朱合華陳 慶
?(同濟(jì)大學(xué)土木工程防災(zāi)國家重點(diǎn)實(shí)驗(yàn)室、巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)
?(同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)
多相材料有效性能預(yù)測的高精度方法1)
朱合華?,2)陳 慶?,3)
?(同濟(jì)大學(xué)土木工程防災(zāi)國家重點(diǎn)實(shí)驗(yàn)室、巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)
?(同濟(jì)大學(xué)先進(jìn)土木工程材料教育部重點(diǎn)實(shí)驗(yàn)室,上海200092)
有效介質(zhì)方法是常用的細(xì)觀力學(xué)方法之一.其可用于計(jì)算多相材料的有效性能,并建立材料微細(xì)觀結(jié)構(gòu)和宏觀性能的定量關(guān)系;有助于指導(dǎo)新材料設(shè)計(jì),減少試驗(yàn)工作量等.然而,當(dāng)夾雜含量升高時(shí),傳統(tǒng)有效介質(zhì)方法的計(jì)算精度下降.本文以兩相材料為研究對象,提出一種新的參考介質(zhì),即:為更合理考慮不同夾雜顆粒間的相互作用,假定參考介質(zhì)的應(yīng)變是基體相平均應(yīng)變和某一修正張量的雙點(diǎn)積.在此基礎(chǔ)上,推導(dǎo)了新參考介質(zhì)下兩相材料的有效模量表達(dá)式,并給出該修正張量的近似計(jì)算方法;通過反復(fù)更新參考介質(zhì),采用多層次均勻化思路,將本文方法進(jìn)一步用于多相材料性能的預(yù)測.為驗(yàn)證方法的有效性,將預(yù)測結(jié)果與已有模型結(jié)果和試驗(yàn)數(shù)據(jù)進(jìn)行對比.結(jié)果表明本文方法較已有方法更為合理、有效.當(dāng)夾雜含量升高時(shí),本文方法較傳統(tǒng)有效介質(zhì)方法的計(jì)算精度有所提升.
高精度方法,高夾雜含量,多夾雜,多層次均勻化,細(xì)觀力學(xué)
細(xì)觀力學(xué)常采用有效介質(zhì)方法預(yù)測復(fù)合材料的有效模量,如Eshelby法、Mori-Tanaka(M-T)法、自洽法和微分法等[1-2].文獻(xiàn)[3-9]將有效介質(zhì)方法應(yīng)用于巖石和混凝土有效模量的預(yù)測,文獻(xiàn)[10-15]則將該方法應(yīng)用于飽和與非飽和混凝土電化學(xué)沉積修復(fù)的細(xì)觀力學(xué)模型.
然而,有效介質(zhì)方法在計(jì)算高夾雜含量復(fù)合材料有效模量時(shí)較難獲得滿意的結(jié)果.比如,Eshelby法要求夾雜極其稀疏;隨著夾雜含量的增大,當(dāng)夾雜剛度低于(或高于)基體剛度時(shí),M-T方法會高估(或低估)復(fù)合材料的有效模量,而自洽法會低估(或高估)復(fù)合材料的有效性能,并且自洽法不具備顯式表達(dá),需要進(jìn)行迭代求解;應(yīng)用微分法預(yù)測有效模量時(shí),需要求解非線性微分方程組,給工程應(yīng)用帶來不便[1-2].
Ju等[16-19]近期通過假設(shè)夾雜在基體中的分布形式,基于Eshelby理論,直接計(jì)算了不同夾雜顆粒間的相互作用,得到高夾雜含量(達(dá)50%)復(fù)合材料性能高精度預(yù)測方法[16-19].可是,由于很難直接計(jì)算多相材料中不同顆粒之間的相互影響,該方法目前還僅限于兩相材料的性能預(yù)測,無法用于計(jì)算多相材料的有效性能.
