• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Life prediction and test period optimization research based on small sample reliability test of hydraulic pumps①

    2017-03-28 09:47:39GuoRuiNingChaoZhaoJingyiWangPingShiYuZhouJinshengLuoJing
    High Technology Letters 2017年1期
    關(guān)鍵詞:電解陽極電場

    Guo Rui(郭 銳), Ning Chao, Zhao Jingyi, Wang Ping, Shi Yu, Zhou Jinsheng, Luo Jing

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China) (**Huachuang Tianyuan Industrial Developing Co., Ltd, Langfang 065000, P.R.China) (***College of Art and Design, Yanshan University, Qinhuangdao 066004, P.R.China) (****Beijing Research Institute of Automation for Machinery Industry, Beiing 100120, P.R.China)

    Life prediction and test period optimization research based on small sample reliability test of hydraulic pumps①

    Guo Rui(郭 銳)②*, Ning Chao**, Zhao Jingyi*, Wang Ping***, Shi Yu*, Zhou Jinsheng*, Luo Jing****

    (*Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Key Laboratory of Advanced Forging & Stamping Technology and Science (Yanshan University), Qinhuangdao 066004, P.R.China) (**Huachuang Tianyuan Industrial Developing Co., Ltd, Langfang 065000, P.R.China) (***College of Art and Design, Yanshan University, Qinhuangdao 066004, P.R.China) (****Beijing Research Institute of Automation for Machinery Industry, Beiing 100120, P.R.China)

    Hydraulic pumps belong to reliable long-life hydraulic components. The reliability evaluation includes characters such as long test period, high cost, and high power loss and so on. Based on the principle of energy-saving and power recovery, a small sample hydraulic pump reliability test rig is built, and the service life of hydraulic pump is predicted, and then the sampling period of reliability test is optimized. On the basis of considering the performance degradation mechanism of hydraulic pump, the feature information of degradation distribution of hydraulic pump volumetric efficiency during the test is collected, so an optimal degradation path model of feature information is selected from the aspect of fitting accuracy, and pseudo life data are obtained. Then a small sample reliability test of period constrained optimization search strategy for hydraulic pump is constructed to solve the optimization problem of the test sampling period and tightening end threshold, and it is verified that the accuracy of the minimum sampling period by the non-parametric hypothes is tested. Simulation result shows it could possess instructional significance and referenced value for hydraulic pump reliability life evaluation and the test’s research and design.

    hydraulic pump, small sample test, volumetric efficiency, degradation path model, life span, period optimal

    0 Introduction

    Hydraulic pump with characteristics of high reliability and long-life is the key hydraulic component in the hydraulic system and as “Three Basic” mechanical basis belonging to the mechanical field. Its level directly determines many major equipment and the host of product performance, quality and reliability. However, there are many problems, such as large power, long test period, high costly testing, closed-end transmission of power, poor measurability of parameters, and diversity of failure mechanism. The situation of zero-failure data may occur in the conventional or accelerated reliability life test of hydraulic pump. Therefore, Reliability assessment and growth of the key fundamental parts and components with high reliability and long-life, represented by hydraulic pump, has become one of the key techniques to be solved urgently in engineering field[1,2].

    At present, the test of reliability life usually takes a long life test in developed countries, and there is a big disparity with the situation of our country. In the United States, the hydraulic pump life test standards has been developed from MIL-P-19692D, MIL-P-19692E, MIL-P-19692C to SAE-ASI19292A, which marks the important development of the relevant standards[3]. Hydraulic transmission laboratory of Sundstron Company was equipped with hydraulic pump test system, and began the full-life-test of hydraulic pumps as early as in 1964. Since the introduction of the micro-computer in 1974, At present, the test of reliability life usually takes a long life test in developed countries, and there is a big disparity with the situation of our country. UK National Laboratory developed ISO standard hydraulic pump test rig, and then studied the reliability of the hydraulic pump. The Institute of Metallurgical Machinery in Korea developed the reliability test and data processing system of the hydraulic pump. The Research Center of Mechanical Industry (ETIT) in France developed the experimental platform of hydraulic pump[4-8]. In recent years, a lot of life experiment researches have been conducted in China, and have achieved periodic achievement. Sanyi Heavy Industry and Xuzhou Construction Machinery Group carried out the on-board test for their own matching pump. Harbin Industrial University conducted a study of the test method of life and reliability for hydraulic components[9,10]. Shanghai Jiaotong University evaluated the life characteristics of 25CY14-1B type axial piston pump[11]. Huazhong University of Science and Technology developed a reliability test for ceramic plunger of water hydraulic pump[12]. Zhejiang Ocean University focused on the research of 32 hydraulic pumps and got the comprehensive estimation of the hydraulic pump reliability without failure data after the introduction of the failure information[13]. Extensive reliability test studies were conducted for the factors effecting the reliability of the hydraulic devices of multi-industries and multi-fields[14,15], Yanshan University has published the “reliability engineering of the hydraulic system”[16].Those studies involved the acquisition of the failure information under conventional test and accelerated test and the reliability assessment based on small sample and performance degradation, but the related researches, which makes use of the principles of performance degradation to predict the reliability life and optimize the test period, are still lacking.

