王雅琴,王倩倩,董鵬
動脈自旋標(biāo)記灌注成像及動態(tài)對比增強MRl評估腦膠質(zhì)瘤瘤周浸潤的研究現(xiàn)狀
王雅琴,王倩倩,董鵬*
作者單位:濰坊醫(yī)學(xué)院附屬醫(yī)院影像中心,濰坊261031
腦膠質(zhì)瘤是常見的顱內(nèi)原發(fā)腫瘤,多呈浸潤性生長,正確判定腫瘤邊界對指導(dǎo)外科手術(shù)及確定術(shù)后放療界限具有重要意義。隨著磁共振灌注成像技術(shù)的不斷發(fā)展,動脈自旋標(biāo)記(arterial weighted imaging,ASL)技術(shù)無創(chuàng)且能良好評價膠質(zhì)瘤的微血管密度,而MR動態(tài)增強成像能較好地評估膠質(zhì)瘤的新生血管狀態(tài),這兩者在腫瘤浸潤區(qū)的特點也成為近幾年研究的熱點,作者就腦膠質(zhì)瘤瘤周浸潤的ASL灌注成像及MR動態(tài)增強成像的研究進展進行綜述。
神經(jīng)膠質(zhì)瘤;腫瘤浸潤;磁共振成像
腦膠質(zhì)瘤是顱內(nèi)常見腫瘤[1],手術(shù)切除聯(lián)合放化療是主要的治療手段。膠質(zhì)瘤的術(shù)前精確診斷以及生物學(xué)邊界的確定,具有重要的臨床意義。
近年來,MR灌注成像(perfusion weighted imaging,PWI)技術(shù)不斷應(yīng)用于膠質(zhì)瘤的術(shù)前診斷,動態(tài)對比增強MRI (dynamic contrast enhanced-MRI,DCE-MRI)以及動脈自旋標(biāo)記(arterial weighted imaging,ASL)成像的應(yīng)用不斷深入。但如何應(yīng)用這些新技術(shù)對膠質(zhì)瘤生物學(xué)邊界進行評價,從而指導(dǎo)手術(shù)并判斷預(yù)后等問題仍需進一步研究。筆者就腦膠質(zhì)瘤瘤周浸潤的ASL灌注成像和動態(tài)增強MRI的研究進展進行綜述。
ASL技術(shù)是一種活體監(jiān)測腦血灌注的成像方法,是以動脈中的內(nèi)源性水質(zhì)子作為對比劑,先在成像平面上游使自旋狀態(tài)的血液發(fā)生反轉(zhuǎn)(即標(biāo)記),標(biāo)記血進入組織后成像(即標(biāo)記像)包括原來的靜態(tài)組織和標(biāo)記血的量,再對感興趣區(qū)進行成像(即控制像),標(biāo)記像與控制像的剪影差值像只與標(biāo)記血有關(guān)。最后后處理獲得灌注圖,即腦血流量(cerebral blood flow,CBF)圖。ASL灌注成像可以分為兩類:連續(xù)性動脈自旋標(biāo)記和脈沖式動脈自旋標(biāo)記,后者在臨床上應(yīng)用較廣。ASL技術(shù)的信噪比很小且ASL技術(shù)分辨力較低,掃描層數(shù)較小。該技術(shù)不需引入外源性示蹤劑就能定量測量局部相對腦血流量(relative cerebral blood flow,rCBF)值,相對安全。另外ASL檢查程序及后處理簡單,可常規(guī)指導(dǎo)腦膠質(zhì)瘤術(shù)前評估。目前關(guān)于腫瘤的3D準(zhǔn)連續(xù)動脈自旋標(biāo)記(3D-PCASL)技術(shù)研究不多,相對于其他灌注技術(shù)的穩(wěn)定和成熟,ASL技術(shù)還在不斷改進和發(fā)展中,盡管存在信噪比低、偽影多等缺點,但是,相信隨著MRI設(shè)備的硬件和軟件的不斷提高,尤其是高場強和3D采集技術(shù)的應(yīng)用,其缺點將會得到改善,其完全無創(chuàng)、可重復(fù)操作、絕對數(shù)值的優(yōu)點將得到更大的展現(xiàn),在指導(dǎo)膠質(zhì)瘤術(shù)前評估方面有廣闊的前景。
術(shù)前對膠質(zhì)瘤血供的正確評價可以幫助確定其惡性程度和治療方案。膠質(zhì)瘤血管增生的程度越高,灌注指標(biāo)rCBF越高,rCBF可以直觀地反映腫瘤的血管增殖程度,從而使術(shù)前無創(chuàng)性判斷腦腫瘤的級別成為可能。
