• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Depolymerization Process of Polymeric Proanthocyanidins from the Barks of Pinuskesiya var. langbianensis

    2017-03-27 02:58:51LiNaJiangYongxinLiMeijuanLuoXuluLiuYunKanHuanZhangJiayanZhaoPing
    林業(yè)科學(xué) 2017年2期
    關(guān)鍵詞:思茅松林業(yè)大學(xué)樹皮

    Li Na Jiang Yongxin Li Meijuan Luo Xulu Liu Yun Kan Huan Zhang Jiayan Zhao Ping

    (1.Southwest Forestry University Yunnan Key Laboratory of Wood Adhesives and Glue Products Kunming 650224; 2.Southwest Forestry University Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China,Ministry of Education Kunming 650224; 3.College of Materials Engineering,Southwest Forestry University Kunming 650224)

    ?

    Optimization of Depolymerization Process of Polymeric Proanthocyanidins from the Barks ofPinuskesiyavar.langbianensis

    Li Na1,2Jiang Yongxin1,2Li Meijuan1,3Luo Xulu1,2Liu Yun2Kan Huan2Zhang Jiayan3Zhao Ping1,2

    (1.SouthwestForestryUniversityYunnanKeyLaboratoryofWoodAdhesivesandGlueProductsKunming650224; 2.SouthwestForestryUniversityKeyLaboratoryforForestResourcesConservationandUseintheSouthwestMountainsofChina,MinistryofEducationKunming650224; 3.CollegeofMaterialsEngineering,SouthwestForestryUniversityKunming650224)

    【Objective】 (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate (1) was found to be the main depolymerized product of polymeric proanthocyanidins (PPC) from the pine barks with tea polyphenols (TP), and showed higher DPPH and ABTS+radical scavenging activities than both PPC and TP. In order to provide the basis for further development and utilization of depolymerized product of PPC, the objective of this study was to optimize the depolymerization process of PPC from the barks ofPinuskesiyavar.langbianensiswith TP, by using the content of 1 as an evaluation indicator. 【Method】The content of compound 1 in reacted solution was analyzed by HPLC, and the effects of reaction temperature (50-90 ℃), reaction time (30-180 min), HCl concentration (0.1%-5%) and TP/PPC ratio (1∶3-3∶1,w/w) on the content of 1 were investigated by single factor experiments. The depolymerization process was optimized using response surface methodology, at a five-level, four-variable experiment central composite rotatable design. Using the content of 1 as response, and above four factors as variables, the twenty-eight experiments were conducted to analyze the response pattern and to establish model for reaction process. The responses obtained from the experimental design set were subjected to multiple nonlinear regression using Design-Expert V8.0.6 software to obtain the coefficients of the second-polynomial model, and its statistical significance was evaluated by variance analysis. 【Result】 The reaction temperature, HCl concentration and TP/PPC ratio strongly affects the content of 1 in the depolymerization reaction. The regression model was very significant (P<0.000 1) with a good coefficient (R2=0.952 6), suggesting that the proposed experimental design was suitable to analysis and to predict the simulation of 1. The optimum depolymerization conditions were as follows: reaction temperature 70 ℃, reaction time 60 min, HCl concentration 1%, and TP/PPC ratio 3∶2. Under the above-mentioned conditions, the experimental content of 1 was 718.57 nmol·mL-1, which was well matched with the predicted content (721.39 nmol·mL-1). 【Conclusion】 It was feasible to use response surface method to optimize the depolymerization process of PPC from the barks of P.kesiyavar.langbianensiswith TP for the production of 1.Key words:Pinuskesiyavar.langbianensisbark; (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate; polymeric proanthocyanidins; depolymerization; response surface methodology

    Proanthocyanidins consisting of elementary flavan-3-ol units could be divided into oligomeric proanthocyanidins (OPC) and polymeric proanthocyanidins (PPC). Its physicochemical and biological features depend largely on their structures, particularly on the degree of polymerization (Ursinietal., 2001; Kolodziejetal., 2005). Naturally occurring proanthocyanidins are complicated mixtures of PPC with large molecular sizes, regarded as not being readily absorbed through the intestines. On the other hand, flavan-3-ol monomers, dimers and trimers can be readily transported through a layer of colonic carcinoma cells (Deprezetal., 2001; Holtetal., 2002). Moreover, lower molecular weight OPC showed much stronger bioactivities than both flavan-3-ol monomers and PPC (Maoetal., 2002; Erlejmanetal., 2004). Therefore, it would be beneficial to develop an available source of OPC from PPC by depolymerization process.

