N, 4.54. Found: C, 27.08; H, 2.75; N, 4.50. Calcd. for 11: C, 27.19; H, 2.93; N, 4.53. Found: C, 27.05; H, 2.81; N, 4.39. IR (KBr, cm-1) for 1: 3 365 (m), 2 360 (m), 1 646 (s), 1 570 (s), 1 412 (s), 1 351 (s), 1 276 (m), 1 239 (w), 1 151 (w), 1 117 (m), 885 (m), 848 (w), 780 (w), 744 (w), 700 (m), 613 (w), 553 (w), 484 (w). For 2: 3 365 (m), 2 360 (m), 1 652 (s), 1 570 (s), 1 411 (s), 1 351 (s), 1 273 (m), 1 230 (w), 1 152 (w), 1 117 (m), 883 (m), 848 (w), 780 (w), 736 (w), 698 (w), 614 (w), 544 (w), 484 (w). For 3: 3 365 (m), 2 366 (m), 1 652 (s), 1 577 (s), 1 412 (s), 1 351 (s), 1 273 (m), 1 231 (w), 1 152 (w), 1 117 (m), 885 (m), 848 (w), 778 (w), 736 (w), 700 (m), 61 (w), 551 (w), 484 (w). For 4: 3 424 (s), 2 360 (m), 1 635 (s), 1 577 (s), 1 412 (s), 1 368 (s), 1 273 (m), 1 230 (w), 1 160 (w), 1 117(m), 891(w), 831(w), 701(m), 605(w), 476 (w). For 5: 3 421 (s), 2 362 (m), 1 635 (s), 1 586 (s), 1 412 (s), 1 373 (s), 1 271 (m), 1 230 (w), 1 152 (w), 1 116 (m), 891 (w), 838 (w), 698 (m), 605 (w), 484 (w). For 6: 3 424 (s), 2 360 (m), 1 635 (s), 1 577 (s), 1 403 (s), 1 368 (s), 1 273 (m), 1 230 (w), 1 151 (w), 1 110 (m), 891 (w), 839 (w), 698 (m), 605 (w), 476 (w). For 7: 3 420 (s), 2 366 (w), 1 641 (s), 1 589 (s), 1 412 (s), 1 371 (s), 1 271 (m), 1 229 (w), 1 160 (w), 1 117 (m), 891 (w), 837 (w), 698 (m), 605 (w), 482 (w). For 8: 3 415 (s), 2 375 (w), 1 639 (s), 1 589 (s), 1 412 (s), 1 371 (s), 1 271 (m), 1 230 (w), 1 160 (w), 1 112 (m), 891 (w), 839 (w), 698 (m), 605 (w), 482 (w). For 9: 3 423 (s), 2 370 (w), 1 637 (s), 1 589 (s), 1 410 (s), 1 371 (s), 1 269 (m), 1 230 (w), 1 160 (w), 1 110 (m), 891 (w), 831 (w), 698 (m), 605 (w), 484 (w). For 10: 3 421 (s), 2 370 (w), 1 639 (s), 1 589 (s), 1 412 (s), 1 369 (s), 1 269 (m), 1 230 (w), 1 152 (w), 1 110 (m), 891 (w), 839 (w), 698 (m), 611 (w), 480 (w). For 11: 3 423 (s), 2 374 (w), 1 637 (s), 1 589 (s), 1 412 (s), 1 369 (s), 1 271 (m), 1 230 (w), 1 160 (w), 1 118 (m), 891 (w), 831 (w), 698 (m), 605 (w), 476 (w).
1.3 Preparation of 1-11-CPEs
A carbon paste electrode bulk-modified with 1 (1-CPE) was fabricated as follows: CP 1 (0.03 g) and graphite powder (0.50 g) were mixed and ground together with an agate mortar and pestle for approximately 30 min to achieve uniformity. Paraffin oil (0.15 mL) was added to the above-mentioned mixture with stirring. The resulting mixture was packed into a glass tube (3 mm inner diameter) to a length of 8 mm. The tube surface was wiped with the weighing paper. The electrical contact was established with a copper stick[21]. A similar process was employed to prepare 2-11-CPEs.
