• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型Zn2+基金屬有機(jī)框架結(jié)構(gòu)的溫度依賴的導(dǎo)電、發(fā)光性能及理論計(jì)算

    2017-03-13 09:53:16高義粉莊桂林柏家奇王建國(guó)
    物理化學(xué)學(xué)報(bào) 2017年1期
    關(guān)鍵詞:浙江工業(yè)大學(xué)王建國(guó)導(dǎo)電性

    高義粉 莊桂林 柏家奇 鐘 興 王建國(guó)

    (浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,杭州310032)

    新型Zn2+基金屬有機(jī)框架結(jié)構(gòu)的溫度依賴的導(dǎo)電、發(fā)光性能及理論計(jì)算

    高義粉 莊桂林*柏家奇 鐘 興 王建國(guó)*

    (浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,杭州310032)

    通過(guò)Zn2+和1,3,5-三苯甲酸(H3BTB)配體反應(yīng)獲得一種新型的四重互穿的金屬有機(jī)框架結(jié)構(gòu)(MOF)1。單晶體結(jié)構(gòu)分析表明這是一種由中性N,N-二甲基甲酰胺(DMF)分子和H2NMe2+陽(yáng)離子沿b軸密封于通道的三維(10,3)網(wǎng)狀陰離子框架結(jié)構(gòu)。交流阻抗測(cè)試顯示該結(jié)構(gòu)的導(dǎo)電性能具有特殊溫度依賴性。其電導(dǎo)值在20oC下為0.36×10-6S·cm-1,隨著溫度升高導(dǎo)電能力迅速增大,160°C達(dá)到最大值2.24×10-5S·cm-1,繼續(xù)升高溫度,導(dǎo)電能力開始下降。分子動(dòng)力學(xué)(MD)模擬和介電性質(zhì)測(cè)量表明,這種特殊溫度依賴的導(dǎo)電性能是來(lái)自于隨溫度升高H2NMe2+陽(yáng)離子遷移增強(qiáng)以及DMF揮發(fā)的協(xié)同效應(yīng)。0.20 V的傳輸能壘接近于質(zhì)子導(dǎo)電性能。研究表明:MOFs孔對(duì)H2NMe2+的限制作用是獲得電子材料的一種潛在理想方法。同時(shí),在1中發(fā)現(xiàn)一種有趣的熒光現(xiàn)象,發(fā)射峰位置比在H3BTB配體中更加藍(lán)移。密度泛函理論(DFT)計(jì)算揭示這是由于在1中,配體BTB3-的離域π鍵結(jié)構(gòu)破壞,禁帶寬度增大所致。

    MOFs;密度泛函理論計(jì)算;導(dǎo)電性;冷發(fā)光

    Key Words:MOFs;Density functional theory calculation;Conductivity;Luminescence

    1 Introduction

    Metal-organic frameworks(MOFs)1have been currently attracting enormous attentions owing to regular porous structure and potential applications,such as adsorption2,separation3,catalysis4, luminescence4c,5,magnetism6and etc.Generally,these special properties can be derived from not only the electronic structure of metal ions or ligand,but also the nanosize porous characteristic and encapsulated guest molecules or ions.Within this context, confined species often endow the material unique physical properties.Recently,it was found that these porous solids also exhibit good proton conductivity through confining small molecules or ions into the channel7,where the species serve as the role of charge carrier.These studies provide some help to understand the transport mechanism of charge carriers.However,they usually involve the conducting property of single component in the channel.And the transporting mechanisms with respect to the multi-components coexisting(e.g.neutral molecules and charged ions)conductivity are unclear.

    Moreover,electronic structural changes of ligands also affect the physical properties of MOFs,e.g.luminescence.The fluorescent MOFs with tuneable electronic transition energy will be promising candidates of inorganic-organic hybrid organic light emitting diode(OLED)materials8.Their emission properties are mainly derived from metal ions,organic linker and charge transfer between them9.The conformation change of rigid ligands usually induce the transformation of electronic structure and results in the displacement of emission peaks or quantum yield9d.From the experimental view,previous studies only give some reasonable explanations on distinct phenomenon.Combined with the experiment and theory usually produces profound comprehensions on theoretical mechanisms.However,as far as our knowledge, corresponding studies are very rare.

    In this study,one new Zn(II)-based MOF,which indicates threedimensional(10,3)net and confines dimethyl formamide(DMF) and H2NMe2+cation into the channel,was synthesized and characterized.Especially,it is found that the MOFs show temperaturedependent conductivity and blue-shift luminescence.The mechanisms of ionic conductivity and luminescence were further investigated by means of combination of density functional theory (DFT)and molecular dynamics(MD)calculations.

    2 Experimental and computational section

    DMF(99.0%),adenine(98%)were purchased from Aladdin, Zn(CH3COO)2·4H2O(98%)were obtained from Alfa Aescar, H3BTB ligand were acquired from Aladdin.All solvents were commercially available and used without further purification.

    2.1 Synthesis of[Zn(BTB)(DMF)](H2NMe2)(DMF)(1)

    0.219 g(0.50 mmol)benzene-1,3,5-tribenzoate(H3BTB)ligand, 0.280 g(0.75 mmol)Zn(CH3COO)24H2O and 0.117 g(0.50 mmol)adenine were dissolved into the mixed solvent of DMFH2O(1:1,volume ratio).The mixture was subsequently transferred and sealed in 25 mL Teflon-lined stainless steel container. The container was heated to 120°C at the rate of 30°C·h-1and hold at that temperature for 2880 min,and then cooled to room temperature at the rate of 3°C·h-1.Colorness block crystals of 1 were obtained in yield of 45.6%(based on H3BTB ligand).Anal. calcd(found)(%)for C35H37N3O8Zn(1):C,60.65(60.32);H,5.38 (6.01);N,6.06(5.89).IR spectra for 1(KBr),v/cm-1:476.6(w), 668.4(w),707.2(w),780.6(m),858.0(w),1017.2(w),1106.4(w), 1152.7(w),1385.9(s),1550.2(w),1605.5(s),1656.7(m).

