孔令燕,梁繼祥,薛華丹,王怡寧,王 沄,金征宇,張大明,陳 瑾
中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院放射科,北京 100730
·Force CT專欄 論著·
自動(dòng)管電壓選擇技術(shù)在第3代雙源CT大螺距主動(dòng)脈CT血管成像掃描中的初步應(yīng)用
孔令燕,梁繼祥,薛華丹,王怡寧,王 沄,金征宇,張大明,陳 瑾
中國(guó)醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院放射科,北京 100730
目的評(píng)價(jià)自動(dòng)管電壓選擇技術(shù)在第3代雙源CT大螺距心電門控主動(dòng)脈CT血管成像(CTA)掃描中的應(yīng)用情況。方法采用簡(jiǎn)單隨機(jī)分組法將59例臨床行全主動(dòng)脈CTA掃描的患者隨機(jī)分為2組:(1)組1(n=31):采用自動(dòng)管電壓選擇技術(shù)進(jìn)行掃描,參考管電壓為100 kV,參考管電流為288 mA;(2)組2(n=28):采用自動(dòng)管電流調(diào)節(jié)技術(shù)進(jìn)行掃描,管電壓固定100 kV,參考管電流為288 mA。兩組患者均在第3代雙源CT上進(jìn)行掃描,探測(cè)器準(zhǔn)直為2×192×0.6 mm,旋轉(zhuǎn)時(shí)間為0.25 s;采用大螺距心電門控掃描方式進(jìn)行掃描,螺距 3.0。兩組患者均為靜脈團(tuán)注370 mgI/L的對(duì)比劑,后續(xù)生理鹽水:組1對(duì)比劑和生理鹽水的劑量及注射速率根據(jù)實(shí)際管電壓值來設(shè)定;組2均注射對(duì)比劑45 ml,注射速度4.5 ml/s,后續(xù)50 ml生理鹽水,注射速度5.0 ml/s。兩組患者掃描均采用自動(dòng)團(tuán)注跟蹤觸發(fā)技術(shù),選取主動(dòng)脈起始部放置感興趣區(qū)(ROI),ROI 內(nèi)平均CT值達(dá)到100 HU時(shí)自動(dòng)觸發(fā)掃描,延遲時(shí)間6 s。分別計(jì)算兩組患者主動(dòng)脈掃描的有效劑量(ED)、圖像信噪比(SNR)、對(duì)比噪聲比 (CNR),并對(duì)圖像質(zhì)量進(jìn)行主觀評(píng)價(jià)。結(jié)果組1掃描ED為(2.48±0.80)mSv,較組2的(3.15±0.86)mSv降低21.3%(t=-3.099,P=0.000)。兩組患者在主動(dòng)脈各部位(升主動(dòng)脈、主動(dòng)脈弓、腹主動(dòng)脈起始部及腹主動(dòng)脈分叉部位)的強(qiáng)化值、噪聲、SNR和CNR差異均無統(tǒng)計(jì)學(xué)意義(P均>0.05)。兩組圖像主觀質(zhì)量評(píng)價(jià)差異也無統(tǒng)計(jì)學(xué)意義[(1.41±0.50)分比(1.39±0.50)分;W=828.5,P=0.837]。結(jié)論與自動(dòng)管電流調(diào)節(jié)技術(shù)相比,在第3代雙源CT大螺距主動(dòng)脈CTA掃描中采用自動(dòng)管電壓選擇技術(shù)能夠在保證圖像質(zhì)量的同時(shí),顯著降低輻射劑量。
主動(dòng)脈;CT血管成像;大螺距;輻射劑量;圖像質(zhì)量
ActaAcadMedSin,2017,39(1):62-67
雙源CT大螺距CT血管成像(computed tomographic angiography,CTA)掃描是目前臨床常用的主動(dòng)脈CTA掃描技術(shù)[1- 6],具有以下優(yōu)點(diǎn):(1)掃描速度快,降低了主動(dòng)脈根部搏動(dòng)偽影的影響;(2)與常規(guī)螺旋掃描技術(shù)相比,可明顯降低輻射劑量及對(duì)比劑用量[1- 2]。關(guān)于降低主動(dòng)脈CTA輻射劑量方面的研究有很多,但多采用降低管電壓的方法,而降低管電壓會(huì)導(dǎo)致圖像噪音增大,信噪比降低,圖像質(zhì)量下降。因此,這些研究多采用迭代重建技術(shù)達(dá)到降低圖像噪音,提高圖像質(zhì)量的目的。研究顯示,采用低管電壓掃描程序的圖像,其圖像質(zhì)量相對(duì)于常規(guī)的100 kV或120 kV掃描程序,仍然有不同程度的下降[7- 9]。