ASL技術(shù)在評價腦腫瘤局部血流灌注方面具有良好的應(yīng)用價值及潛力[2]。ASL技術(shù)可在一定程度上反映瘤內(nèi)、瘤周新生血管的形成和血腦屏障的破壞。
ASL在區(qū)分高、低級別膠質(zhì)瘤方面有臨床價值[3-6],通過測量腫瘤治療前后的CBF的變化,可以了解腫瘤本身及瘤周血供情況,間接反映腫瘤的預(yù)后[7]。膠質(zhì)瘤實質(zhì)rCBF值與血管內(nèi)皮生長因子(VEGF)表達呈正相關(guān)[8],提示ASL灌注成像技術(shù)有助于評估膠質(zhì)瘤微血管生成情況。在MRI引導(dǎo)下穿刺活檢發(fā)現(xiàn),ASL與腦膠質(zhì)瘤的微血管密度呈明顯的正相關(guān)[9],表明ASL是一種有效的定量評價膠質(zhì)瘤微血管密度的方法。高級別膠質(zhì)瘤的ASL成像所顯示的高灌注區(qū)域大于常規(guī)MRI的強化范圍[10],高級別膠質(zhì)瘤的腫瘤實質(zhì)、瘤周1 cm水腫區(qū)及瘤周1~2 cm水腫區(qū)的CBF值兩兩比較均有統(tǒng)計學(xué)差異[11],提示高級別膠質(zhì)瘤邊緣1 cm內(nèi)水腫區(qū)除了水腫因素影響外,還有腫瘤細胞浸潤和新生微血管增生的因素影響。膠質(zhì)母細胞瘤瘤周水腫區(qū)的CBF值明顯高于孤立轉(zhuǎn)移瘤瘤周區(qū)[12],對于二者的鑒別有重要的意義,這提示ASL能夠顯示膠質(zhì)母細胞腫瘤瘤周區(qū)域的新生血管。
對瘤周微觀結(jié)構(gòu)的認(rèn)識可為膠質(zhì)瘤的評估提供更多信息[13];瘤周的細胞異型性相對較輕,但仍然存在異常血管增殖[14]。有文獻報道,高級別膠質(zhì)瘤的瘤周浸潤及血管異常增殖可導(dǎo)致rCBF升高[15]。ASL所得灌注圖于瘤旁多表現(xiàn)為等、低灌注[7];rCBF在各組腦腫瘤實性區(qū)域與瘤周不同距離有差異,可能因為高級別膠質(zhì)瘤瘤周區(qū)是瘤細胞向正常腦組織浸潤和轉(zhuǎn)移的基礎(chǔ),瘤周區(qū)血管較為豐富。
目前有學(xué)者認(rèn)為,顱內(nèi)腫瘤瘤周水腫的細胞數(shù)量可由MRI灌注序列評估[16],且細胞及血管數(shù)量越多,灌注越明顯,但仍需要進一步研究。
腦外科手術(shù)后,術(shù)區(qū)周邊腦組織的反應(yīng)性磁共振強化特點與其新生血管生成密切相關(guān)[17]。腫瘤實質(zhì)區(qū)rCBF值均與免疫組化微血管密度計數(shù)有關(guān),因此可用于評估活體腫瘤的微血管狀態(tài)。在rCBF圖像中,腫瘤實質(zhì)部分呈紅黃色或深綠色,瘤周水腫部分呈藍綠色,而對側(cè)正常腦組織也呈藍綠色,兩者對比明顯。動物模型研究中,腫瘤早期的生長主要依賴腦組織原有血管的擴張[18],灌注成像呈高灌注,血容量較對側(cè)正常腦組織明顯增加。
ASL灌注成像技術(shù)在大鼠膠質(zhì)瘤模型的應(yīng)用中,多數(shù)學(xué)者僅限于研究膠質(zhì)瘤實質(zhì)區(qū)的灌注改變,對于瘤周浸潤的研究報道較少見。
DCE-MRI是一種評價微血管功能的有效指標(biāo),其分析方法包括兩種,一種是半定量分析方法,圖像經(jīng)后處理可獲得病變的對比增強率-時間(contrast enhancement rate-time,CER-T)曲線,CER-T曲線分為五型[19]:Ⅰ型是速升緩降型,Ⅱ型稱為亞速升平臺型,Ⅲ型是亞速升緩降型,Ⅳ型和Ⅴ型分別是持續(xù)緩升型和緩升平臺型。通過多種指標(biāo)對組織強化特征進行分析,常用的指標(biāo)有起始強化時間最大信號強度及受試者操作特征曲線下面積等。此方法操作簡單,但是容易受掃描參數(shù)的影響,并不能準(zhǔn)確反映病變組織內(nèi)對比劑濃度的變化情況。