    2.2 Measurement details

    H3BTB ligand was of commercial origin without further purification.The C,H,and N element analyses were performed by use of a CE instruments EA1110 elemental analyzer.The infrared spectra was measured on a Nicolet AVATAR FT-IR360 Spectrophotometer with pressed KBr pellets.The X-ray powder diffractometry(XRPD)study was performed on Panalytical X-Pert pro diffractometer with Cu-Kαradiation.Thermogravimetric analyzer(TGA)curve was recorded on a SDT Q600 instrument.UVVis diffuse-reflection adsorption was recorded on Cary 5000 Ultraviolet Visible-Near Infrared(UV-Vis-NIR)spectrophotometer,where the powder sample was put into cone-shape container.Fluorescent spectra were recorded by F7000 fluorescence spectrophotometer,respectively.Both alternating current (ac)impedance and dielectric properties measurements were performed by use of 2-wire mode on the WAYNE KERR 6500 High Frequency LCR Meter.The powdered sample was compressed to pellet with the size of 5.09 mm2×1.26 mm.Two test lines were fixed on the tabletting via electric glue and connected with the apparatus.The temperature-controlled apparatus is Sigma/ Delta instrument.Single crystals having suitable dimensions for compound 1 was used for data collection using a CrysAlis CCD diffractometer(Xcalibur,Eos,Gemini ultra)at 298 K equipped with enhance(Mo)X-ray source(λ=0.071073 nm).Integration and cell refinement were carried out using CrysAlis RED.The absorption correction was performed by multiscan method using SCALE3 ABSPACK scaling algorithm.All corrections were made for Lorentz and polarization effects.The molecular structures were solved by direct methods(SHELXL-86/SHELXL-97)and refined by full-matrix least-squares on F2(SHELXS-97).Crystal data of compound 1 are given in Table S1(Supporting Information).

    2.3 Computational details

    Geometrical optimization and electronic structure were performed by using of density functional theory in the DMol3module of Material Studio software10.Exchange-correlation(XC)effects between electrons and ions were treated by the generalized gradient approximation(GGA)11with Perdew Burke Ernzerhof (PBE)12formalism.The double numerical basis set plus polarization functional(DNP)12,which has a computational precision being comparable to the split-valence basis set 6-31g**,was applied in the expanded electronic wave function.For Zn element, the inner core was treated by the approach of effective core po-tential(ECP)13and 3d electrons were explicitly seen as valence electrons.For other elements,all electrons were treated in the same manner as valence electrons.For 1,the Brillouin zone integration adopted K-points of 1×2×1,which is enough to describe the whole zone.For all the calculations,the optimization convergence in energy and force were set to be 1.0×10-5Ha and 2.0×10-2Ha·nm-1,and the SCF convergence was set to be 1.0×10-6.Based on previous optimized structure,We further conducted partial density of states(PDOS)calculation,where 20 empty bands and 1×1×1 K-ponts were adopted.Molecular dynamic calculation was carried out at specific temperature of 433 K in the NVT ensemble by using of GULP14module in Material Studio software.The simulation time is 200 ps at atime step of 1 fs.An universal force field of UFF4MOF15was applied to describe interaction between atoms or functional groups.

    Fig.1 Coordination environment of Zn(II)in 1(a),three-dimensional structure(b)and topology sketch(c)of 1

    Fig.2 (a-c)Nyquist plots of the ac impedance of 1 over the temperature range of 20-200°C at the interval of 20°C; (d)plot of obtained conductance σ vs T

    3 Results and discussion

    Compound 1,[Zn(BTB)(DMF)](H2NMe2)(DMF),crystalizes in the space group of P2(1)/n of monoclinic system.Crystal structure measure reveals that the asymmetric unit contains one Zn2+ion,one BTB3-ligand,two DMF molecules and one H2NMe2+cation.As shown in Fig.1(a),the coordination geometry of Zn2+can be well described as an octahedron,featuring the contributions by six oxygen atoms.These coordinating atoms are derived from five carboxylate oxygen atoms of three BTB3-ligands and one oxygen atom of DMF molecule,respectively.The resulting Zn―O bond length is 0.1946(3)-0.2032(3)nm,which is in good agreement with those reported previously16.Via three BTB3-ligand,each Zn(II)ion links with adjacent ones and generates threedimensional(10,3)-net framework.Herein,each Zn(II)ion acts as one node,where each BTB3-ligand serves as three-connecting bridge.Four fold interpenetrations among these(10,3)-net layers along b axis are found in three stacked structure(see Fig.S2, Supporting Information),resulting in one-dimensional channels in the direction of b axis.Neutral DMF molecules and cationic H2NMe2+are sealed in this channel,as shown in Fig.1(b).The whole framework of 1 is anionic framework,as seen in Fig.1(c). Also,H2NMe2+cations are derived from the dissociation of partial DMF molecules.

    Fig.3 Thermogravimetric(TG)curve(a)andArrhenius plot of the conductivity of 1(b)

    As an organic alkali,adenine plays an important role in the reaction of 1.Without adenine,1 had never been obtained in same synthetic conditions.If instead of adenine by other N-containing moieties(such as 4,4-bipyridyl),it is found that the resultant white product was not pure by the identification of PXRD.Herein,it must be mentioned that the topology of 1 is similar with Cd(II)-based MOFs reported by Kitagawa et al.16.However,the larger difference between them is that in this Cd(II)-based counterpart, H3BTB ligand only lost two protons and thereby led to the absence of H2NMe2+cation.

    Fig.4 (a)Fluorescence spectra of 1 and H3BTB ligand; (b)band structure and partial and total DOS of 1

    In order to study the electrical property of 1,alternating current impedance measurements with the frequency from 20 Hz to 10 MHz were performed by use of the powder tablet of single crystals.Fig.2 displays Nyquist plots of 1 at different temperatures.At low frequency,Nyquist plots feature semicircle shape.It is interestingly found that the radius firstly becomes smaller until 160°C and then rapidly reduces.Further,it can be simply fitted by the equation of RC equivalent circuit,as shown in Fig.2(a-c). The obtained conductance at 20°C is 0.36×10-6S·cm-1.With an increase of the temperature,the conductance value increases and reaches the maximum of 2.24×10-5S·cm-1at 160°C.Subsequently,the conductance value sharply reduces until the value of 1.14×10-5S·cm-1at 200°C,as displayed in Fig.2(d).