此外,低管電壓掃描程序應(yīng)用對(duì)患者的體質(zhì)量有一定要求,通常認(rèn)為體質(zhì)量或體質(zhì)量指數(shù)(body mass index,BMI)過大的患者不適合采用低管電壓掃描程序。因此,采用個(gè)性化掃描程序,根據(jù)患者體型選擇管電壓和管電流,在實(shí)現(xiàn)適當(dāng)降低放射劑量目的的同時(shí)保證圖像質(zhì)量,是CT掃描技術(shù)的發(fā)展方向。目前,自動(dòng)管電流調(diào)節(jié)技術(shù)已成為調(diào)節(jié)放射劑量的常用方法,該技術(shù)能夠根據(jù)在定位像上測(cè)定的患者不同部位CT值來自動(dòng)調(diào)節(jié)掃描時(shí)的管電流,采用這種技術(shù)進(jìn)行掃描時(shí),管電壓是固定的[10]。此外,自動(dòng)管電壓選擇技術(shù)也在逐漸進(jìn)入臨床,其能夠根據(jù)定位像的CT值以及事先設(shè)定的圖像質(zhì)量參數(shù)來自動(dòng)選擇最佳的管電壓和管電流,從而達(dá)到適當(dāng)降低放射劑量并保證圖像質(zhì)量的目的[11- 13]。本研究以自動(dòng)管電流調(diào)節(jié)技術(shù)為對(duì)照,評(píng)估了自動(dòng)管電壓選擇技術(shù)在第3代雙源CT大螺距心電門控主動(dòng)脈CTA掃描中的應(yīng)用價(jià)值。
對(duì)象及分組2016年1月至2016年5月在北京協(xié)和醫(yī)院就診、臨床懷疑或診斷主動(dòng)脈疾病或主動(dòng)脈疾病術(shù)后復(fù)查、建議行主動(dòng)脈CTA檢查的患者59例,其中,男41例,女18例,平均年齡(52.2±19.6)歲(18~85歲);懷疑主動(dòng)脈疾病22例,主動(dòng)脈瘤術(shù)后18例,主動(dòng)脈夾層術(shù)后8例,大動(dòng)脈炎隨診11例。排除標(biāo)準(zhǔn):(1)年齡<18歲;(2)腎功能異常(血清肌酐≥120 μmol/L);(3)含碘對(duì)比劑過敏病史;(4)活動(dòng)性甲狀腺功能亢進(jìn);(5)血液動(dòng)力學(xué)狀態(tài)不穩(wěn)定;(6)妊娠期婦女。采用簡(jiǎn)單隨機(jī)分組法將患者隨機(jī)分為2組:(1)組1(n=31):采用自動(dòng)管電壓選擇技術(shù)進(jìn)行掃描;(2)組2(n=28):采用自動(dòng)管電流調(diào)節(jié)技術(shù)進(jìn)行掃描。
圖像采集兩組患者均在第3代雙源CT(SOMATOM Definition Force,Siemens Healthcare,F(xiàn)orchheim,Germany)上采用大螺距心電門控掃描方式進(jìn)行掃描,掃描參數(shù)如下:(1)探測(cè)器準(zhǔn)直:2×192×0.6 mm;(2)旋轉(zhuǎn)時(shí)間:0.25 s;(3)螺距:3.0。組1采用自動(dòng)管電壓選擇技術(shù)進(jìn)行掃描,參考管電壓為100 kV,參考管電流為288 mA。組2采用自動(dòng)管電流調(diào)節(jié)技術(shù)進(jìn)行掃描,管電壓固定100 kV,參考管電流為288 mA。掃描范圍自胸廓入口處至股骨頭上方。
對(duì)比劑注射兩組患者均靜脈團(tuán)注370 mgI/L對(duì)比劑,后續(xù)生理鹽水。組1對(duì)比劑和生理鹽水的劑量及注射速率根據(jù)實(shí)際管電壓值來設(shè)定:(1)100 kV:45 ml對(duì)比劑,注射速率4.5 ml/s,50 ml生理鹽水,注射速率5.0 ml/s;(2)90 kV:40 ml對(duì)比劑,注射速率4.0 ml/s,45 ml生理鹽水,注射速率4.5 ml/s;(3)80 kV:35 ml對(duì)比劑,注射速率3.5 ml/s,40 ml生理鹽水,注射速率4.0 ml/s;(4)70 kV:30 ml對(duì)比劑,注射速率3.0 ml/s,35 ml生理鹽水,注射速率3.5 ml/s。組2患者均注射對(duì)比劑45 ml,注射速度4.5 ml/s,后續(xù)50 ml生理鹽水,注射速度5.0 ml/s。兩組患者掃描均采用自動(dòng)團(tuán)注跟蹤觸發(fā)技術(shù),選取主動(dòng)脈起始部放置感興趣區(qū)(region of interest,ROI),ROI 內(nèi)平均CT值達(dá)到100 HU時(shí)自動(dòng)觸發(fā)掃描,延遲時(shí)間6 s。