為了解決傳統(tǒng)有效介質(zhì)法因夾雜含量增大導(dǎo)致計(jì)算精度下降的問題,本文提出一種多相材料性能的高精度預(yù)測方法.具體而言:首先以兩相材料為對象,定義參考介質(zhì)的剛度和基體相相同,參考介質(zhì)的應(yīng)變?yōu)榛w相平均應(yīng)變和待定修正四階張量的雙點(diǎn)積;然后,結(jié)合Ju等近期提出的兩相材料性能高精度預(yù)測方法,求解該四階張量的解析表達(dá)式,獲得高精度預(yù)測方法的參考介質(zhì)性能;最后,通過不斷更新參考介質(zhì)應(yīng)變修正張量,采用多層次均勻化的方法,獲得多相材料有效模量的高精度預(yù)測方法.
1.1 有效模量的定義
由于復(fù)合材料的微細(xì)觀結(jié)構(gòu)復(fù)雜,常采用代表性體積單元(representative volume element,RVE)的方法進(jìn)行表征.所謂代表性體積單元是基于細(xì)觀尺度定義的,一般其尺寸遠(yuǎn)大于夾雜相的尺寸,而遠(yuǎn)小于宏觀尺寸.以兩相材料為例,其有效剛度C?定義如下[1]
式中,V是代表性體積單元的體積,V0是基體的體積;V1是夾雜相的體積,為平均應(yīng)變,為平均應(yīng)力.
1.2 有效介質(zhì)法簡介
Eshelby求解了載荷作用下無限大彈性體中含單個(gè)橢球型夾雜的應(yīng)力和應(yīng)變問題[20-22].而工程材料常含有不同的夾雜相,并且同一夾雜相也有不同顆粒.在載荷作用下,不同夾雜顆粒將相互影響,使得工程材料內(nèi)部的應(yīng)變分布很難精確求解.為簡化這一求解過程,有效介質(zhì)法試圖基于Eshelby的成果并通過引入?yún)⒖冀橘|(zhì)的方式來近似處理夾雜顆粒之間的相互影響.具體而言如下[1].
(1)Eshelby法假設(shè)參考介質(zhì)的剛度C為基體的剛度C0,參考介質(zhì)的應(yīng)變ε為復(fù)合材料的平均應(yīng)變,即假設(shè)
(2)M-T法假設(shè)參考介質(zhì)的剛度C為基體的剛度C0,參考介質(zhì)的應(yīng)變ε為基體的平均應(yīng)變即
假設(shè)
(3)自洽法假定參考介質(zhì)的剛度C為復(fù)合材料的有效剛度C?,參考介質(zhì)的應(yīng)變ε為復(fù)合材料的應(yīng)變即
當(dāng)基體相和夾雜相都是各向同性、且夾雜相的形狀為球形時(shí),由M-T法預(yù)測的兩相材料的體積模量和剪切模量如下
2.1 新參考介質(zhì)定義
借鑒傳統(tǒng)有效介質(zhì)方法的假設(shè),為了獲得有效模量的顯式表達(dá),一般假設(shè)參考介質(zhì)的剛度為基體剛度.為此:
(1)借鑒Eshelby法和M-T法的假定,本文新參考介質(zhì)的剛度假定為基體的剛度C0
式中,C是參考介質(zhì)的剛度張量.
(2)為了更合理考慮不同夾雜間的影響程度,參考介質(zhì)的應(yīng)變?nèi)〈ㄐ拚龔埩亢突w相材料平均應(yīng)變的雙點(diǎn)積
式中,U和ε分別是修正四階張量和參考介質(zhì)的應(yīng)變.如果U=I(I是四階單位張量),那么本文方法就和M-T方法相同.因此,不妨認(rèn)為本文方法是一種改進(jìn)的M-T方法.
2.2 新參考介質(zhì)下兩相材料有效模量求解
根據(jù)Eshelby的成果,在新參考介質(zhì)作用下,有下式成立[1]
式中,T是關(guān)聯(lián)基體平均應(yīng)變和夾雜平均應(yīng)變的轉(zhuǎn)換張量.
假設(shè)基體相和夾雜相符合胡克定律,并根據(jù)代表性體積單元平均應(yīng)變和平均應(yīng)力的定義有
式中φ0和φ1是代表性體積單元中基體和夾雜的體積含量;是代表性體積單元中基體、夾雜和復(fù)合材料的平均應(yīng)變(應(yīng)力).