1.4 X-ray crystallography
Single-crystal X-ray diffraction data of 1, 3, 4, and 6 were collected at room temperature on a Bruker Smart APEX II diffractometer with Mo Kα (λ=0.071 073 nm) radiation. The structures were solved by direct methods and refined by full-matrix least-squares methods on F2 using the SHELXTL package[22]. All non-hydrogen atoms were refined anisotropically. Crystal data and refinement results for 1, 3, 4, and 6 are summarized in Table 1. CCDC 1485905-1485908 contains the supplementary crystallographic data for 1, 3, 4, and 6. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Table 1 Crystal data and refinement parameters for CPs 1, 3, 4, and 6
Continued table 1
2.1Syntheses
Inthiswork,wesynthesizedaseriesofcopper-lanthanideheterometallicCPs[LnCu(2,3-pydc)2(adi)0.5(H2O)3]·2H2O[Ln=La(1),Pr(2),Nd(3)]and[Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O[Ln=Sm(4),Eu(5),Gd(6),Tb(7),Dy(8),Er(9),Yb(10),Lu(11)]bythehydrothermalreactionsofLnCl3·nH2O,Cu(NO3)2·3H2O, 2,3-H2pydc,anddth.Theadianionin1-3wasgeneratedbytheinsituhydrolysisofdth.Infact,theinsituhydrolysisofdthalsooccurredinthehydrothermalsystemsof4-11becausealittlecolorlesscrystalwasobserved.Suchcolorlesscrystalwasconfirmedbysingle-crystalX-raydiffractiontobelanthanideadipateCPs,whichhavebeenreportedbyMichaelidesandco-workers[23].Inaddition,thecrystalstructuresof4-11aresimilartothoseof[Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O(Ln=Eu,Tb,Dy,andEr)reportedbyourgroup[18]and[Ln2Cu3(2,3-pydc)6(H2O)10]·10H2O(Ln=Tb,Ho,Er,Yb,andLu)reportedbyCaiandco-workers[14].Interestingly,inourpreviouswork, [Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O(Ln=Sm,Gd,Yb,andLu)werenotobtainedintheSm/Gd/Yb/Lu-containingreactionsystemsunderthesamereactioncondition[18].Similarly,inCai’swork,no[Ln2Cu3(2,3-pydc)6(H2O)10]·10H2O(Ln=SmandGd)wereobtainedintheSm/Gd-containingreactionsystemsunderthesamereactioncondition[14].Therefore,thedifferentreactionsystemshaveanimportantinfluenceontheformationandstructuresofthesecopper-lanthanideheterometallicCPs.
2.2Crystalstructuresof1-3
Single-crystalX-raydiffractionanalysisshowsthatCPs1-3areisostructuralandcrystallizeinthetriclinicspacegroupPī.Therefore,onlythecrystalstructureof1isanalyzedindetail.AsshowninFig.1a,CP1iscomposedofoneLa(III)ion,oneCu(II)ion,two2,3-pydcanions,halfanadianion,threecoordinatedwatermolecules,andtwolatticewatermolecules.TheLa1ionisnine-coordinatedwithfouroxygenatomsfromthree2,3-pydcanions,twooxygenatomsfromoneadianion,andthreeoxygenatomsfromthreewatermolecules.ThesenineoxygenatomssurroundLa1toformadistortedmonocappedsquareantiprismaticcoordinationgeometry.TheLa-Obondlengthsvaryfrom0.247 0(2)to0.263 06(19)nm.TheCu1ionisfive-coordinatedbytwonitrogenandthreeoxygenatomsfromthree2,3-pydcanionswithatetragonalpyramidalcoordinationgeometry.TheCu-Obondlengthsrangefrom0.192 81(19)to0.236 00(19)nmandtheCu-Nlengthsare0.197 0(2)and0.198 0(2)nm.