    What is charge carrier in 1?In the channel,there are two different species,DMF molecule and H2NMe2+cation.Thermogravimetric analysis result shows that the guest DMF molecules are completely removed at about 160°C with weight loss of 9.5%(theoretically calcd 10.5%),and the coordinated DMF molecules fully lose at 400°C(see Fig.3(a)).As shown in Figs.S2-S3 (Supporting Information),a powder X-ray diffraction at different temperature indicates that the while structure may partially decompose at 160°C.It is mentioned that the difference of peak intensity at different temperature may be resulted from the thermal swell of sample under the test.However,the main framework is still stable,being confirmed by the result of MD simulation,as shown in Fig.S5(a)(Supporting Information).Normally,neutral DMF molecules have no capacity of acting as carrier of ionic current.It is therefore that the decrease of guest DMF molecules has never apparently affected the conducted property.Instead, H2NMe2+cations play an important role.As the increase of temperature,the crystal-boundary resistance of powder sample improves,while the mobility of H2NMe2+cations is also enhanced and thereby reduces the inner resistance of polycrystals.Obviously,the latter effects can effectively counteract the crystal-boundary effects.After 160°C,the decrease of conductance value can be attributed to the fact that structural collapsing of 1 leads to the deficiency of ionic channel.Moreover,Fig.3(b)shows the curve of conductivities,σ(log scale),as functions of 1000/T.Arrhenius plots[lnσ vs 1000/T]exhibited a linear relationship with an activation energy(Ea)of 0.20 eV over the temperature range 20-160°C.This value of Eais in good agreement with those of the reported proton conductive system13.Thus,it is observed that the confinement of H2NMe2+in the pores of MOFs may be one promising synthetic method of electrical material.

    Furthermore,dielectric properties under different temperatures were conducted,as shown in Fig.S5(b)(Supporting Information). As the temperature increase,dielectric constant firstly rises before 80°C,suggesting that some DMF molecules may be polarized so as to improve the amount of carrier.Subsequently,it fell into decline until about 140°C,which may be attributed to the removal of DMF molecule and an increase of disorder of H2NMe2+with the increase of temperature.Nonetheless,dielectric loss firstly decreases before 80°C and then increases until the maximum at 140°C.The critical temperature of 140°C may be less than that of conductivity,owing to synthetic effect of the removal of guest DMF molecules and the increase of disorder of H2NMe2+cations. With the frequency increasing,the dielectric constant decreases, while dielectric loss rises.It was observed that the magnitude of the dielectric constant at the temperatures higher than 80°C at f= 1 kHz was at least two times larger than that at 140°C,suggesting a slow ionic motion rather than fast electronic motion11.Therefore, the origin of electrical property in 1 is derived from transfer of H2NMe2+cation.

    Fig.5HOMO-2(a),HOMO-1(b),HOMO(c),LUMO(d),LUMO+1(e)and LUMO+2(f)of 1

    Fluorescent spectra of 1 and H3BTB ligand were measured in solid state at room temperature.As shown in Fig.4(a),two emission peaks of 361 nm for 1 and 396 nm for H3BTB ligand were found,respectively.Interestingly,the wavelength of emission peak in 1 is less than that of H3BTB.In order to explain the mechanism,DFT calculations were performed.Geometric optimization of 1 was divided into two steps:non-hydrogen atoms restricted optimization was firstly carried out,and subsequentlythe obtained structure was further fully relaxed.The final optimized geometry was in good agreement with that derived from single crystal diffraction.Band structure and local density of states were also examined,as shown in Fig.4(b).Band curves in the vicinity of Fermi level are not well dispersed across different region,hinting that the conjugated degree of H3BTB ligand is destroyed after the formation of MOFs.The band gap of 3.3 eV coincides well with the solid UV adsorption peak of 398 nm(see Fig.S6,Supporting Information).Inspecting the PDOS of 1,we can find that the contribution of conduction band are mainly attributed to 2p state of C atoms in the BTB3-ligand.And the tiny role is played by the 3d state of Zn(II)ions.The first empty bands at the position of 3.3 eV are completely resulted from the 2p state of C atoms in the BTB3-ligand.Thus,the observed emission peak can be essentially attributed to the mixed transition of LLCT and MLCT.For the case of H3BTB ligand,geometric optimization was performed,and the obtained configuration was further confirmed by frequency analysis.Scrutinizing the finial structure shows that four phenyl group lie on the same plane,leading to stronger rigidity.The 3.02 eV between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital (LUMO)of 3.02 eV(ca 409 nm)is in good agreement with the emission wavelength of 396 nm.

    Moreover,frontier orbitals of 1 at Gamma point and H3BTB ligand were identified,as shown in Fig.5 and Fig.6.HOMO and HOMO-1 are degenerative orbitals.LUMO and LUMO+1 are also degenerative orbitals.HOMO,HOMO-1 and HOMO-2 are contributed mainly by p-type dangling orbits of carboxylate oxygen atoms in BTB3-ligand and 3d orbits of Zn(II)ions,while LUMO,LUMO+1 and LUMO+2 mainly arise from p-type dangling orbits of carboxylate oxygen atoms in BTB3-ligand.For the case of H3BTB ligand,HOMO is delocalized π-type bonding orbital,while LUMO is localized π-type anti-bonding orbital.In comparison with frontier orbitals of H3BTB ligand,it is observed that the coordination of Zn(II)ion makes the delocalized π-type bonds of 1 destroyed so as to increase the band gap.That is the reason why the position of emission peak occurs to more blue shift than that of H3BTB ligand.

    4 Conclusions

    In summary,we have reported one new four interpenetrated MOFs with H3BTB ligand.Crystal structure studies reveal that neutral DMF molecules and cationic H2NMe2+are enveloped in the channel along b axis.Fluorescent measurement shows the position of emission peak at 361 nm in 1 occurs to more blue shift than that of H3BTB ligand(396 nm),due to destroyed delocalized π-type bonds of 1.Further,an interesting temperature-dependent conductive property was also identified.The obtained conductance at 20°C is 0.36×10-6S·cm-1at 20°C.As the temperature increases, the conductance value increases and reaches the maximum of 2.24×10-5S·cm-1at 160°C.However,after then,the conductance value sharply reduces until the value of 1.14×10-5S·cm-1at 200°C.That can be attributed to the transport of H2NMe2+ions in the channel of MOFs.