    By introducing the performance degradation theory of hydraulic pump, the reliability test of small sample size is designed. Through the screening of degradation model, the reliability of hydraulic pump is predicted. Test period optimization of hydraulic pump small sample reliability test is achieved. It has great value in academic and engineering area to research reliability assessment of hydraulic pump. The structure and principle of A4V series hydraulic pump and the main failure modes after testing are shown in Fig.1.

    Fig.1 The principle of the axial piston pump reliability test rig operation

    1 Degradation model selection and life prediction based on performance degradation theory

    1.1 Performance degradation data structure and model

    The population is sampled for the degradation test, and the random simple size is n. The degradation test was carried out at given k time points, t1

    yij=φ(tij, w1i, w2i, wmi)+εij

    (1)

    where i=1,2,…,n; j=1,2,…,φ(tij, w1i, w2i, wmi) is the degradation path of the No.i sample at time tj, εij~N(0, σ2) is error measurement.

    In the range of the errors permitted, product performance degradation parameters and time series vector can be fitted effectively by adopting the following five kinds of models, which can be considered as the actual degradation of product performance parameters.

    Liner: yi=αit+βi

    (2)

    Exponential: yi=αieβit

    (3)

    Power: yi=αitβi

    (4)

    Logarithmic: yi=αiln(t)+βi

    (5)

    (6)

    where αi, βiare unknown parameters in the degradation model, yiis the target value, i is the number of samples under a certain stress level, and t is test time.

    1.2 Degradation path fitting method

    The nonlinear degenerate models as Eqs(2)~(6) would be expressed as y=F(X, α)+ε, where α is the model coefficient vector, X is a matrix of model design, F is a function of α and X, ε is the error vector, and y is response vector data. Solution of the nonlinear regression models can be fitted by a nonlinear least square method.

    (7)

    where F(x, xdata) is the vector valued function, xdata is the independent variable vector, xdata=[t1, t2,…, tm], ydata is dependent variable vector, ydata=[yi1, yi2,…, yim](i=1, 2,…,n).

    1.3 Optimal degradation path search strategy

    1.3.1 Degradation path search decision matrix

    Suppose n degenerate path equations can be achieved by the fitting of the degradation data, m impact properties of search scheme need to be considered. X=[X1, X2, …, Xn] is a set of n alternative degradation paths. Y=[Yi1, Yi2, …, Yim] is a set of No.i path and No. j(j=1, 2, …,m) property. Attribute Yijis expressed by objective function

    Yij=fi(Xi)

    (8)

    The attribute values of each path scheme can be expressed as the search decision matrix A.

    (9)

    The weighted normalized decision matrix is got by the weight of the search decision matrix.

    (10)

    where λjis the weight coefficient, i=1, 2, … ,n ,j=1, 2, …,m.

    2.3.2 Algorithm for solving the optimal degradation path

    According to the TOPSIS theory that the method of evaluating the similarity degree of the object and the ideal target, an optimal solution and the worst solution are firstly determined, the scheme that the best solution to the nearest and farthest from the best solution would be selected as ideal optimization scheme.

    The optimal solution of X+and the worst solution X-are defined as

    (11)

    where J is a set of benefit type attribute, J′ is a set of cost attribute.

    The distance of each solution to the optimal solution is

    (12)

    The distance of each solution to the worst solution is

    (13)

    In order to judge the solution, the relative similarity degree is introduced to measure the distance between two kinds of distance. The relative similarity degree to the optimal solution is defined.

    (14)

    According to the search strategy of the optimal degradation model and the fitting results from section 2.3, comparatively accurate hydraulic pump volumetric efficiency test data degradation model would be got. According to the programme, the mean error square and fitting goodness index matrix of the actual degradation data and optimal degradation trajectory in specific timing interval can be acquired. And that is selected to construct test period constrained optimization search strategy of the hydraulic pump reliability short-time test for search index fitting goodness. According to the algorithm introduced in the Section 1.3, the fitting search for the twice time is carried, and then the optimal truncated threshold of the minimum sampling period and the performance degradation would be acquired.

    2 Small sample reliability test of hydraulic pump

    2.1 The design of test system and program

    In the laboratory the existing condition’s foundation, the small sample reliability test rig of hydraulic pump based on the energy saving and power recovery principle is designed.

    Test hydraulic system and test rig are shown in Fig.2 and Fig.3.