將式(14)代入式(16)可以得到
聯(lián)合式(14),式(17)和式(18)可以得到
所以,本文參考介質(zhì)下兩相材料的有效模量C?可由式(20)表示
2.3 待定的四階張量的近似求解
通過直接考慮夾雜顆粒間相互作用,筆者近期提出了一種高夾雜含量下(達(dá)到50%)兩相材料性能預(yù)測的高精度細(xì)觀力學(xué)方法[16-19].該方法的應(yīng)變集中張量表達(dá)式如下
式中K0,G0,ν0是基體的體積模量,剪切模量和泊松比;K1,G1是夾雜的體積模量和剪切模量.
另外,根據(jù)文獻(xiàn)[1]可得本文方法的應(yīng)變集中張量為
如果基體和夾雜都是各向同性,且夾雜的形狀為球形,假設(shè)式(21)和式(27)相等,經(jīng)過推導(dǎo),可以得到待定的四階張量為
式(28)等號右邊各張量的分量如下
式中δij克羅內(nèi)克符號.那么,張量U的分量可表達(dá)如下
3.1 多層次均勻化的思路
第2節(jié)關(guān)于修正張量U的求解,是借鑒了筆者近期兩相材料有效性能預(yù)測的結(jié)果,因此,該張量U尚無法直接用于多相復(fù)合材料的性能預(yù)測.為此,本節(jié)將進(jìn)一步借鑒有效介質(zhì)法的思路,通過反復(fù)更新參考介質(zhì)的性能,采用多層次均勻化思路將第二節(jié)提出方法用于多相材料性能預(yù)測[10-15,25-27].
假設(shè)有n+1相材料,其含有第1,2,··,n種夾雜.為獲取其有效性能,可采用多層次均勻化思路如下:先通過第1層均勻化獲取基體和第1種夾雜組成的等效材料,然后以此為新基體,通過第2層次均勻化,獲得新基體和第2種夾雜組成的等效材料,接著,又以此作為新的基體,依此類推,通過n層均勻化即可得到n+1相復(fù)合材料材料的有效性能[10-15,25-27].
3.2 多相材料性能預(yù)測
以n+1相材料為例,即除基體相外,還有第1,2,··,n相夾雜.其中基體相的體積為V0,剛度為C0;第1,2,··,n相夾雜的體積分別為V1,V2,··,Vn;剛度分別為C1,C2,··,Cn.
首先,采用本文改進(jìn)的有效介質(zhì)方法進(jìn)行第一層次均勻化處理,獲得基體和第一種夾雜組成的等效材料的有效性能.具體如下
接著,采用本文方法進(jìn)行第二層次均勻化處理,獲取由基體和第一、二兩種夾雜組成的三相材料的有效性能.具體如下所示
依此類推,可以得到n+1相材料的有效性能如下
式中,S0,S1和Sn-1是分別對應(yīng)于基體相(更新前的基體),第一次均勻化后的等效材料(更新一次后的基體),第n-1次均勻化后的等效材料(更新n-1次后的基體)含球形夾雜時(shí)的Eshelby張量;U0,U1和分別是基體和第一相夾雜,第一次均勻化后等效材料(更新一次后的基體)和第二相夾雜,以及第n-1次均勻化后等效材料(更新n-1次后的基體)和第n相夾雜組成的兩相材料的參考介質(zhì)應(yīng)變修正張量.
為了驗(yàn)證本章提出的模型,本文采用文獻(xiàn)[28-29]的試驗(yàn)數(shù)據(jù)進(jìn)行對比分析.其中,文獻(xiàn) [28]的材料參數(shù)是E0=3.0GPa,ν0=0.4,E1=76GPa,ν1=0.23.文獻(xiàn)[29]的材料參數(shù)是E0=0.75×106bars和ν0=0.23.材料的體積模量K和剪切模量G按如下關(guān)系式換算
將以上材料參數(shù)代入式(7)和式(8)可獲得M-T方法的計(jì)算結(jié)果;對于本文方法,首先將以上材料參數(shù)帶入式(37)和式(38)可以獲得修正張量U;然后根據(jù)式(14)可求得張量T,最后根據(jù)式(20)計(jì)算本文結(jié)果.圖1表示傳統(tǒng)M-T法與本文法預(yù)測的楊氏模量和文獻(xiàn)[28]的試驗(yàn)數(shù)據(jù)對比情況.從圖1中可以看出,本文方法預(yù)測的有效楊氏模量和試驗(yàn)數(shù)據(jù)吻合的很好,在夾雜含量較低時(shí),傳統(tǒng)M-T方法預(yù)測結(jié)果也可較好地反應(yīng)該試驗(yàn)的結(jié)果.隨著顆粒含量的提升,本文方法的精度更高.