另一種分析方法是定量分析方法,通常根據(jù)雙室血流動力學(xué)模型的概念[20],將對比劑在感興趣區(qū)的滲透作用進行量化,定量測量血管微管結(jié)構(gòu)和腫瘤不成熟微血管的通透性,其中包括對比容積轉(zhuǎn)運常數(shù)(Ktrans),是測量血腦屏障完整性的良好指標(biāo),正常腦組織有血腦屏障存在,理論上Ktrans值為零;血管外細胞外間隙容積比(Ve)、Ve值與血管外細胞外間隙呈負(fù)相關(guān),反映血管外或細胞外空間容量,可受血管通透性的影響,血管通透性越大,Ve值越大;Vp(血漿容積分?jǐn)?shù));Kep是對比劑從血管外細胞外返回到血漿空間的速率常數(shù)等。
大多數(shù)膠質(zhì)瘤周圍的水腫區(qū)T2WI為高信號,但其形成原因可能是腫瘤細胞浸潤或醫(yī)源性因素。VEGF可促進膠質(zhì)瘤實質(zhì)發(fā)展及瘤周血管生成[21]。有學(xué)者認(rèn)為,瘤周水腫亦可能與腦組織內(nèi)膠質(zhì)細胞的變化相關(guān)[22]。
豐富的血管網(wǎng)可為腫瘤增殖提供保障。N?gele等[23]認(rèn)為腫瘤生長早期的強化主要取決于腫瘤的血供,腫瘤生長晚期的強化主要與腫瘤血管的通透性及血管外間隙對比劑的容量有關(guān)。有研究顯示,灌注時間信號強度曲線可直觀顯示膠質(zhì)瘤瘤體、瘤周水腫區(qū)及對側(cè)正常腦白質(zhì)的時間信號強度變化[24]。此外,在DCE-MRI中,最大增強斜率(maximum slope of decrease,MSD)能夠揭示由于腫瘤血管生成而導(dǎo)致的腦血流量的改變,最高的MSD區(qū)域也是組織學(xué)上血管生成最明顯的區(qū)域[25-26],有研究顯示膠質(zhì)瘤瘤周水腫距離腫瘤邊緣越遠,最大信號下降率(the rates of maximum signal drop,rMSD)越小[25]。
DCE-MRI可定量分析Ktrans值、Ve值、Vp值及Kep值來顯示腫瘤微血管的通透性,這些定量參數(shù)可以無創(chuàng)性評價腫瘤血管的生成情況[27-28];高級別膠質(zhì)瘤的Ktrans值、Ve值及Vp值高于低級別膠質(zhì)瘤相應(yīng)值[29-30],Ktrans值、Ve值及Vp值越高,腫瘤微血管生成越多,血管通透性越高,級別越高[31],高級別膠質(zhì)瘤比低級別膠質(zhì)瘤含有更多的不成熟微血管[32]。然而,有研究發(fā)現(xiàn),在兒童膠質(zhì)瘤中高、低級別膠質(zhì)瘤水腫區(qū)的Ktrans、Ve、Kep差異無統(tǒng)計學(xué)意義,而相應(yīng)區(qū)域ADC值差異有統(tǒng)計學(xué)意義,考慮兒童膠質(zhì)瘤大多惡性程度較低,瘤周水腫區(qū)毛細血管相對完整,對此,需要進一步研究[33]。然而,在成人膠質(zhì)瘤瘤周水腫區(qū)的DCE-MRI相應(yīng)分析及病理學(xué)意義的研究甚少。
有學(xué)者通過動物實驗利用大鼠C6膠質(zhì)瘤模型在磁共振中發(fā)現(xiàn),不成熟的新生腫瘤血管多位于腫瘤侵襲的邊緣,并導(dǎo)致瘤周水腫的形成[34]。病理顯示的交界處瘤細胞及新生血管在MRI上顯示不清[35],晚期階段腫瘤在T2WI顯示的病變范圍大于T1WI增強成像,這提示T2WI信號的增高既與腫瘤本身有關(guān),也與瘤周水腫及瘤周浸潤有關(guān);而T1WI增強檢查能夠顯示血腦屏障破壞的程度,對腫瘤的實際浸潤范圍顯示欠佳。