    Acknowledgment:We also very thank Prof.LONG La-Sheng and Dr.ZHAO Hai-Xia of Xiamen University for technological supports and kind discussion.

    Supporting Information:Crystal date,selective bond length and bond angle,PXRD and UV-Vis result have been included.This information is available free of charge via the internet at http:// www.whxb.pku.edu.cn.CCDC-1043835(for 1)contains the supplementary crystallographic data for this paper.These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

    (1)(a)Long,J.R.;Yaghi,O.M.Chem.Soc.Rev.2009,38(5), 1213.doi:10.1039/b903811f (b)Eddaoudi,M.;Kim,J.;Rosi,N.;Vodak,D.;Wachter,J.; O′Keeffe,M.;Yaghi,O.M.Science 2002,295(5554),469. doi:10.1126/science.1067208

    (2)(a)Li,J.R.;Sculley,J.;Zhou,H.C.Chem.Rev.2012,112(2), 869.doi:10.1021/cr200190s (b)Zlotea,C.;Phanon,D.;Mazaj,M.;Heurtaux,D.;Guillerm, V.;Serre,C.;Horcajada,P.;Devic,T.;Magnier,E.;Cuevas,F.; Ferey,G.;Llewellyn,P.L.;Latroche,M.Dalton Trans.2011, 40(18),4879.doi:10.1039/c1dt10115c (c)Haldoupis,E.;Nair,S.;Sholl,D.S.J.Am.Chem.Soc.2012, 134(9),4313.doi:10.1021/ja2108239 (d)Nijem,N.;Wu,H.H.;Canepa,P.;Marti,A.;Balkus,K.J.; Thonhauser,T.;Li,J.;Chabal,Y.J.J.Am.Chem.Soc.2012, 134(37),15201.doi:10.1021/ja305754f (e)Zeng,M.H.;Yin,Z.;Tan,Y.X.;Zhang,W.X.;He,Y.P.; Kurmoo,M.J.Am.Chem.Soc.2014,136(12),4680. doi:10.1021/ja500191r

    (3)(a)Hwang,Y.K.;Hong,D.Y.;Chang,J.S.;Jhung,S.H.;Seo, Y.K.;Kim,J.;Vimont,A.;Daturi,M.;Serre,C.;Ferey,G. Angew.Chem.Int.Ed.2008,47(22),4144.doi:10.1002/ anie.200705998 (b)Stock,N.;Biswas,S.Chem.Rev.2012,112(2),933. doi:10.1021/cr200304e (c)Basdogan,Y.;Keskin,S.CrystEngComm 2015,17(2),261. doi:10.1039/c4ce01711k

    (4)(a)Li,B.Y.;Zhang,Y.M.;Ma,D.X.;Li,L.;Li,G.H.;Li,G. D.;Shi,Z.;Feng,S.H.Chem.Commun.2012,48(49),6151. doi:10.1039/c2cc32384b (b)Lee,J.;Farha,O.K.;Roberts,J.;Scheidt,K.A.;Nguyen,S. T.;Hupp,J.T.Chem.Soc.Rev.2009,38(5),1450.doi:10.1039/ b807080f (c)Ou,S.;Wu,C.D.Inorganic Chemistry Frontiers 2014,1 (10),721.doi:10.1039/C4QI00111G (d)Xamena,F.;Abad,A.;Corma,A.;Garcia,H.J.Catal.2007, 250(2),294.doi:10.1016/j.jcat.2007.06.004

    (5)(a)Jia,L.N.;Hou,L.;Wei,L.;Jing,X.J.;Liu,B.;Wang,Y.Y.; Shi,Q.Z.Cryst.Growth Des.2013,13(4),1570.doi:10.1021/ cg3011310y (b)Burrows,A.D.CrystEngComm 2011,13(11),3623. doi:10.1039/c0ce00568a

    (6)(a)Zheng,Y.Z.;Tong,M.L.;Zhang,W.X.;Chen,X.M. Angew.Chem.Int.Ed.2006,45(38),6310.doi:10.1002/ anie.200601349 (b)Ruan,C.Z.;Wen,R.;Liang,M.X.;Kong,X.J.;Ren,Y.P.; Long,L.S.;Huang,R.B.;Zheng,L.S.Inorg.Chem.2012,51 (14),7587.doi:10.1021/ic3003299 (c)Zeng,M.H.;Wu,M.C.;Liang,H.;Zhou,Y.L.;Chen,X. M.;Ng,S.W.Inorg.Chem.2007,46(18),7241.doi:10.1021/ ic700832w (d)Pinkowicz,D.;Podgajny,R.;Nowicka,B.;Chorazy,S.; Reczynski,M.;Sieklucka,B.Inorg.Chem.Front.2015,2(1), 10.doi:10.1039/C4QI00189C (e)Peng,J.B.;Zhang,Q.C.;Kong,X.J.;Zheng,Y.Z.;Ren,Y. P.;Long,L.S.;Huang,R.B.;Zheng,L.S.;Zheng,Z.P.J.Am. Chem.Soc.2012,134(7),3314.doi:10.1021/ja209752z

    (7)(a)Rogez,G.;Viart,N.;Drillon,M.Angew.Chem.Int.Ed. 2010,49(11),1921.doi:10.1002/anie.200906660 (b)Batten,S.R.;Robson,R.Angew.Chem.Int.Ed.1998,37 (11),1460.doi:10.1002/(sici)1521(19980619)37:11<1460::aidanie1460>3.0.co;2-z (c)Chen,W.X.;Xu,H.R.;Zhuang,G.L.;Long,L.S.;Huang, R.B.;Zheng,L.S.Chem.Commun.2011,47(43),11933. doi:10.1039/c1cc14702a (d)Wu,B.;Lin,X.;Ge,L.;Wu,L.;Xu,T.Chem.Commun. 2013,49(2),143.doi:10.1039/C2CC37045J (e)Bonhote,P.;Dias,A.P.;Papageorgiou,N.; Kalyanasundaram,K.;Gr?tzel,M.Inorg.Chem.1996,35(5), 1168.doi:10.1021/ic951325x (f)Sadakiyo,M.;Oˉkawa,H.;Shigematsu,A.;Ohba,M.; Yamada,T.;Kitagawa,H.J.Am.Chem.Soc.2012,134(12), 5472.doi:10.1021/ja300122r (g)Zeng,M.H.;Wang,Q.X.;Tan,Y.X.;Hu,S.;Zhao,H.X.; Long,L.S.;Kurmoo,M.J.Am.Chem.Soc.2010,132(8), 2561.doi:10.1021/ja908293n (h)Chae,H.K.;Siberio-Perez,D.Y.;Kim,J.;Go,Y.; Eddaoudi,M.;Matzger,A.J.;O'Keeffe,M.;Yaghi,O.M. Nature 2004,427(6974),523.doi:10.1038/nature02311 (i)Akutagawa,T.;Koshinaka,H.;Sato,D.;Takeda,S.;Noro,S. I.;Takahashi,H.;Kumai,R.;Tokura,Y.;Nakamura,T.Nat. Mater.2009,8(4),342.doi:10.1038/nmat2377 (j)Armand,M.;Endres,F.;MacFarlane,D.R.;Ohno,H.; Scrosati,B.Nat.Mater.2009,8(8),621.doi:10.1038/nmat2448 (k)Bureekaew,S.;Horike,S.;Higuchi,M.;Mizuno,M.; Kawamura,T.;Tanaka,D.;Yanai,N.;Kitagawa,S.Nat.Mater. 2009,8(10),831.doi:10.1038/nmat2526

