• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    圓球誘發(fā)斜爆轟波的數(shù)值研究1)

    2017-03-21 10:51:50方宜申胡宗民滕宏輝姜宗林
    力學(xué)學(xué)報(bào) 2017年2期
    關(guān)鍵詞:駐點(diǎn)馬赫數(shù)球體

    方宜申 胡宗民 滕宏輝姜宗林

    (中國(guó)科學(xué)院力學(xué)研究所高溫氣體動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    (中國(guó)科學(xué)院大學(xué)工程科學(xué)學(xué)院,北京100049)

    圓球誘發(fā)斜爆轟波的數(shù)值研究1)

    方宜申 胡宗民 滕宏輝2)姜宗林

    (中國(guó)科學(xué)院力學(xué)研究所高溫氣體動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100190)

    (中國(guó)科學(xué)院大學(xué)工程科學(xué)學(xué)院,北京100049)

    斜爆轟發(fā)動(dòng)機(jī)是飛行器在高馬赫數(shù)飛行條件下的一種新型發(fā)動(dòng)機(jī),具有結(jié)構(gòu)簡(jiǎn)單、成本低和比沖高等優(yōu)點(diǎn).但是斜爆轟發(fā)動(dòng)機(jī)的來(lái)流馬赫數(shù)范圍廣,來(lái)流條件復(fù)雜,為實(shí)現(xiàn)斜爆轟波的迅速、可靠引發(fā),采用鈍頭體來(lái)誘發(fā).利用Euler方程和氫氧基元反應(yīng)模型,對(duì)超聲速氫氣/空氣混合氣體中圓球誘導(dǎo)的斜爆轟流場(chǎng)進(jìn)行了數(shù)值研究.不同于楔面誘發(fā)的斜爆轟波,球體首先會(huì)在駐點(diǎn)附近誘發(fā)正激波/爆轟波,然后在稀疏波作用下發(fā)展為斜激波/爆轟波.模擬結(jié)果顯示,經(jīng)過(guò)鈍頭體壓縮的預(yù)混氣體達(dá)到自燃溫度后,會(huì)出現(xiàn)兩種流場(chǎng):當(dāng)馬赫數(shù)較低時(shí),由于稀疏波的影響,燃燒熄滅,鈍頭體下游不會(huì)出現(xiàn)燃燒情況;而當(dāng)馬赫數(shù)較高時(shí),燃燒陣面能傳到下游.分析表明,當(dāng)鈍頭體的尺度較小時(shí),駐點(diǎn)附近的能量不足以誘發(fā)爆轟波,只會(huì)形成明顯的燃燒帶與激波非耦合結(jié)構(gòu);當(dāng)鈍頭體的尺度較大時(shí),流場(chǎng)中不會(huì)出現(xiàn)燃燒帶與激波的非耦合現(xiàn)象,且這一特征與馬赫數(shù)無(wú)關(guān).通過(guò)調(diào)整球體直徑,獲得了激波和燃燒帶部分耦合的燃燒流場(chǎng)結(jié)構(gòu),這一流場(chǎng)結(jié)構(gòu)在楔面誘發(fā)的斜爆轟波中并不存在,說(shuō)明稀疏波與爆轟波面的相互作用是決定圓球誘發(fā)斜爆轟波的關(guān)鍵.

    斜爆轟,氫氧,起爆,熄爆

    引言

    航空航天技術(shù)的飛速發(fā)展,要求飛行器的飛行速度越來(lái)越快,傳統(tǒng)渦輪發(fā)動(dòng)機(jī)難以滿足要求.爆轟發(fā)動(dòng)機(jī)是現(xiàn)代發(fā)動(dòng)機(jī)的一種選擇,主要有斜爆轟發(fā)動(dòng)機(jī)、脈沖爆轟發(fā)動(dòng)機(jī)[1]和旋轉(zhuǎn)爆轟發(fā)動(dòng)機(jī)[2]三種.斜爆轟發(fā)動(dòng)機(jī)具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小、成本低、比沖高和適應(yīng)高速飛行的優(yōu)點(diǎn),在飛行馬赫數(shù)高達(dá)10的情況下仍能為飛行器提供有效推力[3].