DCE-MRI可以顯示大鼠膠質(zhì)瘤不同時間點瘤周浸潤區(qū)較對側(cè)正常區(qū)域呈點狀高信號,各時間點Ktrans、Kep差異有統(tǒng)計學(xué)意義,Vp差異無統(tǒng)計學(xué)意義,病理學(xué)檢查發(fā)現(xiàn),該浸潤區(qū)域的血管共生指數(shù)與Ktrans、Kep呈負(fù)相關(guān),與Vp無顯著相關(guān)性[36]。這提示DCE-MRI可以無創(chuàng)性地評估膠質(zhì)瘤微血管的生成情況,并反映腫瘤侵襲生長的狀態(tài),可以作為評價腫瘤新生血管狀態(tài)及侵襲能力的較好的影像學(xué)標(biāo)志物。膠質(zhì)瘤的新生血管方式常有四種,分別為血管出芽、血管套疊、血管共生及血管擬態(tài)。有研究發(fā)現(xiàn),在大鼠膠質(zhì)瘤實質(zhì)區(qū)血管出芽及血管套疊增加,且與Kep、Vp呈明顯正相關(guān)[37];而在腫瘤移植12 d及16 d后,膠質(zhì)瘤浸潤區(qū)的血管共生減少,且與各區(qū)域的Ktrans、Kep呈負(fù)相關(guān);血管擬態(tài)在所觀察的時間點內(nèi)并無差別。這表明,DCE-MRI能良好地評估膠質(zhì)瘤的新生血管的生長方式,也能進一步研究膠質(zhì)瘤瘤周浸潤區(qū)新生血管的狀態(tài)。
ASL灌注成像及動態(tài)增強檢查是評估微血管灌注的有效手段,可以良好顯示腫瘤的影像學(xué)特征,并對腫瘤進行分級[39]。但ASL灌注成像和動態(tài)增強檢查的相關(guān)參數(shù)與膠質(zhì)瘤瘤周浸潤的病理學(xué)表現(xiàn)之間的關(guān)系研究甚少,尚需進一步研究,以便在腦膠質(zhì)瘤術(shù)前診斷和制訂治療方案等方面提供更多影像學(xué)依據(jù)。
[References]
[1] Li JZ, Ma YQ, Zhang W, et al. Clinicopathology of 1629 cases of central nervous system tumors. Chin J Modern Med, 2011, 21(16):1910-1917.李俊芝, 馬遇慶, 張巍, 等. 1629例中樞神經(jīng)系統(tǒng)腫瘤的臨床病理分析. 中國現(xiàn)代醫(yī)學(xué)雜志, 2011, 21(16): 1910-1917.
[2] Che YY, Yang ZT, Cheng JL. Application of 3D arterial spin labeling and dynamic susceptibility contrast perfusion MR imaging in evaluating brain tumors: a comparison study. J Clin Radiol, 2014,33(5): 770-773.車英玉, 楊志濤, 程敬亮. 3D ASL與DSC灌注技術(shù)在腦腫瘤的對比研究. 臨床放射學(xué)雜志, 2014, 33(5): 770-773.
[3] Noguchi T, Yoshiural T, Hiwatashi A, et al. Perfusion neuroimaging using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol, 2008, 29(4): 688-93.
[4] Chen FJ, Zhou D, Huang B. A new method for differential diagnosis between high grade gliomas and low grade gliomas: arterial spin labeling. Chin J Neurosurg Dis Res, 2010, 1(9): 27-30.
陳發(fā)軍, 周東, 黃飚. 腦膠質(zhì)瘤分級診斷的新方法: 動脈自旋標(biāo)記技術(shù). 中華神經(jīng)外科疾病研究雜志, 2010, 1(9): 27-30.
[5] Wolf RL, Wang JJ, Wang SM, et al. Grading of CNS neoplasms usingcontinuous aterial spin labeled perfusion MR imaging at 3 tesla.J Magn Reson Imaging, 2005, 22(4): 475-82.