In1,four2,3-pydcanionslinktwoCuIIionsintoadinuclearCu2(2,3-pydc)4unit.Twocarboxylicgroupsfromtwo2,3-pydcanionsbridgetwoLaIIIionstoformadimericLa2(COO)2cluster.TheCu2(2,3-pydc)4andLa2(COO)2fragmentsconnecteachothertogenerateatwo-dimensional(2D)layer(Fig.1b).Theadianionsextendtheadjacent2Dlayersintoa3Dframework(Fig.1c).IftheCu2(2,3-pydc)4andLa2(COO)2unitsareconsideredasfour-andsix-connectednodes,respectively,andtheadianionsaslinkers,thenCP1possessesa3D4,6-connectedtopologywithaSchlaflisymbolof(44·610·8)(44·62) (Fig.1d).Thecrystalstructureof1issimilartothoseof[LnCu(2,3-pydc)2(suc)0.5(H2O)3]·H2O(Ln=La,Pr,Nd,Sm,Eu,andGd,H2suc=succinicacid),andonlytheadianionsarereplacedbythesucanions[18].
Fig.1 Crystal structure of CP 1. All hydrogen atoms and interstitial water molecules are omitted for clarity(a) Coordination environments of the metal ions. Symmetry codes: JHJ1 -x+1,-y-1,-z+2; JHJ2 x, y, z-1; JHJ3-x, -y, -z+2;(b) 2D layer;(c) 3D framework;(d) 3D 4,6-connected topology.
2.3Crystalstructuresof4-11
CPs4-11areisostructuralandcrystallizeinthemonoclinicspacegroupP21/n.Thus,onlythecrystalstructureof4isdescribedhereasarepresentativeexample.CP4containsoneSmIIIion,oneandhalfCuIIions,three2,3-pydcanions,fivecoordinatedwatermolecules,aswellasfourinterstitialwatermolecules(Fig.2a).TheSm1ioniscoordinatedbyeightoxygenatomsfromthree2,3-pydcanionsandfivecoordinatedwatermoleculestoconstituteadistortedsquareantiprismaticcoordinationgeometry.TheSm-Obondlengthsrangefrom0.232 0(3)to0.251 0(5)nm.TheCu1ionissurroundedbytwonitrogenandthreeoxygenatomsfromthree2,3-pydcanionstogenerateatetragonalpyramidalcoordinationgeometry,whichissimilartothatin1,whiletheCu2ionissix-coordinatedbytwonitrogenandfouroxygenatomsfromfour2,3-pydcanionswithaoctahedralcoordinationgeometry.TheCu-Nbondlengthslieintherangeof0.196 7(4)-0.198 2(4)nm,andtheCu-Obondlengthsareintherangeof0.193 5(3)-0.256 5 2(34)nm.
In4,six2,3-pydcanionsassemblethreeCuIIionstoformatrinuclearCu3(2,3-pydc)6unit.TheadjacenttrinuclearCu3(2,3-pydc)6unitsareregularlyarrangedintoa2Dsupramolecularlayer(Fig.2b).TheSmIIIionslinkthe2Dsupramolecularlayerstoyielda3Dframework(Fig.2c)inwhicheachCu3(2,3-pydc)6unitconnectssixSmIIIions,andeachSmIIIionconnectsthreeCu3(2,3-pydc)6units.IftheSmIIIionsandtheCu3(2,3-pydc)6unitsareregardedas3-and6-connectednodes,respectively,thenCP4displaysa3D3,6-connectedtopologywithaSchlaflisymbolof(4·82)2(42·811·102) (Fig.2d).Thecoordinationmodesof2,3-pydcin1and4aresimilartothosereportedpreviously[14,18].
2.4PXRDandthermalanalyses
Fig.2 Crystal structure of CP 4. All hydrogen atoms and interstitial water molecules are omitted for clarity.(a) Coordination environments of the metal ions. Symmetry code: JHJ2-x+1,-y + 2, -z + 1.(b) 2D supramolecular layer;(c) 3D framework;(d) 3D 3,6-connected topology.
ThePXRDpatternsoftheas-synthesizedbulkproductsfor1-3and4-11arecompatiblewiththesimulatedpatternsderivedfromthesingle-crystalX-raydiffractiondataof1and4 (Figs.3and4),respectively,provingthephasepurityoftheas-synthesizedbulkproducts.Theslightdifferencesinintensitycouldbeduetothepreferredorientationsofthepowdersamples.ItisworthmentioningthatCPs5and7-11havebeenreportedpreviously,althoughtheirreactionsystemsweredifferentfromthatemployedinthiswork[14,18].Theircrystaldatawerereproducedinthiswork,butarenotsummarizedinTable1.Additionally,nocrystaldatafor2couldbeobtainedinthisworkowingtopoorsingle-crystalquality.However,itsPXRDpatternisinagreementwiththoseof1and3 (Fig.3),implyingtheirisostructuralnature.