    (8)(a)Liu,Y.;Xuan,W.M.;Cui,Y.Adv.Mater.2010,22(37), 4112.doi:10.1002/adma.201000197 (b)Yang,H.;Sang,R.L.;Xu,X.;Xu,L.Chem.Commun.2013, 49(28),2909.doi:10.1039/c3cc40516h (c)Liu,G.X.;Xu,H.;Zhou,H.;Nishihara,S.;Ren,X.M. CrystEngComm 2012,14(5),1856.doi:10.1039/c1ce05369h

    (9)(a)Chen,B.;Wang,L.;Xiao,Y.;Fronczek,F.R.;Xue,M.;Cui, Y.;Qian,G.Angew.Chem.Int.Ed.2009,48(3),500. doi:10.1002/anie.200805101 (b)Kreno,L.E.;Leong,K.;Farha,O.K.;Allendorf,M.;Van Duyne,R.P.;Hupp,J.T.Chem.Rev.2012,112(2),1105. doi:10.1021/cr200324t (c)Rocha,J.;Carlos,L.D.;Paz,F.A.A.;Ananias,D.Chem. Soc.Rev.2011,40(2),92.doi:10.1039/C0CS00130A (d)Liu,Y.;Pan,M.;Yang,Q.Y.;Fu,L.;Li,K.;Wei,S.C.;Su, C.Y.Chem.Mater.2012,24(10),1954.doi:10.1021/ cm3008254 (e)Jiang,H.L.;Tatsu,Y.;Lu,Z.H.;Xu,Q.J.Am.Chem.Soc. 2010,132(16),5586.doi:10.1021/ja101541s (f)Lee,C.Y.;Farha,O.K.;Hong,B.J.;Sarjeant,A.A.; Nguyen,S.T.;Hupp,J.T.J.Am.Chem.Soc.2011,133(40), 15858.doi:10.1021/ja206029a (g)Wei,Z.W.;Gu,Z.Y.;Arvapally,R.K.;Chen,Y.P.; McDougald,R.N.;Ivy,J.F.;Yakovenko,A.A.;Feng,D.W.; Omary,M.A.;Zhou,H.C.J.Am.Chem.Soc.2014,136(23), 8269.doi:10.1021/ja5006866

    (10)(a)Delley,B.J.Chem.Phys.1990,92(1),508.doi:10.1063/ 1.458452 (b)Delley,B.J.Chem.Phys.1991,94(11),7245.doi:10.1063/ 1.460208 (c)Delley,B.J.Chem.Phys.2000,113(18),7756. doi:10.1063/1.1316015

    (11)Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13(12),5188.

    (12)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77 (18),3865.

    (13)Dolg,M.;Wedig,U.;Stoll,H.;Preuss,H.J.Chem.Phys.1987, 86(2),866.doi:10.1063/1.452288

    (14)Gale,J.D.;Rohl,A.L.Mol.Simul.2003,29(5),291. doi:10.1080/0892702031000104887

    (15)Addicoat,M.A.;Vankova,N.;Akter,I.F.;Heine,T.J.Chem. Theory Comput.2014,10(2),880.doi:10.1021/ct400952t

    (16)Rao,K.P.;Higuchi,M.;Duan,J.;Kitagawa,S.Cryst.Growth Des.2013,13(3),981.doi:10.1021/cg301476p

    Temperature-Dependent Conductivity,Luminescence and Theoretical Calculations of a Novel Zn(II)-Based Metal-Organic Framework

    GAO Yi-Fen ZHUANG Gui-Lin*BAI Jia-Qi ZHONG Xing WANG Jian-Guo*
    (College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310032,P.R.China)

    Anovel four-fold interpenetrating metal-organic framework(MOF)(1)was obtained following reaction between Zn2+and benzene-1,3,5-tribenzoate(H3BTB).Single crystal analysis demonstrated that the framework featured a three-dimensional(10,3)net anionic framework with dimethyl formamide(DMF)and H2NMe2+encapsulated in channels along the b axis.Alternating current impedance measurements revealed an unusual temperature-dependent conductance.As the temperature was increased from 20°C the conductance value increased from 0.36×10-6S·cm-1to a maximum value of 2.24×10-5S·cm-1at 160°C,and then began to decrease.A combination of molecular dynamics(MD)simulations and dielectric property measurements demonstrated that this conductance behavior could be attributed to the synergic effect of the enhanced mobility of thecation and removal of DMF as the temperature was increased.Furthermore,the transporting energy barrier was determined to be 0.20 eV,which confirmed that the conductance was caused by proton conductivity.This work indicated that the confinement ofwithin the pores of MOFs is a promising method to induce electrical conductivity.Interestingly,the emission peak of 1 was blue-shifted when compared with that of H3BTB.Density functional theory(DFT)calculations revealed that this phenomenon was caused by the disruption of delocalized π-bonds within the BTB3-ligand in 1.

    O641

    icle]

    10.3866/PKU.WHXB201610103www.whxb.pku.edu.cn

    Received:July 1,2016;Revised:October 10,2016;Published online:October 10,2016.