圖像重建兩組患者均采用高級(jí)模擬迭代重建(advanced modeled iterative reconstruction,ADMIRE;Siemens Healthcare,F(xiàn)orchheim,Germany) 進(jìn)行軸位圖像重建。兩組軸位重建圖像均為層厚1 mm,層間距0.7 mm,kernel值BV40。軸位圖像傳送至工作站(Syngo.Via CTA,Siemens Healthcare,F(xiàn)orchheim,Germany)進(jìn)行后處理,后處理方法包括多層面重建、最大密度投影、容積重現(xiàn)技術(shù)及曲面重建。
圖像質(zhì)量評(píng)價(jià)由1位在心血管影像診斷方面經(jīng)驗(yàn)豐富的醫(yī)生獨(dú)立對(duì)圖像進(jìn)行測(cè)量和評(píng)價(jià)。在軸位圖像上進(jìn)行測(cè)量。分別在升主動(dòng)脈、主動(dòng)脈弓、腹主動(dòng)脈起始部、腹主動(dòng)脈分叉部位施畫ROI,ROI為圓形,面積為100 mm2,如施畫ROI的部位血管截面面積小于100 mm2,則盡量使ROI包括整個(gè)強(qiáng)化的管腔,同時(shí)注意避開管壁或斑塊[11]。測(cè)量ROI內(nèi)的平均CT值和標(biāo)準(zhǔn)差。在腹主動(dòng)脈臨近腰大肌組織中施畫ROI,測(cè)量其平均CT值,在空氣中施畫ROI,測(cè)量其噪音標(biāo)準(zhǔn)差,用于對(duì)比噪聲比(contrast to noise ratio,CNR)的計(jì)算。分別計(jì)算不同部位主動(dòng)脈管腔的信噪比(signal to noise ratio,SNR;SNR=平均強(qiáng)化值/噪聲值)和CNR(平均強(qiáng)化值-對(duì)比組織的強(qiáng)化值/背景噪聲值)。同時(shí),對(duì)主動(dòng)脈圖像質(zhì)量進(jìn)行主觀評(píng)價(jià)。分別在升主動(dòng)脈、主動(dòng)脈弓、腹主動(dòng)脈起始部、腹主動(dòng)脈分叉部位進(jìn)行評(píng)價(jià)。評(píng)價(jià)采用3分值評(píng)分法:1分:圖像質(zhì)量好,無運(yùn)動(dòng)或階梯偽影;2分:圖像質(zhì)量尚可,稍有模糊但仍可評(píng)價(jià);3分:圖像質(zhì)量差,圖像明顯模糊或解剖結(jié)構(gòu)邊緣出現(xiàn)重影,無法評(píng)價(jià)。
輻射劑量評(píng)價(jià)記錄主動(dòng)脈CTA掃描的劑量長(zhǎng)度乘積(dose-length product,DLP),有效劑量(effective dose,ED)采用DLP乘以換算參數(shù)0.017 mSv/[mGy·cm]來計(jì)算[14]。
統(tǒng)計(jì)學(xué)處理采用SPSS 17.0統(tǒng)計(jì)軟件,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,組間圖像的SNR、CNR和ED比較采用獨(dú)立樣本t檢驗(yàn),組間患者圖像質(zhì)量評(píng)分的比較采用兩獨(dú)立樣本秩和檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
人口學(xué)資料及掃描參數(shù)的比較兩組患者在年齡[(49.42±21.14)歲比(55.18±17.62)歲;t=-1.130,P=0.263]、體質(zhì)量[(68.34±11.11)kg比(66.71±11.94)kg;t=0.541,P=0.590]、身高[(1.69±0.08)m比(1.66±0.09)m;t=1.624,P=0.110]、BMI[(23.78±2.59)kg/m2比(24.27±3.23)kg/m2;t=-0.643,P=0.523]方面差異無統(tǒng)計(jì)學(xué)意義。組1實(shí)際管電流明顯高于組2[(428.16±57.48)mA比(314.54±62.33)mA;t=7.285,P=0.000](表1)。
圖像質(zhì)量的比較兩組患者在主動(dòng)脈各部位(升主動(dòng)脈、主動(dòng)脈弓、腹主動(dòng)脈起始部及腹主動(dòng)脈分叉部位)的強(qiáng)化值、噪聲、SNR和CNR差異均無統(tǒng)計(jì)學(xué)意義(P均>0.05)(表2)。兩組圖像主觀質(zhì)量評(píng)價(jià)差異無統(tǒng)計(jì)學(xué)意義[(1.41±0.50)分比(1.39±0.50)分;W=828.5,P=0.837)](圖1)。