Fig.3 Simulated PXRD pattern of CP 1 and as-synthesized PXRD patterns of CPs 1-3
Fig.4 Simulated PXRD pattern of CP 4 and as-synthesized PXRD patterns of CPs 4-11
TheTG-DTAcurvesof1-3and4-11 (Figs. 5and6)indicatesimilartendencies,respectively.Thus,onlythethermalstabilitiesof1and4areanalyzedhereasrepresentativeexamples.Both1and4showtwomainweightlossstages.Thefirstweightlossstagesstartat100oCupto160oCfor1and50oCupto150oCfor4withtheweightlossesofabout12.44%for1and15.98%for4,respectively,corresponding
tothereleaseoftheinterstitialandcoordinatedwatermolecules(calcd. 12.97%for1, 17.96%for4).Thesecondweightlossstagesat320and290oC,respectively,canbeattributedtothedecompositionoftheorganicligands.Theresiduesof39.34%for1and37.20%for4areinroughagreementwithLn2O3-CuO(calcd. 34.90%for1, 32.52%for4).
Fig.5 TG curves of CPs 1-3 and DTA curve of CP 1
2.5Electrochemicalproperties
Theelectrochemicalpropertiesof1-11-CPEswereinvestigatedbycyclicvoltammetry(CV)in0.1M
Fig.6 TG curves of CPs 4-11 and DTA curve of CP 4
H2SO4and0.5MNa2SO4aqueoussolution.Theelectrochemicalbehaviorsof1-11-CPEsaresimilarexceptforsomeslightpotentialshifts.Thus,onlytheelectrochemicalbehaviorof10-CPEisdiscussedhereasarepresentativeexample.TheCVcurvesof10-CPEatdifferentscanratesinthepotentialrangeof-700to600mVdisplayoneredoxprocess(Fig.7a),whichisascribedtotheredoxcoupleofCuII/CuI[24-25].Thehalf-wavepotential[E1/2=(Epa+Epc)/2]at200mVs-1is89mV.Whenthescanratesvaryfrom120to450mVs-1,theanodicpeakpotentialsshiftgraduallytothepositivedirection,whereasthecorrespondingcathodicpeakpotentialsshiftgraduallytothenegativedirection.Theanodicandcathodicpeakcurrentsareproportionaltothescanrates(Fig.7b).Therefore,theredoxprocessof10-CPEissurface-controlled[26-27].
Fig.7 (a) Cyclic voltammograms of 10-CPE in 0.1 M H2SO4 and 0.5 m Na2SO4 aqueous solution at different scan rates (from inner to outer: the bare CPE, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450 mV·s-1).(b) Plots of the anodic and cathodic peak currents versus the scan rates.
ThehydrothermalreactionsofLnCl3·nH2O,Cu(NO3)2·3H2O, 2,3-H2pydc,anddthaffordedtwotypesof3Dcopper-lanthanideheterometallicCPswithdifferenttopologies.Theinsituhydrolysisofdthhasanimportantinfluenceontheformationandstructuresof1-11.CPs1-11showthermalstabilityandelectrochemicalproperties.Thisworkprovidesanexampleforinvestigatingtheelectrochemicalbehaviorsof3d-4fheterometallicCPs.
[1]LiuSJ,ZengYF,XueL,etal.Tuningthemagneticbehaviorsin[FeIII12LnIII4]clusterswitharomaticcarboxylateligands[J].Inorg.Chem.Front.,2014,1:200-206.
[2]GouraJ,BramblebyJ,GoddardP,etal.Asingle-ionmagnetbasedonaheterometallicCoIII2DyIIIcomplex[J].Chem.Eur.J.,2015,21:4926-4930.