    爆轟波是一種強(qiáng)激波誘發(fā)快速燃燒的耦合流場(chǎng)結(jié)構(gòu).爆轟波相對(duì)于預(yù)混氣體是超聲速傳播的.在實(shí)驗(yàn)室坐標(biāo)系下,如果預(yù)混氣以超聲速流動(dòng),理論上可能實(shí)現(xiàn)爆轟波的駐定.但實(shí)際上,駐定正爆轟波很難實(shí)現(xiàn),而利用斜激波誘發(fā)的斜爆轟波已經(jīng)成功實(shí)現(xiàn)了駐定[4],并且相對(duì)正爆轟波具有較小的總壓損失.而關(guān)于斜爆轟燃燒技術(shù)在高超聲速飛行器動(dòng)力裝置中的應(yīng)用,近年來(lái)已經(jīng)開(kāi)展了多方面相關(guān)的基礎(chǔ)理論與工程應(yīng)用的數(shù)值和實(shí)驗(yàn)研究[5-9].

    斜爆轟發(fā)動(dòng)機(jī)不僅具有超燃發(fā)動(dòng)機(jī)的優(yōu)點(diǎn),且燃燒過(guò)程近似等容,相比于超燃發(fā)動(dòng)機(jī)的等壓燃燒具有更高的燃燒效率.Li等[10]通過(guò)數(shù)值分析發(fā)現(xiàn),楔面誘發(fā)的斜爆轟流場(chǎng)結(jié)構(gòu)包含斜激波、反應(yīng)區(qū)、爆燃波以及之后的斜爆轟波.Viguier等[11]在1997年用實(shí)驗(yàn)證實(shí)了這一斜爆轟波結(jié)構(gòu)的存在.Choi等[12]發(fā)現(xiàn),斜爆轟波也有如正爆轟波一般的胞格結(jié)構(gòu),不過(guò)與正爆轟波不同的是:斜爆轟波三波點(diǎn)的軌跡不存在相互交叉.Teng等[13-15]對(duì)斜爆轟波胞格結(jié)構(gòu)的變化規(guī)律給出了定量化的研究結(jié)論.斜爆轟發(fā)動(dòng)機(jī)的來(lái)流馬赫數(shù)范圍廣,來(lái)流條件復(fù)雜.Zhang等[16-17]研究發(fā)現(xiàn)來(lái)流當(dāng)量比不同會(huì)影響斜爆轟波的特征長(zhǎng)度.為了實(shí)現(xiàn)斜爆轟波的迅速、可靠引發(fā),可以采用鈍頭體進(jìn)行誘發(fā).但是鈍頭體誘發(fā)斜爆轟波的過(guò)程比楔面誘發(fā)更加復(fù)雜,涉及到正激波、斜激波和稀疏波與燃燒反應(yīng)的復(fù)雜相互作用,其中的波系結(jié)構(gòu)和起爆機(jī)理還不清楚.

    1972年,Lehr[18]利用彈狀鈍頭體誘發(fā)爆轟波,試驗(yàn)結(jié)果表明鈍頭體誘發(fā)的爆轟波與楔面誘發(fā)的爆轟波在流場(chǎng)結(jié)構(gòu)上有極大的不同.Kaneshige等[19]在1996年的氫氣/氧氣爆轟實(shí)驗(yàn)中發(fā)現(xiàn),利用球形鈍頭體誘發(fā)爆轟波的過(guò)程出現(xiàn)了伴隨著燃燒帶的激波、爆燃轉(zhuǎn)爆轟、直接起爆等三種流場(chǎng)結(jié)構(gòu).Ju等[20]通過(guò)理論和數(shù)值研究對(duì)起爆給出了定量化規(guī)律.Maeda等[21-25]在乙炔/氧氣爆轟實(shí)驗(yàn)中,得到了燃燒帶與激波非耦合、草帽狀斜爆轟波、直接起爆爆轟波等三種典型的球形鈍頭體誘發(fā)斜爆轟波的流場(chǎng)結(jié)構(gòu).在非楔面斜爆轟中,由于稀疏波的存在,對(duì)斜爆轟波結(jié)構(gòu)帶來(lái)一定的影響[26].