輻射劑量的比較組1平均DLP為(146.20±47.31)mGy·cm,明顯低于組2的(185.56±50.36)mGy·cm(t=-3.095,P= 0.000);組1掃描ED為(2.48±0.80)mSv,較組2的(3.15±0.86)mSv降低21.3%(t=-3.099,P=0.000)。
表1 兩組人口學(xué)資料和掃描參數(shù)的比較Table 1 Comparison of demographic data and examination parameters between two groups
BMI:體質(zhì)量指數(shù);ADMIRE:高級(jí)模擬迭代重建
BMI:body mass index;ADMIRE:advanced modeled iteractive reconstruction
表2 兩組主動(dòng)脈各部位強(qiáng)化值、噪聲、SNR和CNR的比較Table 2 Comparison of attenuation,image noise,SNR,and CNR between two groups(x-±s)
SNR:信噪比;CNR:對(duì)比噪聲比
SNR:signal to noise ratio;CNR:contrast to noise ratio
VRT:容積重現(xiàn)技術(shù);MIP:最大密度投影
VRT:volume rendering technique;MIP:maximal intensity projection
A.采用自動(dòng)管電壓選擇技術(shù)獲得的VRT圖像;B.采用自動(dòng)管電壓選擇技術(shù)獲得的MIP圖像,示右側(cè)腎動(dòng)脈支架術(shù)后;C.采用固定管電壓自動(dòng)管電流調(diào)節(jié)技術(shù)獲得的VRT圖像;D. 采用固定管電壓自動(dòng)管電流調(diào)節(jié)技術(shù)獲得的MIP圖像,示右側(cè)腎動(dòng)脈支架術(shù)后
A. VRT image generated using automated tube potential selection technique;B.MIP image generated using automated tube potential selection technique,showing right renal artery after stent implantation;C. VRT image generated using fixed tube potential with automated tube current modulation technique;D. MIP image generated using automated tube potential selection technique,showing right renal artery after stent implantation
圖1 采用自動(dòng)管電壓選擇技術(shù)和固定管電壓自動(dòng)管電流調(diào)節(jié)技術(shù)獲得的主動(dòng)脈重建圖像
Fig 1 Reconstructions with images generated using automated tube potential selection technique and fixed tube potential with automated tube current modulation technique
Beeres等[15]研究發(fā)現(xiàn),采用自動(dòng)管電壓選擇技術(shù)用于大螺距雙源CT主動(dòng)脈CTA掃描,與固定管電壓100 kV相比,放射劑量增加。但在其研究中,自動(dòng)管電壓選擇技術(shù)組的實(shí)際管電壓為100 kV和120 kV。本研究管電壓的選擇范圍是100、90、80、70 kV,自動(dòng)管電壓選擇組的31例患者中,只有1例實(shí)際管電壓達(dá)到100 kV,其余30例患者實(shí)際管電壓均低于100 kV,其中還有2例患者實(shí)際管電壓僅為70 kV,結(jié)果顯示,自動(dòng)管電壓選擇技術(shù)組的掃描ED較固定管電壓100 kV的自動(dòng)管電流調(diào)節(jié)技術(shù)組明顯降低,而圖像質(zhì)量與自動(dòng)管電流調(diào)節(jié)技術(shù)組沒有顯著差異。