    *Corresponding authors.ZHUANG Gui-Lin,Email:glzhuang@zjut.edu.cn;Tel:+86-571-88871037.WANG Jian-Guo,Email:jgw@zjut.edu.cn; Tel:+86-571-88871037.

    The project was supported by the National Key Basic Research Program of China(973)(2013CB733501)and National Natural Science Foundation of China(21176221,21136001,21671172,21306169,91334013).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2013CB733501)和國(guó)家自然科學(xué)基金(21176221,21136001,21671172,21306169,91334013)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    浙江工業(yè)大學(xué)王建國(guó)導(dǎo)電性
    浙江工業(yè)大學(xué)
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    浙江工業(yè)大學(xué)
    加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    城里·城外——王建國(guó)油畫作品展
    PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    激情视频va一区二区三区| 一区在线观看完整版| 日本91视频免费播放| 国产一级毛片在线| 丝袜脚勾引网站| 91精品伊人久久大香线蕉| 欧美另类一区| 国产一区二区 视频在线| 国产精品一区二区在线不卡| 国产精品免费大片| 色综合欧美亚洲国产小说| 中文字幕人妻熟女乱码| 亚洲av成人精品一二三区| 操美女的视频在线观看| 性少妇av在线| 人人妻人人澡人人看| 女警被强在线播放| 国产成人91sexporn| 两人在一起打扑克的视频| 久久久久国产一级毛片高清牌| 婷婷丁香在线五月| 亚洲欧洲日产国产| 国产日韩一区二区三区精品不卡| 人人澡人人妻人| 久久国产亚洲av麻豆专区| 午夜日韩欧美国产| 天天躁日日躁夜夜躁夜夜| 夜夜骑夜夜射夜夜干| 欧美国产精品va在线观看不卡| 手机成人av网站| 9热在线视频观看99| 97精品久久久久久久久久精品| 侵犯人妻中文字幕一二三四区| 一边摸一边抽搐一进一出视频| 美女国产高潮福利片在线看| 热99国产精品久久久久久7| 亚洲午夜精品一区,二区,三区| 国产精品一二三区在线看| 丝瓜视频免费看黄片| 亚洲欧美色中文字幕在线| 成年动漫av网址| 人人妻人人爽人人添夜夜欢视频| 午夜福利在线免费观看网站| 亚洲人成77777在线视频| 美女脱内裤让男人舔精品视频| 美女脱内裤让男人舔精品视频| 99精国产麻豆久久婷婷| 欧美精品人与动牲交sv欧美| 18在线观看网站| 大香蕉久久成人网| 亚洲av国产av综合av卡| 制服诱惑二区| 亚洲av成人精品一二三区| 最新在线观看一区二区三区 | 免费av中文字幕在线| 爱豆传媒免费全集在线观看| 日本猛色少妇xxxxx猛交久久| 欧美大码av| 美女福利国产在线| 亚洲国产最新在线播放| 欧美性长视频在线观看| 亚洲欧美日韩另类电影网站| 天堂俺去俺来也www色官网| 中文字幕制服av| 波多野结衣av一区二区av| 免费少妇av软件| 国产不卡av网站在线观看| 夫妻性生交免费视频一级片| 亚洲国产精品一区二区三区在线| 亚洲国产欧美一区二区综合| 国产精品成人在线| 精品久久久久久电影网| 久久久久视频综合| svipshipincom国产片| 搡老乐熟女国产| 高潮久久久久久久久久久不卡| 亚洲成人手机| 2021少妇久久久久久久久久久| 国产精品熟女久久久久浪| 久久久久网色| 国产精品一区二区精品视频观看| 亚洲五月色婷婷综合| 黄色 视频免费看| 男人舔女人的私密视频| 国产高清视频在线播放一区 | 男男h啪啪无遮挡| 午夜日韩欧美国产| 老司机影院成人| 97人妻天天添夜夜摸| 亚洲专区国产一区二区| 老汉色∧v一级毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品国产精品| 久久狼人影院| 一本一本久久a久久精品综合妖精| 老汉色av国产亚洲站长工具| 久久精品人人爽人人爽视色| cao死你这个sao货| 日本色播在线视频| 国产一区二区在线观看av| 国产一区二区在线观看av| www.精华液| 黄色a级毛片大全视频| 女人爽到高潮嗷嗷叫在线视频| 九色亚洲精品在线播放| 999精品在线视频| 巨乳人妻的诱惑在线观看| 高清视频免费观看一区二区| 中文字幕另类日韩欧美亚洲嫩草| 男的添女的下面高潮视频| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 我的亚洲天堂| 下体分泌物呈黄色| 老汉色∧v一级毛片| 国产精品香港三级国产av潘金莲 | 欧美少妇被猛烈插入视频| 美女福利国产在线| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久av网站| 99国产精品一区二区蜜桃av | 又粗又硬又长又爽又黄的视频| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 午夜激情av网站| 午夜免费成人在线视频| 人妻 亚洲 视频| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 少妇人妻久久综合中文| 在线观看国产h片| 天天躁日日躁夜夜躁夜夜| 亚洲av综合色区一区| 男女无遮挡免费网站观看| 亚洲视频免费观看视频| 人体艺术视频欧美日本| 久久精品成人免费网站| 色婷婷av一区二区三区视频| 欧美另类一区| 少妇猛男粗大的猛烈进出视频| 丝袜脚勾引网站| 天天躁夜夜躁狠狠躁躁| 亚洲国产毛片av蜜桃av| 老汉色av国产亚洲站长工具| 免费观看人在逋| 中文字幕人妻熟女乱码| 久久久精品94久久精品| 亚洲欧美清纯卡通| 老司机靠b影院| 国产午夜精品一二区理论片| 成在线人永久免费视频| 男女边摸边吃奶| 99久久精品国产亚洲精品| 久久ye,这里只有精品| 夜夜骑夜夜射夜夜干| 悠悠久久av| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 亚洲av电影在线观看一区二区三区| 免费日韩欧美在线观看| 亚洲精品国产区一区二| 国产免费又黄又爽又色| 午夜福利免费观看在线| 91国产中文字幕| 国产亚洲午夜精品一区二区久久| 9191精品国产免费久久| 亚洲精品在线美女| 欧美精品高潮呻吟av久久| www.av在线官网国产| 