    1、3- Test subjects of axial plunger pump; 2、4- Test subjects of axial piston motor; 5-Flowmeter; 6-Screw pump oil compensator; 7、13-Overflow valve; 8、10- Torque Tachometer; 9- Biaxial stretch Motor; 11- Pressure gauge; 12-Electromagnetic relief valve;

    Fig.2 The principle of the axial piston pump reliability

    test rig operation

    Fig.3 Test rig pictures

    The reliability test subjects are A4VS series axial piston pumps that were produced by a domestic enterprise.The nominal rated pressure of A4VS series productions is 35MPa, and the peak pressure is 40MPa.The four samples selected include open circuit hydraulic pump whose displacement is 250ml/r, closed loop hydraulic pump whose displacement is 250ml/r, open circuit hydraulic pump whose displacement is 125ml/r, and closed loop hydraulic pump whose displacement is 125ml/r.

    2.2 Failure detection and judgment

    (2)電解過程中,由于電場作用和離子交換膜限制,陽極室的H+穿過陽膜擴(kuò)散至產(chǎn)品室,原料室的穿過陰膜擴(kuò)散至產(chǎn)品室,H+和H2PO-2在產(chǎn)品室反應(yīng)生成H3PO2

    The volumetric efficiency is selected as the main performance appraisal parameter, in addition, dynamical sealing capacity, outlet pressure oscillation and sealing property are detected during the test. And failure judgment criteria are shown in Table 1.

    Table 1 The failure judgment criteria of hydraulic pump

    2.3 Experimental data processing

    2.3.1 The analysis of experiment result

    The working condition of the hydraulic pump is tested in real time. The life time and failure mode of hydraulic pump are recorded when the performance parameter monitored is below the predetermined index value. The fulfillment of test is shown in Table 2.

    Table 2 The fulfillment of the reliability accelerated life test of hydraulic pump

    2.3.2 The determination of volumetric efficiency degradation path

    The four samples volumetric efficiency degradation data are fitted by using nonlinear least squares, the sum square error of them is selected as the evaluation result. Based on the search strategy in Section 2.3, according to the search strategy in Section 2.3, the original search decision matrix A is established according to Eq.(9), the effects of their weighting assignment could be ignored, which means that λj=1. So normalized matrix B would be got according to Eq.(10).

    (15)

    (16)

    (17)

    According to the relative similarity degree matrix, a conclusion is drawn that the fitting of the performance degradation data and the linear degradation model yi=αit+βiis the best, whose solution most accurately describes the optimal solution, the relative similarity degree is 0.9682. As a result, the linear model is used as the degradation path of hydraulic pump volumetric efficiency, and the model parameters can be obtained by the nonlinear least square method. The model parameters can be obtained from 4 samples.

    y1=-1.255×10-5t+0.9481

    (18)

    y2=-2.4464×10-5t+0.9484

    (19)

    y3=-5.7492×10-5t+0.9607

    (20)

    y4=-1.5222×10-5t+0.9445

    (21)

    Such regulation is formulated that the corresponding test time is the life of the hydraulic pump when the volumetric efficiency of the test sample is reduced to the limit of 87% in the condition of 35MPa. In Fig.4,

    Fig.4 Test sample life estimation

    the horizontal line is the limit value, and the dotted line is the curve of the volumetric efficiency. It is conclued that the volumetric efficiency of hydraulic pump shows a downward trend over time as a whole. The corresponding time of intersection of the degradation path curve and the horizontal line is the life prediction of the hydraulic pump. It is shown in Table 3 that the predicted life of the hydraulic pump, which is the degradation rate of the volumetric efficiency is fitted.

    Table 3 Test sample forecast life data

    3 Hydraulic pump small sample reliability test period optimization

    3.1 Test period optimization search decision matrix

    According to the search strategy of the optimal degradation model and the fitting results, the mean error square and fitting goodness index matrix of the actual degradation data and optimal degradation trajectory in specific timing interval can be acquired, as shown in Table 4.

    Table 4 The minimum sampling period search index

    According to Table 4,the test period constrained optimization search matrix A of the hydraulic pump reliability short-term experiments is established, the effects of their weighting assignment could be ignored, which means that the λj=1. So the normalized matrix B would be got.

    3.2 The minimum sampling period algorithm

    According to matrix of relative degree of approximation, it could be found that fitting precision would be 85.85% when the sampling period reaches 1100 hours, which could meet the requirement of engineering practice. So the minimum sampling period of hydraulic pump reliability short time test as 1100 hours is preliminarily determined.

    The optimal truncated threshold of the performance degradation would be acquired just as shown in Table 5.

    Table 5 The optimal truncation threshold of performance degradation of hydraulic pump reliability short time test

    3.3 Nonparametric tests of the minimum sampling period

    The minimum sampling period is T=1100h by the above calculation. As to the life data from the minimum sampling period method or the complete life test data from the reliability test, its reliability is to be verified by using nonparametric K-S test model. That would assess the accuracy of the minimum sampling period.