    In the past few years, the depolymerization of PPC with the user-friendly nucleophiles, such as phloroglucinol, and L-cysteine have been developed in an attempt to obtain new flavan-3-ol conjugates with more potent antioxidant activity (Kennedyetal., 2001; Mitjansetal., 2004; Liuetal., 2013).However, it is questionable as to whether the products resulting from the depolymerization process that used aqueous methanol as reaction solution are suitable to be utilized as food supplement. Tanakaetal. (2007) reported (-)-epicatechin-(4β-8)-(-)-epigallocatechin 3-O-gallate (1) from the depolymerized products ofArecaPPC with (-)-epigallocatechin 3-O-gallate, without using special chemical reagent. Our group also used the tea polyphenols (TP) to react with several PPCs from different plant origins, only in an acidic water solution. As the result, the depolymerized products showed higherinvivoanti-ROS activities than their corresponding PPC (Lietal., 2014). Compound 1 was found to be the main depolymerized product of PPC from pine barks (Jiangetal., 2013), and showed higher DPPH and ABTS+radical scavenging activities than both PPC and TP (Lietal., 2015).However, there is still a lack of information regarding to optimal conditions for the production of 1. This study is to assess the optimal conditions in terms of reaction temperature and time, HCl concentration, and appropriate TP/PPC ratio for the production of 1 in depolymerization process of the PPC from the barks ofP.kesiyavar.langbianensisby using response surface methodology (RSM) (Bashietal., 2012; Albertietal., 2014).

    1 Materials and methods

    1.1 Materials

    PPC with a purity of 98% for proanthocyanidins was prepared from the barks ofP.kesiyavar.langbianensisin our laboratory previously (Lietal., 2015), and TP was purchased from Tangren Biological Technology Development Co. LTD (Honghe, Yunnan, China). All materials were stored in 4 ℃ until use.1.2 Chemicals and solvents

    Compound 1 with a purity of 99% was isolated from the depolymerized products of PPC from the barks ofP.kesiyavar.langbianensiswith TP, and its structure was identified on the basis of spectroscopic analysis, including MS,1H and13C NMR, and comparison with literature data (Lietal., 2015). Water was purified in a Milli-Q (Millipore, America), and acetonitrile (CH3CN) with HPLC grade was purchased from Merck (Darmstadt, FR, Germany). The other chemicals and solvents used were of analytical grade.

    1.3 HPLC analysis of 1

    Analytical HPLC was operated on a Agilent 1200 series separation module combined with the accessory of the Agilent G1315D diode array detector (Agilent, America), using an Agilent Analytical Eclipse XDB-C18column (4.6 mm × 150 mm, i.d., 5 m). The mobile phase was composed of solvent A (H2O, 0.34% H3PO4) and solvent B (CH3CN, 0.34% H3PO4). All solutions were degassed in an ultrasonic bath and filtered through a hydrophilic polypropylene membrane before use. The following gradient was applied: 4%-25% B (0-15 min), 25%-90% B (15-18 min), 90%-95% B (18-20 min), followed by an isocratic run at 95% B (4 min) and reconditioning of the column (4% of B, 5 min). The flow rate of the mobile phase was 1.0 mL·min-1, the detection wavelength was set to 280 nm, and analysis was carried out at 30 ℃.

    Standard stock solution of 1 (4.5 mg·mL-1) in methanol were prepared immediately, and standard working solutions used for the calibration were prepared by diluting the standard stock solution with methanol to the desired concentrations. Good linearity of the calibration curve for the 1 was achieved with correlation coefficient of 0.999 8, and the results were expressed as nmol·mL-1of 1. An aliquot (1 mL) of the reaction solution was filtered through a 0.45 μm syringe filter, and 10 μL of the sample were injected to HPLC analysis.

    1.4 Effect of reaction temperature on the content of 1

    Five centrifuge tubes (1.5 mL), each containing 100 μL of PPC (10 mg·mL-1), 100 μL of TP (10 mg·mL-1) and 800 μL of 1% HCl were kept in water bath for 30 min at 50, 60, 70, 80 and 90 ℃, respectively. Then, the reaction mixture was applied to HPLC analysis. The resulted reaction temperature with the highest content of 1 was fixed for the next experimental step.

    1.5 Effect of reaction time on the content of 1

    The same mixture of PPC (10 mg·mL-1), TP (10 mg·mL-1) and 1% HCl as mentioned above, in five centrifuge tubes (1.5 mL) were kept in water bath at 60 ℃ for 30, 60, 90, 120 and 180 min, respectively. After the HPLC analysis, the reaction time with the highest content of 1 was fixed for the next step.

    1.6 Effect of HCl concentration on the content of 1

    To five centrifuge tubes (1.5 mL), each containing 100 μL of PPC (10 mg·mL-1) and 100 μL of TP (10 mg·mL-1), 800 μL of HCl with different concentration of 0.1%, 0.2%, 0.5%, 1%, 2% and 5% were added, respectively. The reaction mixtures were kept in water bath at 60 ℃ for 90 min. After the HPLC analysis, the HCl concentration with the highest content of 1 was fixed for the next experiment.

    1.7 Effect of TP/PPC ratio on the content of 1

    Five different TP (10 mg · mL-1) and PPC (10 mg · mL-1) ratios of 1∶3, 1∶2, 1∶1, 2∶1 and 3∶1 (each 200 μL) were added respectively to five centrifuge tubes (1.5 mL), containing 800 μL of 2% HCl. Then, the reaction mixtures were kept in water bath at 60 ℃ for 90 min. After the HPLC analysis, the TP/PPC ratio with the highest content of 1 was fixed for the next experiment.

    1.8 Experimental design

    A five-level, four-variable central composite rotatable design (CCRD) was employed for optimization with respect to four important variables, the reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D). The variables and their levels investigated in this study are represented in
    Tab. 1.