圖1 楊氏模量對比圖Fig.1 The comparisons among the Young’s modulus obtained by experiment and di ff erent micromechanical methods
圖2表示傳統(tǒng)M-T法與本文方法預(yù)測的剪切模量和文獻(xiàn)[28]的試驗(yàn)數(shù)據(jù)對比情況.從圖2可知,在低夾雜含量下,傳統(tǒng)M-T方法和本文方法的結(jié)果相近,且都與試驗(yàn)結(jié)果吻合較好;當(dāng)高夾雜含量增加時(shí),本文方法預(yù)測的有效剪切模量依然與試驗(yàn)數(shù)據(jù)吻合的很好,而傳統(tǒng)M-T方法預(yù)測結(jié)果偏離試驗(yàn)結(jié)果較多.
圖2 剪切模量對比圖Fig.2 The comparisons among the shear modulus obtained by experiment and di ff erent micromechanical methods
圖3表示M-T法與本文方法預(yù)測的體積模量及文獻(xiàn)[29]的試驗(yàn)數(shù)據(jù)對比情況.同樣,無論是低孔隙率還是高孔隙率(50%),本文方法都可以很好地預(yù)測試驗(yàn)結(jié)果;而傳統(tǒng)的M-T方法預(yù)測的有效體積模量隨著孔隙率的增加精度呈下降趨勢.
從上面的3個(gè)例子可以看出,對于兩相材料有效模量的預(yù)測(含楊氏模量、剪切模量和體積模量),當(dāng)夾雜含量增加時(shí),本文方法的計(jì)算精度要高于傳統(tǒng)的M-T方法.
圖3 體積模量對比圖Fig.3 The comparisons among the bulk modulus obtained by experiment and di ff erent micromechanical methods
為進(jìn)一步驗(yàn)證本文方法在多相材料性能預(yù)測中的可行性,取文獻(xiàn)[30]的試驗(yàn)結(jié)果作為對比對數(shù).該試驗(yàn)材料是由基體相孔隙相和增強(qiáng)相組成,其中基體相的性能為E0=2.2GPa,ν0=0.3;孔隙相的模量取為0;增強(qiáng)相的性能為E1=75GPa,ν1=0.25.隨著孔隙含量和增強(qiáng)相的變化,三相材料的整體性能也將隨之變化.表1是不同細(xì)觀力學(xué)模型預(yù)測結(jié)果和試驗(yàn)結(jié)果的對比情況.從表1中可以看出,本文方法與M-T方法預(yù)測結(jié)果相近.但是,本文方法預(yù)測結(jié)果(平均誤差8.6%)比M-T方法(平均誤差11.8%)更接近試驗(yàn)結(jié)果.
當(dāng)夾雜含量較高時(shí),傳統(tǒng)有效介質(zhì)方法的計(jì)算精度會下降.本文通過改變傳統(tǒng)有效介質(zhì)法中參考介質(zhì)的應(yīng)變來提升其計(jì)算精度,即:假設(shè)參考介質(zhì)的應(yīng)變是基體相平均應(yīng)變和某一修正張量的雙點(diǎn)積;并基于筆者近期的成果給出了兩相材料該修正張量的近似計(jì)算方法;進(jìn)一步,通過不斷更新修正張量,采用多層次均勻化思路,預(yù)測了多相材料的性能.經(jīng)對比驗(yàn)證,本文方法計(jì)算結(jié)果較傳統(tǒng)有效介質(zhì)方法(以Mori-Tanaka為例)更合理、有效.