    The linear degradation model of four hydraulic pumps Eqs(22)~(25) can be obtained by the data from the former 1100h.Pseudo failure life time of four hydraulic pumps can be calculated by Matlab, just as shown in Table 6.

    y=-1.069×10-5x+0.9454

    (22)

    y=-2.491×10-5x+0.9495

    (23)

    y=-5.116×10-5x+0.9597

    (24)

    y=-1.182×10-5x+0.9428

    (25)

    According to K-S two-sample test method, suppose the small sample life reliability test data acquired is seen as the complete life test data, so distribution function is got, called F(x). And life distribution function that is got by fitting with volumetric efficiency degradation trajectory is called G(x). The null hypothesis is put forward:

    H0: F(x)=G(x)

    (26)

    And corresponding alternative hypothesis:

    H1: F(x)≠G(x)

    (27)

    Table 6 Pseudo failure lifetime of four hydraulic pumps

    Table 7 Analysis of test results

    4 Conclusion

    Hydraulic pump with characteristics of high reliability and long-life is taken as research objects. For hydraulic pump life prediction and reliability test period optimization, the small sample reliability test of the hydraulic pump was carried out, which selected the volumetric efficiency as the main performance appraisal parameter.

    (1) The test period optimize method of the hydraulic pump reliability test is put forward, and test period optimization search strategy for reliability test is built. The optimal truncated threshold of the minimum sampling period and the performance degradation is acquired. Then non-parametric hypothesis test proves that the minimum sampling period is right.

    (2) Through building the model of feature information degradation path sequence, the optimization of degradation path of the hydraulic pump small sample reliability test is determined, and hydraulic pump life is predicted. The results show that performance of hydraulic pump nearly has reached the same level as that abroad.

    (3) The small sample hydraulic pump reliability test rigs based on the energy-saving and power recovery principle are designed and built. And according to the experimental program, two-stage step stress accelerated life test is completed, so a full life test data is got.

    [1] George E Totten, Victor J De Negri.Handbook of Hydraulic Fluid Technology.Florida:CRC Press, 2011. 1-10

    [2] Zhou R S, Jiao Z X, Wang S P. Current research and developing trends on fault diagnosis of hydraulic system. Chinese Journal of Mechanical Engineering, 2006, 42(9):6-14 (In Chinese)

    [3] Elliott C, Vijayakumar V, Zink W, et al. National Instruments LabVIEW: A programming environment for laboratory automation and measurement, Journal of the Association for Laboratory Automation, 2007,12(1): 17-24

    [4] Rawnsley D J, Hummels D M, Segee B E. A virtual instrument bus using network programming. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, 1997, 1: 694-699

    [5] Hubert C G, Mcjames S W, Mecham I, et al. Digital imaging system and virtual instrument Platform for measuring hydraulic conductivity of vascular endothelial monolayers. Mlerovaseular Researeh, 2006,71(2):135-140

    [6] Nakano K, Tanaka Y. Energy saving type electro-hydraulic servo system. Journal Fluid Control, 1988,(3):35-51

    [7] Tanaka Y, Nakano K, Yamamoto N. Energy saving hydraulic power source using inverter-motor drive. In: Proceedings of the 1st JHPS International Symposium on Fluid Power, 2011. 95-102. doi:10.5739/isfp.1989. 95

    [8] Wang S P, Li P Q. Synthetic stress life testing for hydraulic pump. Journal of Beijing Universityof Aeronautics and Astronautics, 2000, 26(1):38-40 (In Chinese)

    [9] Sun Y G. Hydraulic pump reliability test method research. Journal of Civil Aviation Universityof China, 2000, 18(1):6-9 (In Chinese)

    [10] Sun Y G, Xu Y M. Experimental study on hydraulic friction limit value [PV]. Hydraulics Pneumatics & Seals, 1994, (3):9-10 (In Chinese)

    [11] Chen Z N, Wang J G, Yu J H. 25SCY14-1B type axial piston pump failure mechanism research and life improvement. Journal of Shanghai Jiaotong University, 1994, 28(2):31-38 (In Chinese)

    [12] Yu Z Y, Li Z Y, Nie S L. Design on the reliability of ceramic plunger in water hydraulic plunger pump. Journal of Machine Design, 2003, 20(4):12-14 (In Chinese)

    [13] Han Ming. Reliability analysis of a hydraulic pump. Chinese Journal of Mechanical Enigineering, 2002, 38(1): 101-104 (In Chinese)

    [14] Guo R, Zhang M X, Zhao J Y. Fault tree research of hydraulic self-actuated platform vehicle system based on grey theory. Chinese Hydraulics & Pneumatics, 2013, (4):60-63 (In Chinese)

    [15] Zhao J Y, Yao C Y. Hydraulic System Reliability Engineering. Beijing: Machinery Industry Press, 2011. 50-70 (In Chinese)

    [16] Yao C Y, Zhao J Y. Reliability-based design and analysis on hydraulic system for synthetic rubber press. Chinese Journal of Mechanical Engineering, 2005,18(2): 159-162

    Guo Rui, born in 1980. He is currently an associate professor in mechatronic engineering at Yanshan University, China. He received his Ph.D degree from the Department of Mechanical Engineering of Yanshan University, Qinhuangdao, China, in 2010. His research interests include innovative design and reliability of complex electromechanical products.