    Tab. 1 Variables and their levels employed in a CCRD

    The independent variables and their ranges were chosen, based on preliminary experiment results. A second-order quadratic equation was then fitted to the data by multiple regression procedure. For a four-factor system, the model equation is:

    (1)

    WhereYis the content of 1 response (nmol·mL-1), predicted response;β0,is the intercept;β1,β2,β3,β4, are linear coefficients;β12,β13,β14,β23,β24,β34,interactions coefficients;β11,β22,β33,β44,are squared coefficients.
    Tab.2 lists the actual experimental parameters corresponding to the designed levels. The twenty-eight experiments were conducted to analyze the response pattern and to establish model for reaction process. All experiments were carried out randomly. Six replicates (treatments 23-28) of the design were used to allow for estimation of a pure error sum of squares. Regression analysis was performed on the data of the content of 1.

    The responses obtained from the experimental design set (
    Tab.2) were subjected to multiple nonlinear regression using Design-Expert V8.0.6 software, to obtain the coefficients of the second- polynomial model. The quality of the fit of the polynomial model equation was expressed by the coefficient of determinationR2, and its statistical significance was checked by anF-test. The significance of the regression coefficient was tested by at-test.

    1.9 Statistical analysis

    All determinations were carried out in triplicate, and the experimental results obtained were expressed as means ± SD. Statistical analysis was performed by using Design-Expert V8.0.6 software. Data were analyzed by analysis of variance, and the mean values were considered significantly different whenP<0.05. The optimal extraction conditions were estimated through three-dimensional response surface analyses of the four independent variables and each dependent variable.

    2 Results and discussion

    2.1 Effects of reaction temperature, reaction time, HCl concentration and TP/PPC ratio on the content of 1

    The effect of reaction temperature on content of 1 is presented in
    Fig.1a. When temperature increased from 50 to 60 ℃, the content of 1 increased from 300.98 to 552.37 nmol·mL-1. However, when reaction temperature exceeded 60 ℃, the content of 1 decreased sharply, to only 130.99 nmol·mL-1at 90 ℃. The content of 1 was investigated with fixed reaction temperature (60 ℃) at different reaction time (
    Fig.1b). A significant increase of 1 content was observed before 90 min, and the maximum content of 1 (582.40 nmol·mL-1) was observed at 60 ℃ in 90 min.

    The effects of different HCl concentrations on content of 1 with fixed reaction temperature (60 ℃) and time (90 min) are shown in
    Fig.1c. Concentration of HCl that resulted in improved content of 1 included 0.1%, 0.2%, 0.5% and 1%. No further content enhancement was gained at 5% of HCl concentration. The highest yield of 1 is obtained at 2% HCl, with a content of 727.73 nmol·mL-1at 60 ℃ in 90 min.
    Fig.1d shows the effect of TP/PPC ratio on the content of 1. A significant increase of 1 was observed over the TP/PPC ratio range of 1∶3-1∶1, and the content of 1 reached a maximum of 545.00 nmol·mL-1at 1∶1.

    Fig.1 Effects of reaction temperature (a), reaction time (b), HCl concentration (c), and TP/PPC ratio (d) on the content of 1The line graph represents the standard deviation (n=3). Values marked by the same letters are not significantly different (P<0.05).

    2.2 Optimization of reaction conditions

    Based on the investigation of the effects of reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D) on content of 1, these variables were considered in the experimental design. To optimize the depolymerization process of PPC with TP, a reaction temperature of 60 ℃, reaction time of 90 min, HCl concentration of 2%, and TP/PPC ratio of 1∶1 were chosen as the central condition of the CCRD.


    Tab.2 shows the experimental conditions and the results of reactions, according to the factorial design. The second-order regression model relating to the content of 1, with the independent variables of A, B, C and D, is as follows:

    (2)

    The content of 1 obtained was considered as the dependent variables or responseY. For testing the fit of the model, the regression equation and coefficient (R2) were evaluated. The model presented a high determination coefficient (R2=0.952 6), explaining 95.26% of the variables, and the reaction temperature (A), reaction time (B), HCl concentration (C) and TP/PPC ratio (D) were supported by the response. The closer the value ofR2to unity, the better was the empirical model fits for the actual data. A value greater than 0.75 indicates aptness of the model, suggesting that the proposed experimental design was suitable for the simulation of 1. The ANOVA of quadratic regression model demonstrated that the model was highly significant. Values of “Prob>F” less than 0.050 0 indicate that model terms are significant. In this case, A, C, D, AB, AC, BC and A2are significant terms.

    Tab. 2 Experimental design of five-level, four-variable CCRD①

    ①Data are expressed as the mean (n=3) ± SD.

    The studentt-distribution and the correspondingP-values, along with the second-order polynomial coefficient, were evaluated. The significance of each coefficient was determined byt-values andP-values. The pattern of interactions between the variables was indicated by these coefficients, whereas the others can be neglected and eliminated from the model. Larger magnitude oft-value and smallerP-value indicate the high significance of the corresponding coefficient. Thet-test andP-values for the linear, quadratic, and interactive terms are shown in
    Tab.3.