[3]CuiY,YueY,QianG,etal.Luminescentfunctionalmetal-organicframeworks[J].Chem.Rev.,2012,112:1126-1162.
[4]SorghoLA,CantuelM,PetoudS,etal.Opticalsensitizationandupconversionindiscretepolynuclearchromium-lanthanidecomplexes[J].Coord.Chem.Rev.,2012,256:1644-1663.
[5]AmirkhanovOV,MorozOV,ZnovjyakKO,etal.HeterobinuclearZn-LnandNi-Lncomplexeswithschiff-baseandcarbacylamidophosphateligands:synthesis,crystalstructures,andcatalyticactivity[J].Eur.J.Inorg.Chem.,2014,3720-3730.
[6]GriffithsK,GallopCWD,Abdul-SadaA,etal.Heteronuclear3d/DyIIIcoordinationclustersascatalystsinadominoreaction[J].Chem.-Eur.J.,2015,21:6358-6361.
[7]GurunathaKL,MostafaG,GhoshalD,etal.Single-crystal-to-single-crystalstructuraltransformationinathree-dimensionalbimetallic(4f-3d)supramolecularporousframework[J].Cryst.GrowthDes.,2010,10:2483-2489.
[8]ZhouY,HongM,WuX.Lanthanide-transitionmetalcoordinationpolymersbasedonmultipleNandO-donorligands[J].Chem.Commun.,2006,135-143.
[9]ZhouJM,ShiW,XuN,etal.ANewFamilyof4f-3dHeterometallicmetal-organicframeworkswith2,2′-bipyridine-3,3′-dicarboxylicacid:syntheses,structuresandmagneticproperties[J].Cryst.GrowthDes.,2013,13:1218-1225.
[10]HuangYG,JiangFL,HongMC.Magneticlanthanide-transition-metalorganic-inorganichybridmaterials:Fromdiscreteclusterstoextendedframeworks[J].Coord.Chem.Rev.,2009,253:2814-2834.
[11]ZhangS,ChengP.Recentadvancesintheconstructionoflanthanidecopperheterometallicmetal-organicframeworks[J].CrystEngComm,2015,17:4250-4271.
[12]ZhangJW,KanXM,LiuBQ,etal.Systematicinvestigationofreaction-timedependenceofthreeseriesofcopper-lanthanide/lanthanidecoordinationpolymers:syntheses,structures,photoluminescence,andmagnetism[J].Chem.-Eur.J.,2015,21:16219-16228.
[13]ZouXY,JiangD,DongYP,etal.SynthesisandcrystalstructureofN,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-propanediaminedinuclearlanthanidecomplex[J].JournalofEngineeringofHeilongjiangUniversicy,2016,7(4):31-36.
[14]ZuoDF,ZhangS,YuYH,etal.SynthesesandstructuresoftwoZnIIluminescentcomplexesconstructedfromlength-modulatedsemi-rigidpyrazolligands[J].JournalofNaturalScienceofHeilongjiangUniversity,2016,33(4):502-508.
[15]YangTH,SilvaAR,ShiFN.Twodimensionalporous3d-4fheterometalliccoordinationpolymersconstructedbypyridine-2,3-dicarboxylicacid[J].CrystEngComm,2015,17:3852-3858.
[16]ZhangJW,LiXL,KanXM,etal.Solvent-inducedcopper-lanthanideheterometalliccoordinationpolymersbasedonpyridine-2,3-dicarboxylicacid:syntheses,structures,andelectrochemicalproperties[J].Inorg.Chim.Acta,2016,447:18-21.
[17]ChenC,WangN,LongY,etal.Seriesofnovel3Dmicroporousheterometallic3d-4fcoordinationframeworkswith(5,6)-connectedtopology:synthesis,crystalstructureandmagneticproperties[J].CrystEngComm,2013,15:4611-4616.
[18]ZhangJW,KanXM,LiXL,etal.Aseriesofcopper-lanthanideheterometalliccoordinationpolymersderivedfrompyridine-2,3-dicarboxylicacidandinsitugeneratedsuccinicacid[J].Eur.J.Inorg.Chem.,2016,1060-1067.