    10.3772/j.issn.1006-6748.2017.01.009

    ①Supported by the National Natural Science Foundation of China (No. 51405424, 11673040) and the Special Scientific Research Fund of Public Welfare for Quality Inspection (No. 201510202).

    ②To whom correspondence should be addressed. E-mail: guorui@ysu.edu.cn Received on Dec. 29, 2015

    猜你喜歡
    電解陽極電場
    降低回轉(zhuǎn)式陽極爐天然氣爐前單耗的生產(chǎn)實(shí)踐
    化工管理(2022年14期)2022-12-02 11:44:06
    巧用對(duì)稱法 妙解電場題
    浸漬涂布法制備陽極支撐型固體氧化物燃料電池的研究
    輕輕松松學(xué)“電解”
    高強(qiáng)化平行流電解提高A級(jí)銅表面質(zhì)量實(shí)踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    電場強(qiáng)度單個(gè)表達(dá)的比較
    釹在[BMP]Tf2N離子液體中的陽極行為
    電場中六個(gè)常見物理量的大小比較
    海船犧牲陽極陰極保護(hù)設(shè)計(jì)計(jì)算探討
    電解制氫設(shè)備開發(fā)入選“863”
    低溫與特氣(2014年4期)2014-03-20 13:36:50
    岛国视频午夜一区免费看| 国产真实乱freesex| 最好的美女福利视频网| 午夜成年电影在线免费观看| 这个男人来自地球电影免费观看| 日韩 欧美 亚洲 中文字幕| 夜夜躁狠狠躁天天躁| 国产亚洲av嫩草精品影院| 精品久久久久久久久久久久久 | 久久婷婷人人爽人人干人人爱| 精品国内亚洲2022精品成人| 亚洲欧美一区二区三区黑人| 国产主播在线观看一区二区| 18禁观看日本| 看黄色毛片网站| 色综合欧美亚洲国产小说| 这个男人来自地球电影免费观看| 国产精品久久久久久精品电影 | 成人午夜高清在线视频 | 成人亚洲精品av一区二区| 久久精品91无色码中文字幕| 巨乳人妻的诱惑在线观看| 久久久久国产精品人妻aⅴ院| 国产激情偷乱视频一区二区| 午夜激情福利司机影院| 叶爱在线成人免费视频播放| av在线播放免费不卡| 麻豆久久精品国产亚洲av| 久久久久久久久中文| 可以在线观看的亚洲视频| 黄频高清免费视频| 国产成人系列免费观看| 亚洲电影在线观看av| 精品福利观看| 国产黄片美女视频| 一级黄色大片毛片| 一本综合久久免费| 国产熟女xx| 在线播放国产精品三级| 国产精品久久视频播放| 香蕉av资源在线| 韩国精品一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲欧美精品综合久久99| 91国产中文字幕| 草草在线视频免费看| 国语自产精品视频在线第100页| 制服人妻中文乱码| 成人国语在线视频| 丝袜人妻中文字幕| 91成年电影在线观看| 在线永久观看黄色视频| 婷婷精品国产亚洲av| 国产伦在线观看视频一区| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 日韩视频一区二区在线观看| 午夜福利18| 老司机在亚洲福利影院| 真人做人爱边吃奶动态| 成人18禁高潮啪啪吃奶动态图| 久久国产精品人妻蜜桃| 好男人在线观看高清免费视频 | 日日干狠狠操夜夜爽| 美女高潮到喷水免费观看| 久久99热这里只有精品18| 在线观看一区二区三区| 国产精品亚洲美女久久久| 国产又黄又爽又无遮挡在线| 在线观看日韩欧美| 久久久久久久精品吃奶| 国产精品,欧美在线| 久久欧美精品欧美久久欧美| 亚洲国产欧美日韩在线播放| 窝窝影院91人妻| 日本在线视频免费播放| 夜夜夜夜夜久久久久| 一本久久中文字幕| 亚洲国产欧美一区二区综合| 国产精品久久久人人做人人爽| 自线自在国产av| 天天躁夜夜躁狠狠躁躁| 亚洲中文日韩欧美视频| 国产亚洲欧美精品永久| 婷婷丁香在线五月| 欧美成人免费av一区二区三区| 这个男人来自地球电影免费观看| 亚洲熟妇熟女久久| 一区二区日韩欧美中文字幕| 国产成人系列免费观看| 国产高清视频在线播放一区| 夜夜看夜夜爽夜夜摸| 成人欧美大片| 国产激情久久老熟女| 国内精品久久久久久久电影| 99热6这里只有精品| 亚洲成av人片免费观看| 中国美女看黄片| 满18在线观看网站| 淫秽高清视频在线观看| 啦啦啦 在线观看视频| 男人舔奶头视频| 欧美国产精品va在线观看不卡| 欧美大码av| 国产精品久久电影中文字幕| 免费在线观看成人毛片| 午夜免费激情av| cao死你这个sao货| 国产精品av久久久久免费| 色综合站精品国产| 在线观看一区二区三区| 午夜免费成人在线视频| 人人妻人人澡欧美一区二区| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩乱码在线| 欧美av亚洲av综合av国产av| 精品电影一区二区在线| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区免费| 