[6] Zhu JC, Lou MW, Zhang FJ, et al. Application of arterial spin labeling ( ASL) technique in the pre operative evaluation of brain tumors. J Clin Radiol, 2012, 31(12): 1688-1693.朱記超, 婁明武, 張方璟, 等. 動脈自旋標(biāo)記技術(shù)在腦腫瘤術(shù)前評估中的應(yīng)用研究. 臨床放射學(xué)雜志, 2012, 31(12): 1688-1693.
[7] Wang L, Zheng G, Zhao TZ, et al. Clinical applications of arterial spin labeling technique in brain diseaes. J Biom Engineer, 2013,30(1):195-199.王利, 鄭罡, 趙鐵柱, 等. 動脈自旋標(biāo)記技術(shù)在腦部疾病中的臨床應(yīng)用. 生物醫(yī)學(xué)工程雜志, 2013, 30(1):195-199.
[8] Wang ZW, Yang BQ, Liu WY, et al. Correlation of 3D ASL perfusion index with the expression of VEGF and MVD in glioma. Chin J Chin Oncol, 2016, 43(13): 557-561.王子文, 楊本強, 劉文源, 等. 膠質(zhì)瘤3DASL灌注指數(shù)與VEGF MVD表達相關(guān)性研究. 中國腫瘤臨床, 2016, 43(13) : 557-561.
[9] Ningning D, Haopeng P, Xuefei D, et al. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies. Neuroradiology, 2017,59(1): 51-59.
[10] Brand?o LA, Shiroishi MS, Law M. Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging,magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast enhanced magnetic resonance imaging. Magn Reson Imaging Clin N Am, 2013, 21(2): 199-239.
[11] Liao HB, Xiao XL, Dai ZQ, et al. A study of 3D-PCASL in brain gliomas at 3.0 T MR. J Pract Radiol, 2016, 32(3): 441-451.廖海波, 肖新蘭, 戴中強, 等. 3.0 T MR3D-PCASL技術(shù)在腦膠質(zhì)瘤微灌注研究. 實用放射學(xué)雜志, 2016, 32(3): 441-451.
[12] Lin L, Xue Y, Duan Q, et al. The role of cerebral blood flow gradient in peritumoral edema for differentiation of glioblastomas from solitary metastatic lesions. Oncotarget, 2016, 7(42): 69051-69059.
[13] Zhang QB. Experimental studies on tumoral angiogenesis of rat C6 gliomas with perfusion weighted magnetic resonance imaging. Fudan University. 2006.張清波. MR灌注成像對大鼠腦C6膠質(zhì)瘤血管生成的實驗研究. 復(fù)旦大學(xué), 2006.
[14] Peng J, Dai JP, Zhu MW, et al. Utility of perfusion-weighted MR imaging in astrocytomas. Chin J Radiol, 2003, 37(7): 636-639.彭靖, 戴建平, 朱明旺, 等. MR腦血流灌注成像在星形細胞腫瘤中的應(yīng)用研究. 中華放射學(xué)雜志, 2003, 37(7): 636-639.
[15] Ding FF. The diagnostic value of ASL in high grade astrocytic tumors. Hebei Medical University, 2014.丁芳芳. 高級別星形細胞腫瘤ASL灌注成像的初步研究. 河北醫(yī)科大學(xué), 2014.
[16] Halshtok NO, Sadetzki S, Chetrit A, et al. Perfusion-weighted imaging of peritumoral edema can aid in the differential diagnosis of glioblastoma mulltiforme versus brain metastasis. Isr Med Assoc J,2013, 15(2):103-105.
[17] Wang WJ, Xu M, Sun YH, et al. Correlation of MRI enhancement features and histopathology after partial resection of nomal brain:an experimental study in rats. J Pract Radiol, 2014, 30(12): 2076-2078,2093.王文娟, 徐敏, 孫永紅, 等. 正常大鼠部分腦組織切除術(shù)后術(shù)區(qū)周邊腦組織MRI增強特點及其病理學(xué)研究. 實用放射學(xué)雜志, 2014,30(12): 2076-2078, 2093.
[18] Cha S, Johnson G, Wadghiri YZ, et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology.Magn Reson Med, 2003, 49(5): 848-55.