    本文在溫度300K,壓力50kPa的初始條件下,改變來(lái)流馬赫數(shù)和球體直徑,研究球形鈍頭體誘發(fā)爆轟波的過(guò)程以及不同流場(chǎng)結(jié)構(gòu)之間的臨界條件.通過(guò)數(shù)值模擬給出流場(chǎng)結(jié)構(gòu)隨馬赫數(shù)與球體直徑變化的分布圖.

    1 數(shù)學(xué)與物理模型

    本研究對(duì)圓球誘發(fā)斜爆轟波過(guò)程進(jìn)行數(shù)值模擬.預(yù)混可燃?xì)怏w在超聲速流動(dòng)下,在鈍頭體頂部形成脫體激波,駐點(diǎn)附近為高溫高壓區(qū).不同的來(lái)流馬赫數(shù)及鈍頭體大小決定了駐點(diǎn)附近的流場(chǎng)參數(shù),駐點(diǎn)附近的流場(chǎng)參數(shù)又決定了下游的流場(chǎng)結(jié)構(gòu).當(dāng)駐點(diǎn)附近得到的能量高過(guò)誘發(fā)爆轟波的臨界能量時(shí),流場(chǎng)出現(xiàn)爆轟波;反之,則不能.

    現(xiàn)有的數(shù)值研究表明,在超聲速流動(dòng)下,黏性對(duì)流場(chǎng)影響很小,數(shù)值研究主要采用無(wú)黏流假設(shè).因此控制方程簡(jiǎn)化為二維軸對(duì)稱Euler方程

    其中,ωi為化學(xué)反應(yīng)中第i種組分的質(zhì)量生成率,它由化學(xué)反應(yīng)模型決定.在上述方程中ρi是第i種組分的密度,總密度和v分別代表x方向和r方向上的速度.比內(nèi)能e的計(jì)算公式為

    其中,Ri代表第i種組分的氣體常數(shù),T為溫度.

    數(shù)值模擬中采用自適應(yīng)無(wú)結(jié)構(gòu)的四邊形網(wǎng)格[27]和MUSCL-Hancock算法[28],Rienmann問(wèn)題的求解采用HLLC算子.時(shí)間項(xiàng)為由CFL數(shù)控制的顯式格式,CFL數(shù)為0.4.化學(xué)反應(yīng)采用時(shí)間分裂算法.氫/空氣化學(xué)反應(yīng)模型[29]含有11種組元(H2,O2,O,H,OH, HO2,H2O2,H2O,N2,N,NO)和23個(gè)基元化學(xué)反應(yīng),詳細(xì)的機(jī)理見(jiàn)Chemkin程序說(shuō)明,化學(xué)反應(yīng)帶來(lái)的剛性問(wèn)題由DVODE軟件包解決[30].氫氣/空氣混合物的化學(xué)當(dāng)量比φ=1.0,即H2:O2:N2=2:1:4.球體邊界為固壁邊界,下邊界為軸對(duì)稱邊界,左邊界為來(lái)流,其他邊界為自由邊界.

    2 數(shù)值結(jié)果與討論

    參考Lehr[18]在1972年的實(shí)驗(yàn),給定流場(chǎng)的初始溫度為300K,壓力為50kPa.實(shí)驗(yàn)中的鈍頭體直徑為15mm,為研究鈍頭體尺寸對(duì)于爆轟的影響,選取球形直徑D=5~15mm.由于球形直徑的不同,初始網(wǎng)格尺寸也不同,最大網(wǎng)格不大于1.2mm,加密后最小網(wǎng)格不大于0.1mm,此時(shí)繼續(xù)加密網(wǎng)格流場(chǎng)結(jié)構(gòu)不發(fā)生變化.圖1所示為Ma=4.0,D=5mm,加密層數(shù)為3和4,即最小網(wǎng)格為0.125mm和0.06mm時(shí)的網(wǎng)格加密情況.可以看到加密處基本不變.圖2為這兩種加密情況下,球頭前的壓力溫度分布曲線,圖中的數(shù)字表示加密層數(shù),兩種加密網(wǎng)格的壓力和溫度曲線基本重合.