99热6这里只有精品| 国产成人精品久久二区二区91| 久久香蕉国产精品| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久国内视频| 一区二区三区精品91| 亚洲人成电影免费在线| 可以在线观看毛片的网站| 啪啪无遮挡十八禁网站| 亚洲无线在线观看| 亚洲精品美女久久av网站| 一a级毛片在线观看| 国产精品免费一区二区三区在线| 亚洲成av片中文字幕在线观看| 亚洲成av片中文字幕在线观看| 极品教师在线免费播放| 日本免费a在线| 十八禁人妻一区二区| 午夜福利视频1000在线观看| 精品欧美国产一区二区三| 男女视频在线观看网站免费 | 国产精品一区二区三区四区久久 | 亚洲人成电影免费在线| 精品熟女少妇八av免费久了| 国产av又大| www.www免费av| 国产一区二区在线av高清观看| 成人免费观看视频高清| 在线视频色国产色| 日韩中文字幕欧美一区二区| 国产午夜福利久久久久久| 国产午夜福利久久久久久| 一边摸一边做爽爽视频免费| 亚洲一区中文字幕在线| 婷婷精品国产亚洲av| 国产熟女xx| 又黄又粗又硬又大视频| 91麻豆av在线| 好男人在线观看高清免费视频 | 法律面前人人平等表现在哪些方面| 亚洲一区高清亚洲精品| 高清在线国产一区| 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| 日日摸夜夜添夜夜添小说| 人妻丰满熟妇av一区二区三区| 特大巨黑吊av在线直播 | 日日夜夜操网爽| 在线播放国产精品三级| 亚洲人成网站高清观看| 免费观看精品视频网站| 亚洲国产日韩欧美精品在线观看 | 大型av网站在线播放| 久久精品aⅴ一区二区三区四区| 美女午夜性视频免费| 一区二区日韩欧美中文字幕| 一区福利在线观看| 日本 av在线| 午夜福利欧美成人| 国产免费av片在线观看野外av| 亚洲片人在线观看| 啦啦啦免费观看视频1| 国产av在哪里看| 亚洲自拍偷在线| 国产又爽黄色视频| 老汉色∧v一级毛片| 国产精品一区二区精品视频观看| 一级黄色大片毛片| 少妇 在线观看| 亚洲欧美精品综合一区二区三区| 不卡一级毛片| 国产精品影院久久| 国产91精品成人一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲欧美一区二区三区黑人| 免费高清在线观看日韩| 久久久国产精品麻豆| 国产亚洲欧美在线一区二区| 免费高清在线观看日韩| 久久久久久久午夜电影| 视频区欧美日本亚洲| 视频区欧美日本亚洲| av在线天堂中文字幕| 草草在线视频免费看| 日韩精品免费视频一区二区三区| 亚洲av日韩精品久久久久久密| 一本一本综合久久| 亚洲第一电影网av| 色老头精品视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| avwww免费| 亚洲第一青青草原| 久久中文字幕人妻熟女| 又大又爽又粗| 最近在线观看免费完整版| 色综合欧美亚洲国产小说| 亚洲欧美日韩高清在线视频| 欧美精品啪啪一区二区三区| 免费在线观看影片大全网站| 国内少妇人妻偷人精品xxx网站 | 国产激情欧美一区二区| 美女扒开内裤让男人捅视频| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 国产真实乱freesex| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 久久久久国产精品人妻aⅴ院| 亚洲精品国产精品久久久不卡| 亚洲中文字幕一区二区三区有码在线看 | 午夜影院日韩av| 精品国产亚洲在线| 精品不卡国产一区二区三区| 少妇 在线观看| av电影中文网址| 精品国内亚洲2022精品成人| www.熟女人妻精品国产| 淫妇啪啪啪对白视频| 国产熟女xx| 亚洲 国产 在线| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美三级三区| 一进一出好大好爽视频| 亚洲av美国av| 国产黄色小视频在线观看| www.www免费av| 国产精华一区二区三区| 亚洲免费av在线视频| 精品久久久久久久久久久久久 | 精品高清国产在线一区| 国产亚洲精品一区二区www| 国产在线精品亚洲第一网站| 男女那种视频在线观看| 国产成人av激情在线播放| 我的亚洲天堂| 久久久久国产精品人妻aⅴ院| 女人高潮潮喷娇喘18禁视频| a级毛片a级免费在线| 香蕉丝袜av| 中亚洲国语对白在线视频| 一本久久中文字幕| 美女扒开内裤让男人捅视频| 成年版毛片免费区| 丝袜在线中文字幕| 国产一区在线观看成人免费| 亚洲熟妇中文字幕五十中出| 亚洲av成人av| 一夜夜www| 久9热在线精品视频| 女人被狂操c到高潮| 国产精品电影一区二区三区| 国产精品国产高清国产av| 此物有八面人人有两片| 搡老岳熟女国产| 欧美午夜高清在线| 91成年电影在线观看| 亚洲五月天丁香| 最新在线观看一区二区三区| 波多野结衣巨乳人妻| 欧美性长视频在线观看| 悠悠久久av| 久久99热这里只有精品18| 欧美黄色片欧美黄色片| or卡值多少钱| 两性夫妻黄色片| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 免费在线观看影片大全网站| 伊人久久大香线蕉亚洲五| 午夜a级毛片| 