[19] Jiang XY, Wang XY, Chen Y, et al. A study of routine and dynamic contrast-enhanced MR imaging of intradural extramedullary tumors.Chin J Med Imaging Technol, 1999, 15 (1): 23-25.姜新雅, 王小宜, 陳宇, 等. 髓外硬膜下腫瘤的常規(guī)和動態(tài)增強MRI研究. 中國醫(yī)學(xué)影像技術(shù), 1999, 15 (1): 23-25.
[20] Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging,1999, 10(3): 223-232.
[21] Wang XF, Lin GS, Lin ZX, et all. Association of pSTAT3-VEGF signaling pathway with peritumoral edema in newly diagnosed glioblastoma: an immunohistochemical study. Int J Clin Exp Pathol,2014, 7(9): 6133-40.
[22] Engelhorn T, Savaskan NE, Schwarz MA, et al. Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Sci, 2009, 100(10): 1856-1862.
[23] N?gele T, Petersen D, Klose U, et al. Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR Am J Neuroradiol, 1993, 14(1): 89-98.
[24] Chen JY, Lin XY, Chen XR, et al. MR perfusion-weighted imaging in differential diagnosis between solitary cerebral metastatic tumors and high-grade gliomas. Chin J Med Imaging Technol, 2015, 31(2):215-217.陳杰云, 林曉瑩, 陳向榮, 等. MR 灌注加權(quán)成像鑒別診斷單發(fā)腦轉(zhuǎn)移瘤與高級別膠質(zhì)瘤. 中國醫(yī)學(xué)影像技術(shù), 2015, 31(2): 215-217.
[25] Knopp EA, Cha S, Johnson G, et al. Glial neoplasms:dynamic contrast-enhanced T2*-weighted MR imaging. Radiology, 1999,211(3):791-798.
[26] Lehmann P, Vallée JN, Saliou G, et al. Dynamic contrast-enhanced T2*-weighted MR imaging: a peritumoral brain oedema study. J Neuroradiol, 2009, 36(2): 88-92.
[27] Ding S, Jia WX, Xu YH, et al. Experimental study of tumor angiogenesis by dynamic contrast-enhanced and diffusion-weighted MR imaging. Chin Comput Med Imag, 2012,18(6): 542-547.丁爽, 賈文霄, 許永華, 等. DCE_MRI聯(lián)合DWI評價腫瘤血管生成的實驗研究. 中國醫(yī)學(xué)計算機成像雜志, 2012,18(6): 542-547.
[28] Song Y, Ding S, Jia WX. Experimental study on DCE-MRI evaluation of tumor angiogenes. Radiol Pract, 2014, 6(29):640-643.宋媛, 丁爽, 賈文霄. DCE-MRI評價腫瘤血管生成的實驗研究. 放射學(xué)實踐, 2014, 29(6): 640-643.
[29] Ja LW, Niu L, Ma WS, et al. The reproducibility study of the pharmacokinetic model extended tofts linear of the dynamic contrastenhanced MRI in brain glioma. Chin J Magn Reson Imaging, 2015,6(8), 571-574.賈龍威, 牛蕾, 馬文帥, 等. 血流動力學(xué)雙室模型Extende Tofts Linear在腦膠質(zhì)瘤DCE-MRI滲透性定量分析的復(fù)測性及有效性研究. 磁共振成像, 2015, 6(8): 571-574.
[30] Huang J, Li XG, Kang HY, et al. Dynamic contrast enhanced magnetic resonance imaging and dynamic susceptibility contrast magnetic resonance imaging in grading of glioma. J Third Mil Med Univ, 2015, 37(7): 672-677.黃杰, 李曉光, 康厚藝, 等. DSC-MRI和DCE-MRI定量分析在腦膠質(zhì)瘤分級診斷中的應(yīng)用. 第三軍醫(yī)大學(xué)學(xué)報, 2015, 37(7): 672-677.
[31] Li R, Liu JH, Wang YL, et al. Comparative study of three dimensional pseudo-continuous arterial spin labeling and dynamic contrast-enhanced MRI parameters in preoperative grading of gliomas. Oncoradiol, 2016, 25(3): 217-222.李銳, 劉晉紅, 王玉林, 等. 三維動脈自旋標(biāo)記與磁共振動態(tài)對比增強成像參數(shù)在膠質(zhì)瘤術(shù)前分級中的對照研究. 腫瘤影像學(xué),2016, 25(3): 217-222.