天天躁夜夜躁狠狠久久av| 一本色道久久久久久精品综合| 黄色毛片三级朝国网站| 亚洲精品第二区| 欧美av亚洲av综合av国产av| www.av在线官网国产| 中国美女看黄片| e午夜精品久久久久久久| 午夜免费鲁丝| 日韩 亚洲 欧美在线| 新久久久久国产一级毛片| 精品少妇黑人巨大在线播放| 亚洲国产精品一区二区三区在线| 国产极品粉嫩免费观看在线| 久久午夜综合久久蜜桃| 五月天丁香电影| 日本五十路高清| 精品少妇黑人巨大在线播放| 欧美精品一区二区大全| 七月丁香在线播放| 国产av国产精品国产| 秋霞在线观看毛片| 日本欧美视频一区| 丝袜喷水一区| 久久久欧美国产精品| 久久毛片免费看一区二区三区| www.999成人在线观看| 丝袜人妻中文字幕| 一级片'在线观看视频| 亚洲欧美一区二区三区久久| 免费在线观看影片大全网站 | 日韩人妻精品一区2区三区| 女人精品久久久久毛片| 校园人妻丝袜中文字幕| 一二三四在线观看免费中文在| 午夜影院在线不卡| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 丰满迷人的少妇在线观看| 亚洲熟女毛片儿| 午夜免费观看性视频| 久久人妻熟女aⅴ| 国产麻豆69| 看免费av毛片| 亚洲精品成人av观看孕妇| 欧美97在线视频| 99精国产麻豆久久婷婷| 少妇人妻 视频| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 色网站视频免费| 麻豆国产av国片精品| 黄片播放在线免费| 午夜激情av网站| 日韩电影二区| 大话2 男鬼变身卡| 精品久久久久久电影网| 男男h啪啪无遮挡| 亚洲国产成人一精品久久久| 亚洲av美国av| 亚洲精品自拍成人| 欧美国产精品一级二级三级| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 五月开心婷婷网| 色精品久久人妻99蜜桃| 777米奇影视久久| 免费在线观看视频国产中文字幕亚洲 | 亚洲视频免费观看视频| 久久久久久久久久久久大奶| 最新在线观看一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩精品亚洲av| 免费高清在线观看视频在线观看| 多毛熟女@视频| 一二三四在线观看免费中文在| 国产xxxxx性猛交| 人体艺术视频欧美日本| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 久久久久久人人人人人| 亚洲男人天堂网一区| 亚洲熟女精品中文字幕| 精品一区二区三区av网在线观看 | 黄片小视频在线播放| 欧美在线一区亚洲| 一边亲一边摸免费视频| 下体分泌物呈黄色| 精品一区二区三卡| 大话2 男鬼变身卡| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| 国产av精品麻豆| 精品一区二区三区四区五区乱码 | 老司机靠b影院| 看免费成人av毛片| 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 看免费成人av毛片| 免费在线观看黄色视频的| 91精品国产国语对白视频| 亚洲国产精品国产精品| 夫妻性生交免费视频一级片| 日韩伦理黄色片| 国产激情久久老熟女| 欧美日韩av久久| 亚洲精品一二三| 午夜av观看不卡| 黄色毛片三级朝国网站| 亚洲国产欧美日韩在线播放| 九草在线视频观看| 女警被强在线播放| 9191精品国产免费久久| 国产成人系列免费观看| 亚洲av日韩在线播放| 一级片'在线观看视频| a级毛片黄视频| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 欧美另类一区| 狂野欧美激情性bbbbbb| av视频免费观看在线观看| 久久九九热精品免费| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 波野结衣二区三区在线| 亚洲伊人久久精品综合| av不卡在线播放| av欧美777| 最新的欧美精品一区二区| 黄片播放在线免费| 晚上一个人看的免费电影| 国产精品一区二区在线观看99| 免费不卡黄色视频| 中文乱码字字幕精品一区二区三区| 午夜福利一区二区在线看| 日韩大码丰满熟妇| 日日摸夜夜添夜夜爱| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人爽人人夜夜| 成年女人毛片免费观看观看9 | 亚洲色图综合在线观看| 99久久人妻综合| 老司机影院毛片| 久久久国产一区二区| 精品少妇一区二区三区视频日本电影| 熟女av电影| 99精品久久久久人妻精品| 99国产精品99久久久久| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 美女视频免费永久观看网站| 亚洲成色77777| 亚洲综合色网址| 国产精品一二三区在线看| 国产欧美亚洲国产| 国产成人91sexporn| 超碰成人久久| 久热这里只有精品99| 69精品国产乱码久久久| 精品久久久精品久久久| 欧美97在线视频| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲 | 曰老女人黄片| 国产成人一区二区在线| 老司机午夜十八禁免费视频| 不卡av一区二区三区| 亚洲,欧美精品.| 亚洲欧美成人综合另类久久久| 免费日韩欧美在线观看| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 波多野结衣av一区二区av| a级毛片在线看网站| 一级毛片女人18水好多 | 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| av视频免费观看在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 两个人免费观看高清视频| 操出白浆在线播放| 国产精品熟女久久久久浪| 99国产精品免费福利视频| 首页视频小说图片口味搜索 | 国产精品 国内视频| xxxhd国产人妻xxx| 国产日韩欧美亚洲二区| 男的添女的下面高潮视频| 国精品久久久久久国模美| 国产精品久久久av美女十八| 丝袜人妻中文字幕| 午夜福利视频精品| 久久久欧美国产精品| 亚洲国产av影院在线观看| 亚洲欧美日韩另类电影网站| 波野结衣二区三区在线| 欧美国产精品一级二级三级| www.