已知第3代雙源CT管電流峰值可達(dá)1300 mA,明顯高于第2代雙源CT的管電流峰值500 mA。因此,在低管電壓的情況下,采用第3代雙源CT進(jìn)行掃描,可能通過提高管電流的方式獲得較好的圖像質(zhì)量。Hell等[4]研究發(fā)現(xiàn),在第3代雙源CT上采用70 kV的管電壓進(jìn)行大螺距冠狀動(dòng)脈掃描,可獲得較好的圖像質(zhì)量,同時(shí)明顯降低放射劑量。在本研究中,自動(dòng)管電壓選擇組的實(shí)際管電流明顯高于自動(dòng)管電流調(diào)節(jié)技術(shù)組,也從另一個(gè)角度印證了這一點(diǎn)。
本研究中,自動(dòng)管電壓選擇組主動(dòng)脈各部位(升主動(dòng)脈、主動(dòng)脈弓、腹主動(dòng)脈起始部及腹主動(dòng)脈分叉部位)平均強(qiáng)化值均低于自動(dòng)管電流調(diào)節(jié)技術(shù)組,但差異無統(tǒng)計(jì)學(xué)意義。自動(dòng)管電壓選擇組患者除1例實(shí)際管電壓為100 kV以外,其余30例患者實(shí)際管電壓均低于自動(dòng)管電流調(diào)節(jié)技術(shù)組。對(duì)于同一組織,管電壓降低的情況下,CT值會(huì)升高。而本研究中實(shí)際管電壓較低的自動(dòng)管電壓選擇組強(qiáng)化值卻低于自動(dòng)管電流調(diào)節(jié)技術(shù)組,推測(cè)其原因可能與注射對(duì)比劑的方案、自動(dòng)觸發(fā)掃描的CT值及延遲時(shí)間設(shè)定等因素有關(guān)。下一步研究可以針對(duì)不同的管電壓進(jìn)一步探索適合的對(duì)比劑注射方案及自動(dòng)觸發(fā)掃描的CT值及延遲時(shí)間。
隨著雙源CT大螺距掃描技術(shù)的應(yīng)用,已有多項(xiàng)研究顯示,與傳統(tǒng)的單源成像相比,采用雙源CT大螺距掃描可以明顯降低放射劑量[1- 6]。低管電壓和迭代重建技術(shù)的應(yīng)用,則進(jìn)一步降低了放射劑量。然而,低管電壓技術(shù)可增加噪音,降低圖像質(zhì)量[7- 9]。對(duì)于體質(zhì)量較大的患者,難以適用。本研究結(jié)果則顯示,采用第3代雙源CT自動(dòng)管電壓選擇技術(shù),在適當(dāng)降低放射劑量的同時(shí),保證了圖像質(zhì)量,同時(shí)并未對(duì)患者BMI做出限定。
綜上,本研究結(jié)果顯示,第3代雙源CT自動(dòng)管電壓選擇技術(shù)應(yīng)用于大螺距主動(dòng)脈CTA掃描,與采用固定管電壓自動(dòng)管電流調(diào)節(jié)技術(shù)相比,可有效降低放射劑量,同時(shí)保證了圖像質(zhì)量,而且未對(duì)患者BMI做出限定。自動(dòng)管電壓選擇技術(shù)應(yīng)用于大螺距主動(dòng)脈CTA掃描,可能是主動(dòng)脈CTA掃描的發(fā)展方向,今后仍需更多病例實(shí)踐進(jìn)一步完善。
[1]Beeres M,Schell B,Mastragelopoulos A,et al. High-pitch dual-source CT angiography of the whole aorta without ECG synchronisation:initial experience[J]. Eur Radiol,2012,22(1):129- 137.
[2]Karlo C,Leschka S,Goetti RP,et al. High-pitch dual-source CT angiography of the aortic valve-aortic root complex without ECG-synchronization[J]. Eur Radiol,2011,21(1):205- 212.
[3]Achenbach S,Goroll T,Seltmann M,et al. Detection of coronary artery stenoses by low-dose,prospectively ECG-triggered,high-pitch spiral coronary CT angiography [J]. JACC Cardiovasc Imaging,2011,4(4):328- 337.