    圖1 Ma=4.0,D=5mm,加密層數(shù)3(左),4(右)網(wǎng)格分布Fig.1Ma=4.0,D=5mm,encryption layer 3(left)and 4(right)grid distribution

    圖2 Ma=4.0,D=5mm,y=0時(shí)的壓力和溫度變化Fig.2Ma=4.0,D=5mm,the pressure and temperature at liney=0 variation diagram

    2.1 算例與討論

    算例1 球體直徑D=5mm

    當(dāng)球體直徑為5mm時(shí),馬赫數(shù)的增大不會(huì)引發(fā)爆轟波.當(dāng)馬赫數(shù)為4.0的時(shí)候,駐點(diǎn)附近溫度達(dá)到自燃溫度,氣體燃燒并向下游傳播.由于鈍頭體為球形,氣體先受到球體的壓縮作用,后受到膨脹作用.由于稀疏波的影響,燃燒熄滅,鈍頭體下游不會(huì)出現(xiàn)燃燒帶,如圖3.

    圖3 Ma=4.0,D=5mm,壓力(上)、溫度(下)分布圖Fig.3Ma=4.0,D=5mm,pressure(upper)and temperature(lower) distribution

    當(dāng)馬赫數(shù)為5.0的時(shí)候,駐點(diǎn)附近的燃燒延續(xù)到下游流場(chǎng),形成燃燒帶與激波非耦合的現(xiàn)象,如圖4.

    圖4 Ma=5.0,D=5mm,壓力(上)、溫度(下)分布圖Fig.4Ma=5.0,D=5mm,pressure(upper)and temperature(lower) distribution

    繼續(xù)增大來(lái)流速度直至馬赫數(shù)為15,流場(chǎng)結(jié)構(gòu)都為燃燒帶與激波非耦合的情況,馬赫數(shù)較大時(shí)只會(huì)導(dǎo)致燃燒帶變寬,流場(chǎng)結(jié)構(gòu)不會(huì)出現(xiàn)變化.

    為界定燃燒熄滅與非耦合情況的臨界馬赫數(shù),分析馬赫數(shù)為4.12和4.14時(shí)的流場(chǎng)結(jié)構(gòu).結(jié)果表明當(dāng)馬赫數(shù)大于4.1時(shí),出現(xiàn)燃燒帶與激波非耦合的情況,且最大溫度也會(huì)有較大的變化,如圖5所示.

    可以看到,當(dāng)馬赫數(shù)從4.1變化到4.12的時(shí)候,不僅流場(chǎng)結(jié)構(gòu)出現(xiàn)變化,駐點(diǎn)溫度大幅升高,因此當(dāng)精度為0.02時(shí),臨界馬赫數(shù)等于4.1.

    圖5 最高溫度隨馬赫數(shù)的變化Fig.5 Maximum temperature with di ff erent Mach numbers

    算例2 球體直徑D=15mm

    當(dāng)球體直徑為 15mm時(shí),流場(chǎng)結(jié)構(gòu)與直徑為5mm時(shí)的不完全一樣.馬赫數(shù)為4.0的時(shí)候,流場(chǎng)結(jié)構(gòu)與直徑為5mm時(shí)相似,但是在馬赫數(shù)為5.0的時(shí)候,直徑15mm鈍頭體可以直接引發(fā)爆轟波,如圖6所示.

    圖6 D=15mm,壓力(上)、溫度(下)分布圖Fig.6D=15mm,pressure(upper)and temperature(lower) distribution

    為研究在馬赫數(shù)4.0~5.0之間的流場(chǎng)情況,馬赫數(shù)變化步長(zhǎng)設(shè)為0.1.結(jié)果發(fā)現(xiàn),在馬赫數(shù)為4.1的時(shí)候,流場(chǎng)并不出現(xiàn)燃燒帶與激波非耦合的情況,而是在駐點(diǎn)位置引發(fā)爆轟波,并誘發(fā)下游流場(chǎng)形成爆轟波.由于C-J爆速大于此時(shí)的來(lái)流馬赫數(shù),爆轟波無(wú)法駐定,向上游傳播.