亚洲自拍偷在线| av欧美777| 在线天堂中文资源库| 黄频高清免费视频| 中文字幕精品亚洲无线码一区 | 欧美 亚洲 国产 日韩一| 一级a爱视频在线免费观看| 亚洲国产精品999在线| 国产精品av久久久久免费| 给我免费播放毛片高清在线观看| 国产高清有码在线观看视频 | 波多野结衣高清无吗| 99热只有精品国产| 两个人视频免费观看高清| tocl精华| 久久午夜综合久久蜜桃| 日本在线视频免费播放| 欧美精品啪啪一区二区三区| 亚洲熟女毛片儿| 少妇粗大呻吟视频| 国产不卡一卡二| 亚洲av成人av| 精品电影一区二区在线| 国产高清视频在线播放一区| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久毛片微露脸| 日本一区二区免费在线视频| √禁漫天堂资源中文www| 国产亚洲精品综合一区在线观看 | 91大片在线观看| 国产亚洲精品综合一区在线观看 | 成人av一区二区三区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲无线在线观看| tocl精华| 亚洲欧洲精品一区二区精品久久久| 激情在线观看视频在线高清| 久久久久久免费高清国产稀缺| 此物有八面人人有两片| 日韩欧美三级三区| 人成视频在线观看免费观看| e午夜精品久久久久久久| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 少妇被粗大的猛进出69影院| 亚洲av熟女| 后天国语完整版免费观看| 亚洲成国产人片在线观看| 亚洲av成人一区二区三| 成人国产一区最新在线观看| 91麻豆精品激情在线观看国产| 18禁黄网站禁片免费观看直播| 午夜福利一区二区在线看| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 人妻久久中文字幕网| 午夜福利成人在线免费观看| 国产亚洲欧美98| 精品久久久久久成人av| 国产亚洲精品综合一区在线观看 | 国产色视频综合| 日本在线视频免费播放| netflix在线观看网站| 757午夜福利合集在线观看| 欧美亚洲日本最大视频资源| 波多野结衣高清作品| 国产亚洲精品久久久久5区| 桃红色精品国产亚洲av| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 免费观看精品视频网站| 九色国产91popny在线| 免费无遮挡裸体视频| av欧美777| 国产精品爽爽va在线观看网站 | aaaaa片日本免费| 国产久久久一区二区三区| 久久精品亚洲精品国产色婷小说| 婷婷精品国产亚洲av在线| 露出奶头的视频| 成人免费观看视频高清| 男女视频在线观看网站免费 | 久久天躁狠狠躁夜夜2o2o| 一级片免费观看大全| e午夜精品久久久久久久| 亚洲 欧美一区二区三区| 国产熟女xx| 老熟妇乱子伦视频在线观看| 97碰自拍视频| 两个人视频免费观看高清| 91麻豆av在线| 99国产精品一区二区三区| 悠悠久久av| 美女高潮到喷水免费观看| 一进一出抽搐动态| 日日爽夜夜爽网站| 亚洲全国av大片| 美女高潮喷水抽搐中文字幕| 日韩大码丰满熟妇| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩瑟瑟在线播放| 少妇被粗大的猛进出69影院| www.www免费av| 欧洲精品卡2卡3卡4卡5卡区| 欧美绝顶高潮抽搐喷水| 搡老岳熟女国产| 日韩av在线大香蕉| 99热6这里只有精品| 亚洲在线自拍视频| 美女国产高潮福利片在线看| 午夜影院日韩av| 午夜免费观看网址| 中国美女看黄片| 国产成人啪精品午夜网站| 免费无遮挡裸体视频| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 国产熟女xx| 波多野结衣av一区二区av| 亚洲av日韩精品久久久久久密| 久久久精品国产亚洲av高清涩受| 国产激情欧美一区二区| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 国产极品粉嫩免费观看在线| 99精品在免费线老司机午夜| 白带黄色成豆腐渣| 天天躁狠狠躁夜夜躁狠狠躁| 免费观看人在逋| 91麻豆av在线| 老司机深夜福利视频在线观看| 97人妻精品一区二区三区麻豆 | 免费搜索国产男女视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久人人人人人| 久久中文看片网| 亚洲aⅴ乱码一区二区在线播放 | 最近最新中文字幕大全免费视频| 亚洲第一欧美日韩一区二区三区| 男男h啪啪无遮挡| 午夜福利欧美成人| 国产亚洲av嫩草精品影院| 亚洲欧洲精品一区二区精品久久久| 日本免费一区二区三区高清不卡| 亚洲精品中文字幕一二三四区| 男女那种视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲成人国产一区在线观看| 国产视频一区二区在线看| 麻豆成人av在线观看| 久久久久久久久久黄片| 香蕉国产在线看| 中文字幕av电影在线播放| av中文乱码字幕在线| 亚洲五月天丁香| 午夜免费鲁丝| 日本免费一区二区三区高清不卡| cao死你这个sao货| 高清在线国产一区| 亚洲一区二区三区色噜噜| 亚洲狠狠婷婷综合久久图片| 一卡2卡三卡四卡精品乱码亚洲| 