[4]Hell MM,Bittner D,Schuhbaeck A,et al. Prospectively ECG-triggered high-pitch coronaryangiography with third-generation dual-source CT at 70 kVp tube voltage:Feasibility,image quality,radiation dose,and effect of iterative reconstruction[J]. J Cardiovasc Comput Tomogr,2014,8(6):418- 425.
[5]Sommer WH,Schenzle JC,Becker CR,et al. Saving dose in triple-rule-out computed tomography examination using a high-pitch dual spiral technique[J]. Invest Radiol,2010,45(2):64- 71.
[6]Kerl JM,Lehnert T,Schell B,et al. Intravenous contrast material administration at high-pitch dual-source CT pulmonary angiography:test bolus versus bolus-tracking technique[J]. Eur J Radiol,2012,81(10):2887- 2891.
[7]Shin HJ,Kim SS,Lee JH,et al. Feasibility of low-concentration iodinated contrast medium with lower-tube-voltage dual-source CT aortography using iterative reconstruction:comparison with automatic exposure control CT aortography[J]. Int J Cardiovasc Imaging,2016,32 (1):53- 61.
[8]Zhang LJ,Li X,Schoepf UJ,et al. Non-electrocardiogram-triggered 70-kVp high-pitch computed tomography angiography of the whole aorta with iterative reconstruction:initial results[J]. J Comput Assist Tomogr,2016,40(1):109- 117.
[9]Shen Y,Sun Z,Xu L,et al. High-pitch,low-voltage and low-iodine-concentration CT angiography of aorta:assessment of image quality and radiation dose with iterative reconstruction[J]. PLoS One,2015,10(2):e0117469.
[10]Raman SP,Mahesh M,Blasko RV,et al. CT scan parameters and radiationdose:practical advice for radiologists[J]. J Am Coll Radiol,2013,10(11):840- 846.
[11]Winklehner A,Goetti R,Baumueller S,et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography:improved dose effectiveness[J]. Invest Radiol,2011,46(12):767- 773.
[12]Frellesen C,Stock W,Kerl JM,et al. Topogram-based automated selection of the tube potential and current in thoraco-abdominal trauma CT-a comparison to fixed kV with mAs modulation alone[J]. Eur Radiol,2014,24(7):1725- 1734.