    對(duì)比直徑為5mm和15mm的結(jié)果可以看到,在爆轟燃燒中,在同樣的流場(chǎng)條件下,鈍頭體的尺度是誘發(fā)爆轟波的一個(gè)重要參數(shù).

    2.2 流場(chǎng)結(jié)構(gòu)隨來(lái)流馬赫數(shù)和球體直徑變化的分布規(guī)律

    來(lái)流馬赫數(shù)和球體鈍頭體直徑都是影響流場(chǎng)結(jié)構(gòu)的關(guān)鍵參數(shù).為了深入研究其對(duì)流場(chǎng)的影響,設(shè)置直徑變化步長(zhǎng)為2.5mm,馬赫數(shù)變化步長(zhǎng)為0.1.流場(chǎng)結(jié)構(gòu)如圖7所示.

    從圖7可以看到,馬赫數(shù)的變化對(duì)于流場(chǎng)是否燃燒的影響較大.當(dāng)馬赫數(shù)從4.0變化到4.2之后,流場(chǎng)燃燒熄滅的情況都消失了.而球體直徑的大小對(duì)于誘發(fā)爆轟波的影響較大.當(dāng)球體直徑為5mm時(shí),鈍頭體無(wú)法誘發(fā)爆轟波;當(dāng)球體直徑增大到7.5mm時(shí),鈍頭體才能誘發(fā)爆轟波.

    圖7 馬赫數(shù)和圓球直徑對(duì)起爆的影響Fig.7 The influenc of Mach number and ball diameter on initiation

    對(duì)馬赫數(shù)為4.2,直徑為5~7.5mm進(jìn)行進(jìn)一步的數(shù)值研究發(fā)現(xiàn),如果直徑變化步長(zhǎng)為0.5mm,當(dāng)直徑小于6.5mm時(shí),流場(chǎng)結(jié)構(gòu)為燃燒帶與激波非耦合;當(dāng)直徑大于6.5mm時(shí),預(yù)混氣體在經(jīng)過(guò)一段時(shí)間后起爆;當(dāng)直徑為6.5mm時(shí),駐點(diǎn)位置的燃燒改變弓形激波在駐點(diǎn)附近的形狀,但是不足以克服稀疏波的影響,對(duì)激波的影響不能傳播到整個(gè)流場(chǎng),這一流動(dòng)是定常的.可以看到激波面由兩道斜激波構(gòu)成,在y=20mm處存在一個(gè)明顯的波面拐點(diǎn),如圖8所示.拐點(diǎn)上游是斜爆轟波,下游是斜激波,燃燒面與激波面發(fā)生了明顯的解耦.這一現(xiàn)象在楔面誘發(fā)的斜爆轟流場(chǎng)[13-16]中是不存在的.與楔面誘發(fā)斜爆轟波不同的是,氣體在流經(jīng)圓球時(shí),不僅受到激波壓縮作用,亦受到稀疏波的作用,圓球誘發(fā)的稀疏波是導(dǎo)致解耦的原因.因此可以得出結(jié)論,稀疏波與爆轟波面的相互作用是決定圓球誘發(fā)斜爆轟波的關(guān)鍵.

    圖8 Ma=4.2,D=6.5mm,壓力(上)、溫度(下)分布圖Fig.8Ma=4.2,D=6.5mm,pressure(upper)and temperature(lower) distribution