自偷自拍.com| 老鸭窝网址在线观看| 91精品伊人久久大香线蕉| 欧美黑人精品巨大| 又大又黄又爽视频免费| www日本在线高清视频| 亚洲成人国产一区在线观看 | 亚洲精品在线美女| 中文字幕人妻丝袜制服| 丰满迷人的少妇在线观看| 欧美av亚洲av综合av国产av| 亚洲精品久久久久久婷婷小说| netflix在线观看网站| 久久久欧美国产精品| 国产成人免费观看mmmm| 亚洲中文字幕日韩| 精品国产乱码久久久久久男人| 亚洲av电影在线观看一区二区三区| av线在线观看网站| 国产成人影院久久av| 亚洲成人手机| 国产欧美日韩一区二区三 | 美女大奶头黄色视频| 99国产精品99久久久久| 国产淫语在线视频| 欧美日韩福利视频一区二区| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 久久久国产欧美日韩av| 成年人黄色毛片网站| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 18禁裸乳无遮挡动漫免费视频| 亚洲成人免费电影在线观看 | 99九九在线精品视频| 18禁国产床啪视频网站| 国产97色在线日韩免费| 国产无遮挡羞羞视频在线观看| 九草在线视频观看| 视频在线观看一区二区三区| 精品国产国语对白av| 黄片小视频在线播放| 高清av免费在线| 久久人人97超碰香蕉20202| 麻豆av在线久日| 最近手机中文字幕大全| 国产精品国产av在线观看| 免费不卡黄色视频| 亚洲精品在线美女| 永久免费av网站大全| 亚洲av片天天在线观看| 久久亚洲精品不卡| 精品久久蜜臀av无| 亚洲国产精品国产精品| 国产精品一国产av| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 嫩草影视91久久| 18在线观看网站| www日本在线高清视频| 精品久久久久久久毛片微露脸 | 亚洲国产av新网站| 国产一级毛片在线| 婷婷色麻豆天堂久久| av不卡在线播放| 国产精品一区二区在线观看99| 人人澡人人妻人| 人妻 亚洲 视频| 中文字幕色久视频| 国产深夜福利视频在线观看| 日韩大码丰满熟妇| 97人妻天天添夜夜摸| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 亚洲av电影在线进入| 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 各种免费的搞黄视频| 自线自在国产av| 成人黄色视频免费在线看| 麻豆乱淫一区二区| 免费女性裸体啪啪无遮挡网站| xxxhd国产人妻xxx| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 十八禁高潮呻吟视频| 又大又黄又爽视频免费| 999精品在线视频| 十八禁人妻一区二区| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 亚洲av美国av| 丰满人妻熟妇乱又伦精品不卡| 国产又爽黄色视频| 精品国产一区二区久久| 日韩一区二区三区影片| 亚洲av欧美aⅴ国产| 无限看片的www在线观看| 国产在线免费精品| xxxhd国产人妻xxx| 亚洲第一青青草原| 激情五月婷婷亚洲| 久久精品aⅴ一区二区三区四区| 一本色道久久久久久精品综合| 欧美+亚洲+日韩+国产| 日本午夜av视频| 人人妻,人人澡人人爽秒播 | 操美女的视频在线观看| 欧美 日韩 精品 国产| 免费看十八禁软件| 欧美日韩av久久| 男女之事视频高清在线观看 | 悠悠久久av| 成人黄色视频免费在线看| 精品国产超薄肉色丝袜足j| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 午夜91福利影院| 五月开心婷婷网| 国产成人精品久久二区二区免费| 国产在线免费精品| 99国产精品99久久久久| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频 | 无限看片的www在线观看| 日韩熟女老妇一区二区性免费视频| 好男人视频免费观看在线| 欧美激情高清一区二区三区| 午夜福利视频在线观看免费| 一二三四社区在线视频社区8| 免费人妻精品一区二区三区视频| svipshipincom国产片| 国产成人精品久久二区二区免费| 丝袜脚勾引网站| 亚洲精品美女久久久久99蜜臀 | 国产精品99久久99久久久不卡| 丝袜美足系列| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 高清不卡的av网站| 欧美在线黄色| 性色av乱码一区二区三区2| cao死你这个sao货| av一本久久久久| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久人妻精品电影 | 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 在线观看免费日韩欧美大片| 最近手机中文字幕大全| 免费看不卡的av| 99热国产这里只有精品6| 黄色怎么调成土黄色| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美网| 波多野结衣av一区二区av| 国产精品 国内视频| 男女边吃奶边做爰视频| 久久久久久久大尺度免费视频| 男女之事视频高清在线观看 | 人人澡人人妻人| 亚洲国产最新在线播放| 一区福利在线观看| 如日韩欧美国产精品一区二区三区| 在线观看国产h片| 亚洲欧美激情在线| 男的添女的下面高潮视频| 高清不卡的av网站| 国产亚洲精品第一综合不卡| 成年人午夜在线观看视频| 欧美日韩av久久| 免费看不卡的av| 别揉我奶头~嗯~啊~动态视频 | h视频一区二区三区| 99国产综合亚洲精品| 欧美久久黑人一区二区| 日韩中文字幕欧美一区二区 | 久久亚洲国产成人精品v| 中国美女看黄片| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 日本一区二区免费在线视频| 欧美成人午夜精品| 国产女主播在线喷水免费视频网站| 亚洲国产欧美网| 午夜福利免费观看在线| 欧美日韩视频高清一区二区三区二| 熟女av电影| 男女高潮啪啪啪动态图| 亚洲成人免费av在线播放| 男的添女的下面高潮视频| 欧美日韩黄片免| 操出白浆在线播放| 久久精品aⅴ一区二区三区四区| 日日摸夜夜添夜夜爱| 国产精品.久久久| 高潮久久久久久久久久久不卡| 精品人妻在线不人妻| 免费av中文字幕在线| 欧美+亚洲+日韩+国产| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 在线看a的网站| 国语对白做爰xxxⅹ性视频网站| 国产成人精品在线电影| 亚洲成人手机| 国产男女超爽视频在线观看| 亚洲欧美日韩高清在线视频 | 中文字幕最新亚洲高清| 国产主播在线观看一区二区 | 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 曰老女人黄片| 久久精品国产亚洲av高清一级| 免费在线观看视频国产中文字幕亚洲 | 国产日韩欧美视频二区| 美女大奶头黄色视频| 秋霞在线观看毛片| 亚洲熟女精品中文字幕| 精品一区二区三卡| 日日爽夜夜爽网站| 久久久亚洲精品成人影院| 精品亚洲乱码少妇综合久久| 黄色a级毛片大全视频| 亚洲黑人精品在线| 亚洲av成人不卡在线观看播放网 | 黄网站色视频无遮挡免费观看| 精品欧美一区二区三区在线| 日韩熟女老妇一区二区性免费视频| 久久久久国产精品人妻一区二区| 99久久精品国产亚洲精品| 午夜福利,免费看|