[32] Zhang W, Niu L, Ma GM, et al. Dynamic contrast-enhanced MRI in the differential diagnosis of high grade glioma, low grade glioma and meningioma. Chin J Magn Reson Imaging, 2015, 6(8): 566-570.張微, 牛蕾, 馬敏閣, 等. DCE-MRI在高、低級別腦膠質(zhì)瘤及腦膜瘤中的鑒別診斷. 磁共振成像, 2015, 6(8): 566-570.
[33] Wang JL, Fan M, Chu JP, et al. Diagnosis Value of DCE-MRI and DWI in Defining Boundaries of Pediatric Gliomas. J Sun Yat-Sen University (Med Scien), 2016, 37(1):155-160.王俊麗, 范淼, 初建平, 等. DCE-MRI和 DWI在界定兒童腦膠質(zhì)瘤邊界中的診斷價值. 中山大學(xué)學(xué)報, 2016, 37(1): 155-160
[34] Guan LM, Guo M, Xu K, et al. MRI in Growth of rat C6 brain G liomas: correlation with H istopathology. Chin J Med Imaging, 2006,14(3): 201-204.關(guān)麗明, 郭敏, 徐克, 等. 大鼠C6腦膠質(zhì)瘤生長的MRI評價及與其病理組織學(xué)的關(guān)系. 中國醫(yī)學(xué)影像學(xué)雜志, 2006, 14(3): 201-204.
[35] Yin H, Li F, Gao YG, et al. The VEGF expression and it′s relationship with MRI appearance. Chin J Med Imaging, 2002,10(3):200-202.印弘, 李復(fù), 高元桂, 等. 大鼠C6膠質(zhì)瘤VEGF表達與MRI對照研究. 中國醫(yī)學(xué)影像學(xué)雜志, 2002, 10(3): 200-202.
[36] Du XS, Liu H, Chen X, et al. Tumor-associated neovascularization in C6 glioma tumor margin measured with dynamic contrast-enhanced MRI. Chin J Med Imag, 2015, 23(2): 81-86.杜學(xué)松, 劉恒, 陳曉, 等. 動態(tài)對比增強MRI評價大鼠C6膠質(zhì)瘤腫瘤邊緣新生血管的實驗研究. 中國醫(yī)學(xué)影像學(xué), 2015, 23(2), 81-86.
[37] Xuesong D, Wei X, Heng L, et al. Evaluation of neovascularization patterns in an orthotopic rat glioma model with dynamic contrastenhanced MRI. Acta Radiol, 2016, 30(6): 1-9.
[38] Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR Imaging. Radiology,2003, 228(2): 523-532.
Research status of ASL perfusion imaging and dynamic contrast-enhanced MRI in the periphery of gliomas
WANG Ya-qin, WANG Qian-qian, DONG Peng*
Imaging Center of af filiated hospital, Weifang Medical University, Weifang 261031,China
*Dong P, E-mail: dongpeng01502@163.com
Glioma is a common intracranial primary tumor. Glioma has invasive growth, and it is important to correctly determine the boundary of the tumor to guide surgery and determine the postoperative radiotherapy boundaries. With the development of magnetic resonance perfusion imaging, ASL can be a noninvasive perfusion MR method for evaluation of the MVD of brain gliomas. Dynamic contrastenhanced MRI (DCE-MRI) is a useful way to evaluate the angiogenesis of glioma. In recent years, their furthers in the periphery of gliomas have become a hot spot. In this paper, we made a review from the aspects of DCE-MRI and ASL perfusion imaging in the periphery of gliomas.
Glioma; Neoplasm invasiveness; Magnetic resonance imaging
Received 21 Dec 2016, Accepted 1 Apr 2017
ACKNOWLEDGMENTSThis paper is funded by the Province Natural Science Fundation of Shan Dong (No. ZR2014HL083).
山東省自然科學(xué)基金項目(編號:ZR2014HL083)
董鵬,E-mail:dongpeng01502@163.com
2016-12-21
接受日期:2017-04-01
R445.2;R739.41
A
10.12015/issn.1674-8034.2017.05.013
王雅琴, 王倩倩, 董鵬. 動脈自旋標(biāo)記灌注成像及動態(tài)對比增強MRI評估腦膠質(zhì)瘤瘤周浸潤的研究現(xiàn)狀. 磁共振成像, 2017, 8(5): 384-388.