    3 結(jié)論

    本文采用數(shù)值模擬對(duì)圓球誘發(fā)斜爆轟波進(jìn)行了研究,重點(diǎn)分析了不同球體直徑對(duì)起爆的影響.當(dāng)球體直徑為5mm時(shí),流場(chǎng)結(jié)構(gòu)不會(huì)出現(xiàn)爆轟現(xiàn)象.隨著馬赫數(shù)的增加,流場(chǎng)從燃燒熄滅變到燃燒帶與激波非耦合的結(jié)構(gòu),臨界馬赫數(shù)為4.1;當(dāng)球體直徑為15mm時(shí),流場(chǎng)中能夠觀測(cè)到爆轟現(xiàn)象.隨著馬赫數(shù)的增加,流場(chǎng)從燃燒熄滅變到誘發(fā)爆轟波,但是不會(huì)出現(xiàn)燃燒帶與激波非耦合的情況;當(dāng)球體直徑在5~15mm之間,馬赫數(shù)高于4.1的時(shí)候,燃燒熄滅的情況不再出現(xiàn),球體直徑對(duì)于爆轟波引發(fā)的影響明顯,且當(dāng)直徑大于6.5mm的時(shí)候開(kāi)始出現(xiàn)爆轟現(xiàn)象.

    以前的學(xué)者對(duì)楔面誘發(fā)斜爆轟波進(jìn)行了較多的研究,但是對(duì)球體誘發(fā)斜爆轟波還缺乏深入的研究.這種斜爆轟波的引發(fā)過(guò)程更加復(fù)雜,涉及到正激波/爆轟波、稀疏波與斜激波/爆轟波的相互作用.由于不同的直徑會(huì)誘發(fā)不同強(qiáng)度的稀疏波,它們與燃燒的相互作用成為能否成功起爆的關(guān)鍵.本文的研究證實(shí)大直徑圓球更容易誘發(fā)爆轟波,和以前的起爆實(shí)驗(yàn)與理論[17]結(jié)果也是定性一致的.下一步需要在此基礎(chǔ)上,對(duì)臨界狀態(tài)下膨脹波與激波誘發(fā)燃燒的相互作用進(jìn)行深入、系統(tǒng)的研究,從而建立適應(yīng)工程應(yīng)用的起爆模型.

    1 董剛,范寶春,謝波.氫氣--空氣混合物中瞬態(tài)爆轟過(guò)程的二維數(shù)組模擬.高壓物理學(xué)報(bào),2004,18(1):40-46(Dong Gang,Fan Baochun,Xie bo.Two-dimensional simulation of transient detonation process for H2-O2-N2mixture.Chinese Journal of High Pressure Physics,2004,18(1):40-46(in Chinese))

    2 LinW,ZhouJ,LiuS,etal.Experimentalstudyonpropagationmode of H2/air continuously rotating detonation wave.International Journal of Hydrogen Energy,2015,40(4):1980-1993

    3 Voland RT,Huebner LD,McClinton CR.X-43A hypersonic vehicle technology development.Acta Astronautica,2006,59(1-5):181-191

    4 林志勇,周進(jìn),張繼業(yè)等.預(yù)混超聲速氣流斜激波誘發(fā)脫體爆轟研究.航空動(dòng)力學(xué)報(bào),2009,24(1):50-54(Lin Zhiyong,Zhou Jin, Zhang Jiye,et al.Investigation of detached detonation induced by oblique shock in premixed supersonic fl w.Journal of Aerospace Power,2009,24(1):50-54(in Chinese))

    5 Rudy W,Dziubanii K,Zbikowski M,et al.Experimental determination of critical conditions for hydrogen-air detonation propagation in partially confine geometry.International Journal of Hydrogen Energy,2016,1-8

    6 Wang C,Dong XZ,Shu CW.Parallel adaptive mesh refinemen method based on WENO finit di ff erence scheme for the simulation ofmulti-dimensional detonation.Journalof Computational Physics, 2015,298:161-175

    7 Zhang Z,Li Z,Dong G.Numerical studies of multi-cycle acetyleneair detonation induced by shock focusing.Procedia Engineering, 2015,99:327-331

    8 王成,寧建國(guó),雷娟.障礙物對(duì)氫氧預(yù)混氣體爆轟波傳播的影響//慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì),北京,2007(Wang Cheng,Ning Jianguo,Lei Juan.The influenc of obstaclesonthepropagationofH2-airdetonation//Celebrationofthe 50 Anniversary of the Founding of the Chinese Society of Mechanics and the Academic Conference of Chinese Society of Mechanics, Beijing,2007(in Chinese))