    Tab. 3 Variance analysis for the second-order content of 1①

    ①A: Reaction temperature (℃); B: Reaction time (min); C: HCl concentration (%); D: TP/PPC ratio. df: Degree of freedom.

    To determine optimal levels of the variables for the depolymerization process, three-dimensional surface plots were constructed, according to Eq. (2).
    Fig.2 shows the effect of reaction temperature and reaction time on the content of 1. The content of 1 increased rapidly with the increase of temperature at a fixed reaction time, and nearly reached a peak at the highest temperature tested. Similarly, the increase in reaction time at a fixed reaction temperature led to a gradual increase in content of 1, and reached to a maximum at the longest reaction time tested. The effect of reaction temperature and HCl concentration shown in
    Fig.3 demonstrated that 1 increased slowly with the increase of temperature at a fixed HCl concentration, while an increase in HCl concentration at a fixed temperature also led to a marked increase in content of 1.
    Fig.4 reflects the effect of reaction time and HCl concentration on the depolymerization process. The content of 1 increased slowly with the increase of reaction time at a fixed HCl concentration, and an obvious increase of 1 with the increase of HCl concentration at a fixed time was observed.

    Fig.2 3D response surface plot showing the effect of reaction temperature (℃) and reaction time (min) on the content of 1

    Fig.4 3D response surface plot showing the effect of reaction time (min) and HCl concentration (%) on the content of 1

    The optimal conditions obtained using the model were as the follows: 70 ℃ of reaction temperature, 60 min of reaction time, 1% of HCl concentration, and 3∶2 of TP/PPC ratio. Under optimal conditions, the model predicted a maximum response of 721.39 nmol·mL-1of 1. To compare the predicted result with the practical value, experimental rechecking was performed using this deduced optimal condition. A mean value of 718.57 nmol·mL-1of 1 obtained from real experiments validated the RSM model. The good correlation between these results confirmed that the response model was adequate to reflect the expected optimization.

    3 Conclusion

    This present study indicates that depolymerization process can be a good method of depolymerizing PPC from the barks ofP.kesiyavar.langbianensisinto 1. The reaction temperature, HCl concentration and TP/PPC ratio strongly affects the content of 1, a principal product in the depolymerization reaction. The optimal conditions obtained by RSM under depolymerization process include the following parameters: reaction temperature, 70 ℃; reaction time, 60 min; HCl concentration, 1%; and TP/PPC ratio, 3∶2.

    Reference

    Alberti A, Zielinski A A F, Zardo D M,etal. 2014. Optimatisation of the extraction of phenolic compounds from apples using response surface methodology. Food Chem, 149: 151-158.

    Bashi D S, Mortazavi S A, Rezaei K,etal. 2012. Optimization of ultrasound-assisted extraction of phenolic compounds from Yarrow (Achilleabeibrestinii) by response surface methodology. Food Sci Biotechnol, 21(4): 1005-1011.

    Deprez S, Mila I, Huneau J F,etal. 2001. Transport of proanthocyanidin dimmer, trimer, and polymer across monolayer of human intestinal epitherial Caco-2 cells. Antioxid Redox Signal, 3(6): 957-967.

    Erlejman A G, Verstraeten S V, Fraga C G,etal. 2004. The interaction of flavonoids with menbranes: potential determinant of flavonoid antioxidant effects. Free Radic Res, 38(12): 1311-1320.

    Holt R R, Lazarus S A, Sullards M C,etal. 2002. Procyanidin dimer B2[epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of flavanol-rich cocoa. Am J Clin Nutr, 76(4): 798-804.

    Jiang Y X, Zhu H T, Wang J M,etal. 2013. LC-ESI-MS Analysis of fragmentive products of pine bark proanthocyanidins. Chem Indus Forest Prod, 33(4): 117-120. [in Chinese]

    Kennedy J A, Jones G P. 2001. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem, 49(4): 1740-1746.

    Kolodziej H, Kiderlen A F. 2005. Antileishmanial activity and immune modulatory effects of tannins and related compounds onLeishmaniaparasitized. Phytochemistry, 66(17): 2056-2071.

    Li M J, Lao Q C, Jiang Y X,etal. 2014.Invivoanti-ROS activities of the fragmentive products of several proanthocyanidins. J West China Forestry Sci, 43(1): 99-103. [in Chinese]

    Li N, Dan H L, Jiang Y X,etal. 2015. Identification and activities of the fragmented product of polymeric proanthocyanidins from pine barks. J West China Forestry Sci, 44(5): 76-80. [in Chinese]

    Liu H W, Zou T, Gao J M, et al. 2013. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers. Food Chem, 141(1): 488-494.

    Mao T K, Van De Water J, Keen C L,etal. 2002. Effect of cocoa flavanols and their related oligomers on the secretion of interleukin-5 in peripheral blood mononuclear cells. J Med Food, 5(1): 17-22.

    Mitjans M, Del Campo J, Abajo C,etal. 2004. Immunomodulatory activity of a new family of antioxidants obtained from grape polyphenols. J Agric Food Chem, 52(24): 7297-7299.

    Tanaka T, Yoshitake N, Zhao P,etal. 2007. Production of oligomeric proanthocyanidins by fragmentation of polymers. Jpn J Food Chem, 14(3): 134-139.