表1 不同細(xì)觀力學(xué)模型預(yù)測結(jié)果和試驗(yàn)結(jié)果對比Table 1 The comparisons among the results obtained by experiment and dif f erent micromechanical methods
致謝感謝美國UCLA的朱建文教授在論文寫作過程中給予的指導(dǎo).
1 Qu JM,Cherkaoui M.Fundamentals of Micromechanics of Solids. Hoboken,New Jersey:John Wiley&Sons,Inc.2006
2 Mura T.Micromechanics of Defects in Solids.The Netherlands:Martinus Nijhof fPublishers,1987
3 Sheng P.Ef f ective-medium theory of sedimentary rocks.Physical Review B,1990,41:4507-4512
4 Sheng P,Callegari A.Dif f erential ef f ective medium theory of sedimentary rocks.Applied Physics Letters,1984,44:738-740
5 Nguyen N,Giraud A,Grgic D.A composite sphere assemblage model for porous oolitic rocks.International Journal of Rock Mechanics and Mining Sciences,2011,48:909-921
6 Li G,Zhao Y,Pang SS.Four-phase sphere modeling of ef f ective bulk modulus of concrete.Cement and Concrete Research,1999, 29:839-845
7 Wang H,Li Q.Prediction of elastic modulus and Poisson’s ratio for unsaturatedconcrete.InternationalJournalofSolidsandStructures, 2007,44:1370-1379
8 Yaman I,Aktan H,Hearn N.Active and non-active porosity in concrete part II:evaluation of existing models.Materials and Structures,2002,35:110-116
9 王海龍,李慶斌.飽和混凝土的彈性模量預(yù)測.清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,45(6):761-763(Wang Hailong,Li Qingbin. Saturated concrete elastic modulus prediction.Journal of Tsinghua University(Science and Technology),2005,45(6):761-763(in Chinese))
10 Zhu HH,Chen Q,Yan ZG,et al.Micromechanical model for satu-rated concrete repaired by electrochemical deposition method.Materials and Structures,2014,47:1067-1082
11 Yan ZG,Chen Q,Zhu HH,et al.A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method.International Journal of Solids and Structures,2013, 50(24):3875-3885
12 陳慶.多相材料隨機(jī)細(xì)觀力學(xué)模型及其在電化學(xué)沉積修復(fù)混凝土中的應(yīng)用.[博士論文].上海:同濟(jì)大學(xué),2014(Chen Qing.The stochastic micromechanical models of the multiphase materials and their applications for the concrete repaired by electrochemical deposition method.[PhD Thesis].Shanghai:Tongji University,2014(in Chinese))
13 陳慶,朱合華,閆治國等.基于Mori-Tanaka法的電化學(xué)沉積修復(fù)飽和混凝土細(xì)觀描述.建筑結(jié)構(gòu)學(xué)報(bào),2015,36(1):98-103 (Chen Qing,Zhu Hehua,Yan Zhiguo,et al.Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on Mori-Tanaka method.Journal of Building Structures,2015,36(1):98-103(in Chinese))
14 陳慶,朱合華,閆治國等.基于自洽理論的電化學(xué)沉積修復(fù)飽和混凝土細(xì)觀描述.力學(xué)學(xué)報(bào),2015,47(2):367-371(Chen Qing,Zhu Hehua,Yan Zhiguo,et al.Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method.Chinese Journal of Theoretical and Applied Mechanics,2015,47(2):367-371(in Chinese))
15 Chen Q,Jiang ZW,Yang ZH,et al.Dif f erential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method.Materials and Structures,2016, 49(12):5183-5193
16 Ju JW,Chen T.Ef f ective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities.Acta Mechanica,1994,103:123-144
17 Ju JW,Chen T.Micromechanics and ef f ective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities.Acta Mechanica,1994,103:103-121
18 Chen Q,Zhu HH,Ju JW,et al. A stochastic micromechanical model for multiphase composite containing spherical inhomogeneities.Acta Mechanica,2015,226(6):1861-1880
19 Zhu HH,Chen Q,Ju JW,et al.Maximum entropy based stochastic micromechanical model for two-phase composite considering the inter-particle interaction ef f ect.Acta Mechanica,2015,226(9):3069-3084
20 Eshelby JD.The determination of the elastic fiel of an ellipsoidal inclusion,and related problems.Proceedings of the Royal Society of London.Series A.Mathematical and Physical Sciences,1957,241:376-396
21 Eshelby JD.The elastic fiel outside an ellipsoidal inclusion.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1959,252:561-569
22 Eshelby JD.Elastic inclusions and inhomogeneities.Progress in Solid Mechanics,1961,2:89-140