[13]Beeres M,Romer M,Bodelle B,et al. Chest-abdomen-pelvis CT for staging in cancer patients:dose effectiveness and image quality using automated attenuation-based tube potential selection[J]. Cancer Imaging,2014,14(1):28- 35.
[14]McCollough C,Edyvean S,Cody D,et al. AAPM report no. 96:the measurement,reporting,and management of radiation dose in CT—report of AAPM Task Group 23 of the Diagnostic Imaging Council CT Committee[C]. College Park,MD:American Association of Physicists,2008:11- 13.
[15]Beeres M,Williams K,Bauer RW,et al. First clinical evaluation of high-pitch dual-source computed tomographic angiography comparing automated tube potential selection with automated tube current modulation[J]. J Comput Assist Tomogr,2015,39(4):624- 628.
Initial Experience of the Application of Automated Tube Potential Selection Technique in High-pitch Dual-source CT Angiography of Whole Aorta Using Third-generation Dual-source CT Scanner
KONG Lingyan,LIANG Jixiang,XUE Huadan,WANG Yining,WANG Yun,JIN Zhengyu,ZHANG Daming,CHEN Jin
Department of Radiology,PUMC Hospital,CAMS and PUMC,Beijing 100730,China
JIN Zhengyu Tel:010- 69155441,E-mail:jin_zhengyu@163.com
Objective To evaluate the application of automated tube potential selection technique in high-pitch dual-source CT aortic angiography on a third-generation dual-source CT scanner. Methods Whole aorta angiography were indiated in 59 patients,who were divided into 2 groups using a simple random method:in group 1 there were 31 patients who underwent the examination with automated tube potential selection using a vascular setting with a preferred image quality of 288 mA/100 kV;in group 2 there were 28 patients who underwent the examination with a tube voltage of 100 kV and automated tube current modulation using a reference tube current of 288 mA. Both groups were scanned on a third generation dual-source CT device operated in dual-source high-pitch ECG-gating mode with a pitch of 3.0,collimation of 2×192×0.6 mm,and a rotation time of 0.25 s. Iterative reconstruction algorithm was used. For group 1,the volume and flow of contrast medium and chasing saline were adapted to the tube voltage. For group 2,a contrast material bolus of 45 ml with a flow of 4.5 ml/s followed by a 50 ml saline chaser at 5 ml/s was used. CTA scan was automatically started using a bolus tracking technique at the level of the original part of aorta after a trigger threshold of 100 HU was reached. The start delay was set to 6 s in both groups. Effective dose (ED),signal to noise ratio (SNR),contrast to noise ratio (CNR),and subjective diagnostic quality of both groups were evaluated. Results The mean ED were 21.3% lower (t=-3.099,P=0.000) in group 1 [(2.48±0.80) mSv] than in group 2 [(3.15±0.86) mSv]. Two groups showed no significant difference in attenuation,SD,SNR,or CNR at all evaluational parts of aorta (ascending aorta,aortic arch,diaphragmatic aorta,or iliac bifurcation)(allP>0.05). There was no significant difference in subjective diagnostic quality values of two groups [(1.41±0.50) scoresvs. (1.39±0.50) scores;W=828.5,P=0.837]. Conclusion Compared with automated tube current modulation,the automated tube potential selection technique in aorta CT angiography on a third-generation dual-source CT can dramatically reduce radiation dose without affecting image quality.
aorta;CT angiography;high-pitch;radiation dose;image quality
國(guó)家臨床重點(diǎn)??平ㄔO(shè)項(xiàng)目(2014)和衛(wèi)生公益性行業(yè)科研專項(xiàng)項(xiàng)目(201402001、201402019)Supported by the National Key Clinical Specialist Construction Programs of China(2014)and the Health Industry Special Scientific Research Project (201402001,201402019)
金征宇 電話:010- 69155441,電子郵件:jin_zhengyu@163.com
R814.4
A
1000- 503X(2017)01- 0062- 06
10.3881/j.issn.1000- 503X.2017.01.011
2016- 08- 26)