    9 Wang C,Dong XZ,Shu CW.Parallel adaptive mesh refinemen method based on WENO finit di ff erence scheme for the simulation ofmulti-dimensional detonation.Journalof Computational Physics, 2015,298:161-175

    10 Li C,Kailasanath K,Oran ES.Detonation structures behind oblique shocks.Phys Fluids,1994,6:1600-1611

    11 Viguier C,Silva LFFD,Desbordes D,et al.Onset of oblique detonation waves:comparison between experimental and numerical results for hydrogen–air mixtures.Proc Combust Inst,1997,26:3023-3031

    12 Choi JY,Kim DW,Jeung IS,et al.Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation.Proc Combust Inst,2007,31:2473-2480

    13 Teng HH,Jiang ZL,Ng HD.Numerical study on unstable surfaces ofobliquedetonations.JournalofFluidMechanics,2014,744:111-128

    14 Teng HH,Ng HD,Li K,et al.Evolution of cellular structures on oblique detonation surfaces.Combustion and Flame,2015,162(2): 470-477

    15 Teng HH,Jiang ZL.On the transition pattern of the oblique detonation structure.Journal of Fluid Mechanics,2012,713:659-669

    16 Zhang Y,Gong J,Wang T.Numerical study on initiation of oblique detonations in hydrogen–air mixtures with various equivalence ratios.Aerospace Science and Technology,2016,49:130-134

    17 Wang T,Zhang YN,Teng HH,et al.Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture,Physics of Fluids,2015,27(9):096101

    18 Lehr HF.Experiments on shock-Induced combustion.Astronautica Acta,1972,17:589-597

    19 Kaneshige MJ,Shepherd JE.Oblique detonation stabilized on a hypervelocity projectile//26th Symp.(Int.)on Combustion,Pittsburgh, 1996.3015

    20 Ju Y,Masuya G,Sasoh A.Numerical and theoretical studies on detonation initiation by a supersonic projectile.Symposium on Combustion,1998,27(2):2225-2231

    21 Maeda,S,Inada,R,Kasahara,J,et al.Visualization of the nonsteady state oblique detonation wave phenomena around hypersonic spherical projectile.Proc Combust Inst,2011,33:2343-2349

    22 Maeda S,Kasahara J,Matsuo A.Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation.Combustion and Flame,2012,159(2):887-896

    23 Maeda S,Sumiya S,Kasahara J,et al.Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles.Proceedings of the Combustion Institute,2013,34(2):1973-1980

    24 Maeda S,Sumiya S,Kasahara J,et al.Scale e ff ect of spherical projectiles for stabilization of oblique detonation waves.Shock Waves, 2015,25(2):141-150

    25 Choi JY,Maeda S,Kasahara J,et al.Calculation of drag coefficients for hypersonic spherical projectiles initiating oblique detonation wave or shock-induced combustion//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.2012

    26 Liu Y,Han X,Yao S,et al.A numerical investigation of the prompt oblique detonation wave sustained by a finite-lengt wedge.Shock Waves,2016:1-11

    27 SunM,TakayamaK.Conservativesmoothingonanadaptivequadrilateral grid.Journal of Computational Physics,1999,150:143-180

    28 Toro EF.Riemann Solvers and Numerical Methods for Fluid Dynamics.(Second ed).Berlin:Springer,1999

    29 Kee RJ,Rupley FM,Meeks E,et al.Chemkin-III:a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics.UC-405,SAND96-8216,Sandia National Laboratories, 1996

    30 BrownPN,ByrneGD,HindmarshAC.VODE:avariable-coefficient ODE solver.SIAM J Sci Stat Comput,1989,10(5):1038-1051

    NUMERICAL STUDY OF THE OBLIQUE DETONATION INITIATION INDUCED BY SPHERES1)

    Fang Yishen Hu Zongmin Teng Honghui2)Jiang Zonglin

    (State Key Laboratory of High-Temperature Gasdynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing100190,China)