[19]SarkarM,BiradhaK.Amide-to-amidehydrogenbondsinthepresenceofapyridinefunctionality:crystalstructuresofbis(pyridinecarboxamido)alkanes[J].Cryst.GrowthDes.,2006,6:202-208.
[20]RajputL,SinghaS,BiradhaK.Comparativestructuralstudiesonhomologuesofamidesandreverseamides:unprecedented4-foldinterpenetratedquartznetwork,newβ-sheet,andtwo-dimensionallayers[J].Cryst.GrowthDes.,2007,7:2788-2795.
[21]WangXL,KangZH,WangEB,etal.Preparation,electrochemicalpropertyandapplicationinchemicallybulk-modifiedelectrodeofahybridinorganic-organicsilicomolybdatenanoparticles[J].Mater.Lett.,2002,56:393-396.
[22]SheldrickGM.AshorthistoryofSHELX[J].ActaCrystallogr.,Sect.A,2008,64:112-122.
[23]DimosA,TsaousisD,MichaelidesA,etal.Microporousrareearthcoordinationpolymers:effectoflanthanidecontractiononcrystalarchitectureandporosity[J].Chem.Mater.,2002,14:2616-2622.
[24]WangX,LuanJ,LinH,etal.Effectofflexiblebis-pyridyl-bis-amideligandsanddicarboxylatesontheassemblyandpropertiesofmultifunctionalCu(II)metal-organiccoordinationpolymers[J].DaltonTrans.,2013,42:8375-8386.
[25]WangXL,LuanJ,LuQL,etal.ThreenewmetaleorganiccomplexesderivedfromN,N(-bis(3-pyridinecarboxamide)-1,2-ethaneandpolycarboxylateligands:synthesis,fluorescentandelectrochemicalproperties[J].J.Organomet.Chem.,2012,719:1-7.
[26]WangXL,LuanJ,LinHY,etal.Thevariousarchitecturesandpropertiesofaseriesofcoordinationpolymerstunedbythecentralmetals[J].DaltonTrans.,2014,43:8072-8082.
[27]WangXL,LuanJ,LinHY,etal.Fourcobalt(II)coordinationpolymersbasedonaflexibleN,N(-bis(3-pyridinecarboxamide)-1,6-hexaneligand:modulationofcrystalarchitecturesthroughthesubstituentgroupsofisophthalates[J].Polyhedron,2014,71:111-118.
A series of copper-lanthanide heterometallic coordination polymers based on pyridine-2,3-dicarboxylic acid
LIU Ying,KAN Xiao-Min,LI Xiao-Li,ZHANG Ju-Wen
(CollegeofChemistryandChemicalEngineering,BohaiUniversity,Jinzhou121000,Liaoning,China)
A series of copper-lanthanide heterometallic coordination polymers(CPs)were synthesized by the hydrothermal reactions of LnCl3·nH2O,Cu(NO3)2·3H2O,pyridine-2,3-dicarboxylic acid(2,3-H2pydc),and N,N′-di(4H-1,2,4-triazole)hexanamide(dth),namely,[LnCu(2,3-pydc)2(adi)0.5(H2O)3]·2H2O [Ln=La (1), Pr (2), Nd (3), H2adi = adipic acid] and [Ln2Cu3(2,3-pydc)6(H2O)10]·8H2O [Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), Lu (11)].They were characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,IR,and thermogravimetric analysis.CPs 1-11 show two types of three-dimensional(3D)architectures with different topologies.The adi anion is derived from the situ hydrolysis of dth.The electrochemical properties of 1-11 were studied.
copper;lanthanide;coordination polymer;electrochemical property
10.13524/j.2095-008x.2017.01.006
2017-02-23
國家自然科學(xué)基金資助項(xiàng)目(21201021)
劉 穎(1991-),女,遼寧鐵嶺人,碩士研究生,研究方向:功能配合物的設(shè)計(jì)合成,E-mail:1012739685@qq.com;*通訊作者:張巨文(1979-),男,黑龍江青岡人,副教授,博士,碩士研究生導(dǎo)師,研究方向:功能配合物的設(shè)計(jì)合成,E-mail:zhangjw@bhu.edu.cn。
O627.12
A
2095-008X(2017)01-0034-08