国产高清视频在线播放一区| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 日韩一卡2卡3卡4卡2021年| 天天一区二区日本电影三级| 国产一卡二卡三卡精品| 欧美色视频一区免费| 国产伦在线观看视频一区| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 亚洲熟妇中文字幕五十中出| 欧美黄色淫秽网站| 精品不卡国产一区二区三区| 国产一区二区在线av高清观看| 国产精品亚洲av一区麻豆| 国语自产精品视频在线第100页| 亚洲最大成人中文| 91字幕亚洲| 成人亚洲精品一区在线观看| 成人三级做爰电影| 亚洲精品在线美女| 91av网站免费观看| 国产成人av激情在线播放| 亚洲真实伦在线观看| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 精华霜和精华液先用哪个| 久9热在线精品视频| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 91麻豆av在线| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利视频1000在线观看| 香蕉久久夜色| 亚洲久久久国产精品| 性欧美人与动物交配| 18禁观看日本| 最近最新免费中文字幕在线| 美国免费a级毛片| 亚洲,欧美精品.| 女人被狂操c到高潮| 好男人电影高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 首页视频小说图片口味搜索| 欧美亚洲日本最大视频资源| av超薄肉色丝袜交足视频| 久久 成人 亚洲| 国产av一区二区精品久久| 两人在一起打扑克的视频| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 日韩大尺度精品在线看网址| www日本黄色视频网| 午夜老司机福利片| 国产亚洲av高清不卡| 国产精品av久久久久免费| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 国产不卡一卡二| 三级毛片av免费| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 国产v大片淫在线免费观看| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 久久热在线av| 大型黄色视频在线免费观看| av超薄肉色丝袜交足视频| 色综合婷婷激情| www.999成人在线观看| 国产精品久久电影中文字幕| 精品人妻1区二区| 青草久久国产| 99国产精品一区二区三区| 黄色视频,在线免费观看| 老司机福利观看| 黄色 视频免费看| 国产精品九九99| 亚洲在线自拍视频| 日韩欧美一区二区三区在线观看| 国产视频内射| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影| 在线观看舔阴道视频| 久久久久久大精品| 91老司机精品| 两个人免费观看高清视频| 国产激情久久老熟女| 一a级毛片在线观看| 91麻豆av在线| 一级a爱视频在线免费观看| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 欧美成人性av电影在线观看| 一本大道久久a久久精品| 日韩欧美免费精品| 91在线观看av| 天堂√8在线中文| 亚洲第一电影网av| 精品国产一区二区三区四区第35| 三级毛片av免费| 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 欧美日韩精品网址| 久久久久久久精品吃奶| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久久久99蜜臀| 亚洲欧洲精品一区二区精品久久久| 久久精品夜夜夜夜夜久久蜜豆 | 在线视频色国产色| 亚洲欧美激情综合另类| 亚洲成人久久性| 麻豆国产av国片精品| 女同久久另类99精品国产91| 久久中文字幕一级| 亚洲av成人一区二区三| 久久久久久大精品| 一区二区三区国产精品乱码| 长腿黑丝高跟| 淫妇啪啪啪对白视频| 国产私拍福利视频在线观看| 高清在线国产一区| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产色视频综合| 亚洲一区二区三区色噜噜| 91国产中文字幕| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| 搡老熟女国产l中国老女人| 久久久精品欧美日韩精品| 久久久久久久久中文| 午夜福利免费观看在线| 精品国内亚洲2022精品成人| 深夜精品福利| 欧美久久黑人一区二区| 亚洲av成人av| 国产精品野战在线观看| 琪琪午夜伦伦电影理论片6080| 99精品在免费线老司机午夜| 亚洲精品美女久久久久99蜜臀| 久久热在线av| 99精品欧美一区二区三区四区| 国产精品一区二区免费欧美| 亚洲第一青青草原| 中文在线观看免费www的网站 | 18禁观看日本| 在线看三级毛片| 美女大奶头视频| svipshipincom国产片| 久久精品国产清高在天天线| 一本精品99久久精品77| 精品乱码久久久久久99久播| 制服人妻中文乱码| 国产精品,欧美在线| 精品久久久久久久久久免费视频| 色综合站精品国产| 黑人操中国人逼视频| 搡老妇女老女人老熟妇|