    (School of Engineering Science,University of Chinese Academy of Sciences,Beijing100049,China)

    The oblique detonation wave engine is a new kind of engine which has a simple structure,low cost,and high specifi impulse.In order to ensure the initiation,blunt body is used to induce the oblique detonation wave.The oblique detonation wave fl w fiel induced by spheres in supersonic hydrogen/air mixture is numerically simulated,based on the Euler equations and a detailed hydrogen-oxygen chemical reaction model.Unlike the oblique detonation wave induced by a wedge,the reacting fl w around a sphere is much more complex.First,a normal shock wave/detonation wave is formed, then oblique shock wave/detonation wave is developed in the presence of a rarefaction wave.The numerical simulation results show that after the gases being compressed by the blunt body and reaching the auto-ignition temperature,two kinds of fl wfiled will appear.When Mach numbers are low,the combustion will be quenched and can not appear downstream of the blunt body due to the influenc of the rarefaction wave.When Mach numbers are high,combustion can spreadto the downstream region.When the scales of blunt body are small,energy around the stationary point is not enough to induce detonation initiation and an obvious decoupling of combustion and shock wave is formed.As the sphere becomes large enough,decoupling of combustion and shock wave will not appear in the fl w and this feature is indpendent of the Mach number.By adjusting the spheric diameter,the fl w structures with partial coupling of shock wave and combustion zone was obtained which does not exist in a wedgy-induced oblique detonation.The present investigations suggest that the interaction between rarefaction wave and detonation wavefront is the key issue for detonation initiation induced by a spheric body.

    oblique detonation,oxyhydrogen,initiation,quench

    O381

    A

    10.6052/0459-1879-16-143

    2016–05–25收稿,2016–12–09錄用,2016–12–09網(wǎng)絡(luò)版發(fā)表.

    1)國(guó)家自然科學(xué)基金資助項(xiàng)目(11372333,91641130,11532014).

    2)滕宏輝,副研究員,主要研究方向:激波與爆轟物理,爆轟燃燒推進(jìn),多相燃燒與爆炸.E-mail:hhteng@imech.ac.cn

    方宜申,胡宗民,滕宏輝,姜宗林.圓球誘發(fā)斜爆轟波的數(shù)值研究.力學(xué)學(xué)報(bào),2017,49(2):268-273

    Fang Yishen,Hu Zongmin,Teng Honghui,Jiang Zonglin.Numerical study of the oblique detonation initiation induced by spheres.Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):268-273

    猜你喜歡
    駐點(diǎn)馬赫數(shù)球體
    高馬赫數(shù)激波作用下單模界面的Richtmyer-Meshkov不穩(wěn)定性數(shù)值模擬
    爆炸與沖擊(2024年7期)2024-11-01 00:00:00
    一維非等熵可壓縮微極流體的低馬赫數(shù)極限
    計(jì)算機(jī)生成均值隨機(jī)點(diǎn)推理三、四維球體公式和表面積公式
    載荷分布對(duì)可控?cái)U(kuò)散葉型性能的影響
    基于游人游賞行為的留園駐點(diǎn)分布規(guī)律研究
    廣告創(chuàng)意新方法——球體思維兩極法
    Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model☆
    利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
    利用遠(yuǎn)教站點(diǎn),落實(shí)駐點(diǎn)干部帶學(xué)
    2300名干部進(jìn)村“串戶”辦實(shí)事
    源流(2015年8期)2015-09-16 18:01:32
    盘山县| 绍兴市| 孟村| 灵寿县| 兴仁县| 化隆| 本溪| 扎鲁特旗| 麻江县| 长治县| 兴城市| 泽普县| 郯城县| 永兴县| 抚州市| 西林县| 北辰区| 页游| 祁连县| 建水县| 台前县| 高密市| 闽侯县| 双辽市| 金寨县| 清涧县| 来凤县| 石台县| 曲靖市| 岱山县| 利辛县| 会东县| 惠州市| 惠水县| 长寿区| 阆中市| 阿图什市| 宝丰县| 临城县| 德格县| 田阳县|