    Ursini F, Rapuzzi I, Toniolo R,etal. 2001. Characterization of antioxidant effect of procyanidins. Method Enzymol, 335: 338-350.

    (責(zé)任編輯 石紅青)

    思茅松樹皮多聚原花青素降解優(yōu)化*

    李 娜1,2姜永新1,2李美娟1,3羅旭璐1,2劉 云2闞 歡2張加研3趙 平1,2

    (1.西南林業(yè)大學(xué) 云南省木材膠黏劑及膠合制品重點(diǎn)實(shí)驗(yàn)室 昆明 650224; 2. 西南林業(yè)大學(xué) 西南山地森林資源保育與利用省部共建教育部重點(diǎn)實(shí)驗(yàn)室 昆明 650224; 3. 西南林業(yè)大學(xué)材料工程學(xué)院 昆明 650224)

    【目的】 以基于茶多酚的思茅松樹皮多聚原花青素降解反應(yīng)中(-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素 3-O-沒食子酸酯(化合物1)的含量作為評(píng)價(jià)指標(biāo),確定思茅松樹皮多聚原花青素的最佳降解條件,為思茅松樹皮多聚原花青素降解產(chǎn)物的進(jìn)一步開發(fā)利用提供基礎(chǔ)?!痉椒ā?采用HPLC定量分析方法測定各反應(yīng)溶液中化合物1的含量,通過單因素試驗(yàn)考察反應(yīng)溫度(50~90 ℃)、反應(yīng)時(shí)間(30~180 min)、鹽酸濃度(0.1%~5%)和茶多酚/多聚原花青素比率(1∶3~3∶1,w/w)對(duì)化合物1生成的影響。采用4因素5水平中心組合旋轉(zhuǎn)設(shè)計(jì)的響應(yīng)面法優(yōu)化其降解條件,以化合物1的含量為響應(yīng)值,以上述4個(gè)因素為自變量,利用Design-Expert V8.0.6軟件對(duì)28個(gè)試驗(yàn)點(diǎn)測定所得數(shù)據(jù)進(jìn)行多元非線性分析,建立回歸模型,并通過方差分析對(duì)模型進(jìn)行顯著性檢測?!窘Y(jié)果】 反應(yīng)溫度、鹽酸濃度和茶多酚/多聚原花青素比率明顯影響降解反應(yīng)中化合物1的生成,建立的回歸模型極顯著(P<0.000 1),且線性系數(shù)良好(R2=0.952 6),說明建立的數(shù)學(xué)模型能較好地描述試驗(yàn)結(jié)果,可用于分析和預(yù)測化合物1的生成。思茅松樹皮多聚原花青素的最佳降解條件為反應(yīng)溫度70 ℃、反應(yīng)時(shí)間60 min、鹽酸濃度1%和茶多酚/多聚原花青素比率3∶2。經(jīng)驗(yàn)證此條件下反應(yīng)液中化合物1的濃度可達(dá)718.57 nmol·mL-1,與理論值(721.39 nmol·mL-1)較為接近?!窘Y(jié)論】 采用中心組合旋轉(zhuǎn)設(shè)計(jì)的響應(yīng)面法分析優(yōu)化思茅松樹皮多聚原花青素降解以獲取主產(chǎn)物(-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素 3-O-沒食子酸酯的方法可行。

    思茅松樹皮; (-)-表兒茶素-(4β-8)-(-)-表沒食子兒茶素3-O-沒食子酸酯; 多聚原花青素; 降解; 響應(yīng)面法

    TQ351.5

    A

    1001-7488(2017)02-0110-07

    10.11707/j.1001-7488.20170213

    Received date: 2015-11-11; Revised date: 2016-03-03.

    Funding Project: National Natural Science Foundation of China(31260163); Yunnan Provinical Department of Education Research Fund(ZD2010006).

    *Zhao Ping is corresponding author.