23 Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfittininclusions.Acta metallurgica, 1973,21:571-574
24 Benveniste Y.A new approach to the application of Mori-Tanaka’s theory in composite materials.Mechanics of materials,1987,6:147-157
25 Chen Q,Zhu HH,Yan ZG,et al.A multiphase micromechanical model for hybrid fibe reinforced concrete considering the aggregate and ITZ ef f ects.Construction and Building Materials,2016, 114:839-850
26 Nezhad MM,Zhu HH,Ju JW,et al.A simplifie multiscale damage model for the transversely isotropic shale rocks under tensile loading.International Journal of Damage Mechanics,2016,25:705-726
27 ChenQ,NezhadMM,FisherQ,etal.Multi-scaleapproachformodeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone.International Journal of Rock Mechanics and Mining Sciences,2016,84:95-104
28 Smith JC.Experimental values for the elastic constants of a particulate-filleglassy polymer.Journal of Research of the National Bureau of Standards,1976,80A:45-49
29 Walsh JB,Brace WE,England AW.Ef f ect of porosity on compressibility of glass.Journal of the American Ceramic Society,1965,48:605-608
30 Cohen L,Ishai O.The elastic properties of three-phase composites.Journal of Composite Materials,1967,1:390-403
AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY1)
Zhu Hehua?,2)Chen Qing?,3)
?(China State Key Laboratory for Disaster Reduction in Civil Engineering,Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education,Tongji University,Shanghai200092,China)
?(Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education,Tongji University,Shanghai200092,China)
The ef f ective medium approach is one of the common micromechanical methods,which can be utilized to predict the material’s ef f ective properties and set up the quantitative relationship between the material’s microstructures and macroscopic properties.It is helpful and meaningful for the new material design and reducing the(experimental) workload to use these micromechanical estimations of the material’s properties.However,the calculation accuracy will decline when the ef f ective medium method is adopted to estimate the ef f ective properties of the composite with high volume fraction of inclusions.Therefore,in this paper the two-phase composite is taken as the example firstl and the strain of the reference medium is assumed to be the product of the average strain of the matrix and a modifying tensor. Thentheexpressionsoftheef f ectivemodulusarederivedwiththeproposedreferencemedium.What’smore,thesolutions for modifyingtensorarereached by using theachievementwe obtained recently.Further,through optimizingthereferencemedium repeatedly,with the help of multi-level homogenization scheme,the proposed modifie method is extended to predict the properties of the multiphase composite with many types of inclusions.To verify our proposed framework, the predictions are compared with the experimental data and the results of existing models.The comparisons show that the estimations of the presented method are more reasonable and acceptable.When the volume fraction of inclusions is higher,the calculation accuracy of the presented method in this paper is better than those of the existing ef f ective medium methods.
high accuracy approach,high volume fraction of inclusion,multi-inclusions,multi-level homogenization, micromechanics
O343.7
A doi:10.6052/0459-1879-16-347
2016-11-25收稿,2016-11-28錄用,2016-12-02網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金(51508404,U1534207)和高性能土木工程材料國家重點(diǎn)實(shí)驗(yàn)室(2015CEM008)資助項(xiàng)目.
2)朱合華,教授,主要研究方向:隧道及地下結(jié)構(gòu)計(jì)算方法.E-mail:zhuhehua@#edu.cn
3)陳慶,助理研究員,主要研究方向:混凝土修復(fù),細(xì)觀力學(xué),地下結(jié)構(gòu).E-mail:chenqing19831014@163.com
朱合華,陳慶.多相材料有效性能預(yù)測的高精度方法.力學(xué)學(xué)報(bào),2017,49(1):41-47
Zhu Hehua,Chen Qing.An approach for predicting the e ff ective properties of multiphase composite with high accuracy.Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):41-47