    猜你喜歡
    思茅松林業(yè)大學(xué)樹皮
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    窗下的樹皮小屋
    氣象因子和坡向?qū)λ济┧僧a(chǎn)脂量的影響1)
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    氣象因子和坡向?qū)λ济┧僧a(chǎn)脂量的影響1)
    咦,動(dòng)物們都說愛樹皮
    樹葉和樹皮
    不同基質(zhì)配比對(duì)思茅松多穴盤幼苗生長的影響
    一a级毛片在线观看| 国产精品永久免费网站| 在线观看舔阴道视频| 精品一区二区三区av网在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲精品久久国产高清桃花| 亚洲一码二码三码区别大吗| 免费观看人在逋| 51午夜福利影视在线观看| 久久人妻熟女aⅴ| 久久久精品欧美日韩精品| 免费高清在线观看日韩| 久久人妻熟女aⅴ| 色精品久久人妻99蜜桃| 一级作爱视频免费观看| 国产亚洲欧美98| 亚洲国产中文字幕在线视频| av电影中文网址| 国产高清有码在线观看视频 | av天堂在线播放| 日韩欧美三级三区| 麻豆av在线久日| www国产在线视频色| 亚洲av片天天在线观看| 亚洲成人久久性| 国产精品久久久人人做人人爽| 天堂√8在线中文| 最近最新免费中文字幕在线| 欧美国产日韩亚洲一区| 国产精品1区2区在线观看.| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 亚洲avbb在线观看| 欧美性长视频在线观看| 国产xxxxx性猛交| 美女高潮到喷水免费观看| 久久久久国内视频| www.精华液| 欧美性长视频在线观看| 国产一区在线观看成人免费| 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 69av精品久久久久久| 少妇的丰满在线观看| netflix在线观看网站| ponron亚洲| 免费av毛片视频| 色播亚洲综合网| 欧美成人免费av一区二区三区| 午夜福利影视在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 欧美国产精品va在线观看不卡| 亚洲美女黄片视频| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 成人av一区二区三区在线看| 黄色视频不卡| 亚洲人成伊人成综合网2020| 久久精品国产综合久久久| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 国产精品久久视频播放| 多毛熟女@视频| 成人国产综合亚洲| 日韩精品免费视频一区二区三区| 满18在线观看网站| 成人18禁在线播放| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久 | 中文字幕人妻熟女乱码| 精品久久久精品久久久| 亚洲国产毛片av蜜桃av| 免费人成视频x8x8入口观看| 国产人伦9x9x在线观看| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 久久热在线av| 成人av一区二区三区在线看| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 久久久久国产精品人妻aⅴ院| 美女大奶头视频| 国产伦人伦偷精品视频| 久久草成人影院| 又黄又粗又硬又大视频| 中文字幕人成人乱码亚洲影| www.www免费av| 国产精品一区二区在线不卡| 日本黄色视频三级网站网址| 欧美在线黄色| 男女床上黄色一级片免费看| 久久中文看片网| 国产一区二区三区综合在线观看| 国产欧美日韩精品亚洲av| 欧美日韩乱码在线| 欧美成狂野欧美在线观看| 亚洲成a人片在线一区二区| 久久影院123| 香蕉久久夜色| 老熟妇仑乱视频hdxx| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| av在线天堂中文字幕| 人人妻人人澡欧美一区二区 | 在线观看免费午夜福利视频| 久久精品亚洲精品国产色婷小说| 精品人妻在线不人妻| 中亚洲国语对白在线视频| 亚洲精品国产一区二区精华液| 又黄又爽又免费观看的视频| 男女床上黄色一级片免费看| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 变态另类丝袜制服| 精品日产1卡2卡| 久热爱精品视频在线9| 欧美一级a爱片免费观看看 | 久热这里只有精品99| 婷婷六月久久综合丁香| 国产一区二区在线av高清观看| 啪啪无遮挡十八禁网站| 一级毛片高清免费大全| 91九色精品人成在线观看| 不卡一级毛片| 日韩精品免费视频一区二区三区| 久久久国产精品麻豆| 18美女黄网站色大片免费观看| 亚洲成国产人片在线观看| 久久久久久久久中文| 久热爱精品视频在线9| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 极品人妻少妇av视频| 午夜福利影视在线免费观看| avwww免费| 色播亚洲综合网| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 精品国产一区二区久久| 国产精品亚洲美女久久久| 在线视频色国产色| 国产精华一区二区三区| 黑人操中国人逼视频| 午夜影院日韩av| 人成视频在线观看免费观看| 怎么达到女性高潮| 亚洲自拍偷在线| 久久久久久久精品吃奶| 中文字幕av电影在线播放| 日本五十路高清| 精品国产乱码久久久久久男人| 中文字幕色久视频| 亚洲精品国产区一区二| 亚洲无线在线观看| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 欧美激情 高清一区二区三区| 日韩有码中文字幕| 99国产精品一区二区三区| 久热这里只有精品99| 如日韩欧美国产精品一区二区三区| 99国产精品99久久久久| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 欧美 亚洲 国产 日韩一| 国产不卡一卡二| 麻豆av在线久日| 精品国产乱子伦一区二区三区| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 看免费av毛片| 国产真人三级小视频在线观看| 亚洲五月婷婷丁香| 91九色精品人成在线观看| 99re在线观看精品视频| 可以在线观看的亚洲视频| 91九色精品人成在线观看| 亚洲片人在线观看| 免费在线观看亚洲国产| 亚洲五月色婷婷综合| 91精品三级在线观看| 午夜老司机福利片| 成人特级黄色片久久久久久久| 成人免费观看视频高清| 在线播放国产精品三级| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 热re99久久国产66热| 欧美在线黄色| 精品无人区乱码1区二区| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 精品电影一区二区在线| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产主播在线观看一区二区| 在线观看日韩欧美| 亚洲专区国产一区二区| 叶爱在线成人免费视频播放| 午夜成年电影在线免费观看| 亚洲精品一区av在线观看| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 亚洲精品久久国产高清桃花| av电影中文网址| 久久精品91无色码中文字幕| 久久久久久久久免费视频了| 欧美在线黄色| 国产精品美女特级片免费视频播放器 | 久久香蕉精品热| 久久狼人影院| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 欧美丝袜亚洲另类 | 亚洲熟妇中文字幕五十中出| 精品久久蜜臀av无| 精品一区二区三区视频在线观看免费| 亚洲av成人av| 色精品久久人妻99蜜桃| www国产在线视频色| 夜夜躁狠狠躁天天躁| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av香蕉五月| 欧美激情高清一区二区三区| 美女 人体艺术 gogo| 黄色毛片三级朝国网站| 精品电影一区二区在线| 19禁男女啪啪无遮挡网站| 91国产中文字幕| 黄片播放在线免费| 久久久久久免费高清国产稀缺| 深夜精品福利| 久久香蕉激情| 黄片播放在线免费| 两个人看的免费小视频| 欧美日本视频| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 69av精品久久久久久| 丝袜美足系列| 变态另类丝袜制服| www.熟女人妻精品国产| 日韩 欧美 亚洲 中文字幕| 热99re8久久精品国产| 亚洲熟女毛片儿| 精品国产乱码久久久久久男人| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 国产人伦9x9x在线观看| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 久久中文字幕人妻熟女| 一级毛片高清免费大全| 日韩三级视频一区二区三区| 精品第一国产精品| 精品国产一区二区三区四区第35| 国产成人欧美在线观看| 欧美日本亚洲视频在线播放| 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女| 一级毛片精品| АⅤ资源中文在线天堂| 欧美久久黑人一区二区| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 神马国产精品三级电影在线观看 | 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 在线免费观看的www视频| 午夜福利成人在线免费观看| 免费看a级黄色片| av福利片在线| 午夜视频精品福利| 午夜精品久久久久久毛片777| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 亚洲一区中文字幕在线| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 三级毛片av免费| 妹子高潮喷水视频| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 日韩大码丰满熟妇| 国产亚洲av高清不卡| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 看片在线看免费视频| 免费在线观看完整版高清| √禁漫天堂资源中文www| 久久国产乱子伦精品免费另类| 三级毛片av免费| 免费在线观看影片大全网站| 欧美色视频一区免费| 曰老女人黄片| 久久亚洲真实| 手机成人av网站| 丝袜美腿诱惑在线| 久久精品亚洲精品国产色婷小说| 久久中文字幕人妻熟女| 国产亚洲精品一区二区www| 国产三级黄色录像| 国产精品野战在线观看| 国产精品日韩av在线免费观看 | 黑丝袜美女国产一区| 怎么达到女性高潮| 黄色视频不卡| 99国产精品99久久久久| 久久久久久大精品| 91在线观看av| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 精品久久久久久久毛片微露脸| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 日本三级黄在线观看| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 最好的美女福利视频网| 欧美中文日本在线观看视频| 巨乳人妻的诱惑在线观看| 久久久国产成人精品二区| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡 | 国产三级在线视频| 性欧美人与动物交配| 日本五十路高清| 精品无人区乱码1区二区| www.自偷自拍.com| 国产麻豆69| 欧美+亚洲+日韩+国产| 女警被强在线播放| 精品人妻1区二区| 精品国产一区二区久久| 男女午夜视频在线观看| 少妇的丰满在线观看| 无遮挡黄片免费观看| 国产97色在线日韩免费| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 熟女少妇亚洲综合色aaa.| 97人妻精品一区二区三区麻豆 | 级片在线观看| 99热只有精品国产| 人人澡人人妻人| 亚洲久久久国产精品| 精品久久久久久久久久免费视频| 99国产精品免费福利视频| 黄片播放在线免费| 亚洲精品粉嫩美女一区| 国产亚洲精品综合一区在线观看 | 亚洲av成人av| 真人做人爱边吃奶动态| 国产av精品麻豆| netflix在线观看网站| 国产亚洲av高清不卡| 99国产极品粉嫩在线观看| 亚洲五月天丁香| 亚洲中文日韩欧美视频| 亚洲精品久久成人aⅴ小说| 黄频高清免费视频| 九色国产91popny在线| 午夜福利18| 香蕉国产在线看| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本中文国产一区发布| 国产亚洲欧美精品永久| 久久国产乱子伦精品免费另类| 可以免费在线观看a视频的电影网站| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| av视频免费观看在线观看| 国产精品永久免费网站| 日韩欧美三级三区| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密| 中文字幕高清在线视频| 免费看美女性在线毛片视频| 欧美日韩瑟瑟在线播放| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 国产熟女午夜一区二区三区| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 在线永久观看黄色视频| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 亚洲一区二区三区不卡视频| 亚洲aⅴ乱码一区二区在线播放 | 老汉色∧v一级毛片| 久99久视频精品免费| 日韩精品青青久久久久久| x7x7x7水蜜桃| 97人妻精品一区二区三区麻豆 | 精品一区二区三区av网在线观看| 黄色视频不卡| 国产精品亚洲美女久久久| av视频在线观看入口| 午夜福利,免费看| 女人被狂操c到高潮| 999久久久精品免费观看国产| 高清黄色对白视频在线免费看| 脱女人内裤的视频| avwww免费| 亚洲成国产人片在线观看| 亚洲专区中文字幕在线| 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| 视频区欧美日本亚洲| 亚洲精品国产色婷婷电影| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 亚洲欧美激情在线| 亚洲精品中文字幕一二三四区| 成人精品一区二区免费| 国产91精品成人一区二区三区| 午夜成年电影在线免费观看| 涩涩av久久男人的天堂| 一进一出抽搐动态| 亚洲 欧美 日韩 在线 免费| 精品欧美国产一区二区三| 老熟妇仑乱视频hdxx| 操美女的视频在线观看| 国产又色又爽无遮挡免费看| 亚洲情色 制服丝袜| 日韩三级视频一区二区三区| 国产精品亚洲美女久久久| 免费人成视频x8x8入口观看| 亚洲精品国产色婷婷电影| 亚洲,欧美精品.| 国产激情欧美一区二区| 日本免费a在线| 国产精品免费视频内射| 在线观看日韩欧美| 97人妻精品一区二区三区麻豆 | 欧美久久黑人一区二区| 国产精品爽爽va在线观看网站 | 黄网站色视频无遮挡免费观看| 在线观看日韩欧美| 国产在线观看jvid| 久久影院123| 琪琪午夜伦伦电影理论片6080| 一本综合久久免费| 又大又爽又粗| 此物有八面人人有两片| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区久久 | 亚洲欧美精品综合一区二区三区| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 在线观看舔阴道视频| 国产精品久久久久久人妻精品电影| 中文亚洲av片在线观看爽| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| www.精华液| 久久精品影院6| 午夜福利影视在线免费观看| 日韩大码丰满熟妇| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 亚洲狠狠婷婷综合久久图片| 一二三四在线观看免费中文在| 99在线视频只有这里精品首页| 国产亚洲精品第一综合不卡| 国产人伦9x9x在线观看| or卡值多少钱| 一级黄色大片毛片| 国产麻豆69| 国产主播在线观看一区二区| 一级毛片精品| 亚洲国产精品成人综合色| 欧美日韩黄片免| 国产97色在线日韩免费| 久久午夜综合久久蜜桃| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 国产欧美日韩综合在线一区二区| 男人舔女人下体高潮全视频| 精品国产乱子伦一区二区三区| 精品国产乱码久久久久久男人| 涩涩av久久男人的天堂| 日本三级黄在线观看| 国产精品九九99| 少妇熟女aⅴ在线视频| 两性夫妻黄色片| 村上凉子中文字幕在线| xxx96com| 欧美激情高清一区二区三区| 亚洲电影在线观看av| 两人在一起打扑克的视频| 国产精品一及| 国产成人一区二区在线| 久久国内精品自在自线图片| 久久人人精品亚洲av| 老师上课跳d突然被开到最大视频| 综合色av麻豆| 欧美日韩综合久久久久久 | 麻豆久久精品国产亚洲av| 国产精品伦人一区二区| 天堂动漫精品| 国内精品一区二区在线观看| av女优亚洲男人天堂| eeuss影院久久| 99热精品在线国产| 欧美zozozo另类| 舔av片在线| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清| 国产伦在线观看视频一区| 日本爱情动作片www.在线观看 | 日韩中文字幕欧美一区二区| 美女cb高潮喷水在线观看| 国产一级毛片七仙女欲春2| 男人和女人高潮做爰伦理| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 久久精品久久久久久噜噜老黄 | 又紧又爽又黄一区二区| 久久国内精品自在自线图片| 日韩欧美国产一区二区入口| 国产日本99.免费观看| 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 精品久久久久久久久亚洲 | 99久久精品热视频| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 免费av观看视频| 如何舔出高潮| 成年女人永久免费观看视频| 国产乱人伦免费视频| 在线免费观看不下载黄p国产 | 赤兔流量卡办理| 免费人成视频x8x8入口观看| 此物有八面人人有两片| 国产综合懂色| 日本爱情动作片www.在线观看 | 亚洲无线在线观看| 人妻制服诱惑在线中文字幕| 真人一进一出gif抽搐免费| av中文乱码字幕在线| 久久久久久久亚洲中文字幕| 岛国在线免费视频观看| 在线观看av片永久免费下载| 成人鲁丝片一二三区免费| 丰满人妻一区二区三区视频av| 一个人看视频在线观看www免费| 国产淫片久久久久久久久| 日本 av在线| 在线国产一区二区在线| 美女cb高潮喷水在线观看| 精华霜和精华液先用哪个| 欧美最黄视频在线播放免费| 欧美成人a在线观看| 成人国产一区最新在线观看| 老女人水多毛片| 久久久久久久午夜电影| 久久精品国产自在天天线| 免费一级毛片在线播放高清视频| 色精品久久人妻99蜜桃| 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 精品久久久久久久末码| 久久99热6这里只有精品| 美女高潮喷水抽搐中文字幕| 黄色一级大片看看| 99热6这里只有精品| 亚洲av免费在线观看| 婷婷亚洲欧美| 国产视频内射| 少妇的逼好多水| 精品不卡国产一区二区三区| 国产精品久久久久久久久免| 国产精品日韩av在线免费观看| 国产熟女欧美一区二区| 欧美成人免费av一区二区三区| 综合色av麻豆| 不卡一级毛片| 日本三级黄在线观看| 在线观看美女被高潮喷水网站| 国产免费一级a男人的天堂| 久久精品国产亚洲av天美| 乱人视频在线观看| 12—13女人毛片做爰片一| 天堂影院成人在线观看|