吳水水, 徐雪芬, 黃 劍
雌激素介導(dǎo)的非基因組信號(hào)通路的激活,導(dǎo)致的腫瘤耐藥及加速腫瘤干細(xì)胞的自我更新等領(lǐng)域一直是乳腺癌研究的熱點(diǎn)。ER,尤其是其變異剪切體ER-α36,在激活乳腺癌非基因組信號(hào)通路、誘導(dǎo)耐藥及促進(jìn)腫瘤干細(xì)胞富集等方面的作用,近年來(lái)倍受關(guān)注[1-5]。
ER主要有ER-α、ER-β以及它們的變異體。ER-α主要包括ER-α66及其剪切體ER-α36和ER-α46[6-7]。ER-α36是一新型的膜性ER,主要通過(guò)介導(dǎo)非基因組信號(hào)通路來(lái)調(diào)節(jié)乳腺癌細(xì)胞的功能[8-9]。該文將著重就ER-α36的結(jié)構(gòu)、介導(dǎo)的非基因組信號(hào)通路、內(nèi)分泌治療耐藥及乳腺癌干細(xì)胞的關(guān)系進(jìn)行綜述。
2005年Dr.Wang的實(shí)驗(yàn)室發(fā)現(xiàn)一種新型的ER,為ER-α66的剪切變異體,該剪切變異體缺乏ER-α66的轉(zhuǎn)錄激活區(qū),保留DNA結(jié)合結(jié)構(gòu)域及部分二聚體和配體結(jié)合結(jié)構(gòu)域,相對(duì)分子質(zhì)量為3.6×104,因此命名為ER-α36[8]。ER-α66主要定位于細(xì)胞核,而ER-α36主要位于細(xì)胞膜和細(xì)胞質(zhì),又稱為膜性ER。ER-α36是從ER-α66基因的第1個(gè)內(nèi)含子中的啟動(dòng)子開(kāi)始編碼的,與ER-α66的結(jié)構(gòu)比較,缺乏AF-1和AF-2轉(zhuǎn)錄激活區(qū),保留了DNA結(jié)合結(jié)構(gòu)域、部分二聚體和配體結(jié)合結(jié)構(gòu)域。ER-α36的C末端有27個(gè)額外的獨(dú)特氨基酸序列,以取代ER-α66外顯子7和8編碼的C末端138個(gè)氨基酸。ER-α36還具有3個(gè)潛在的酰基化位點(diǎn),故ER-α36蛋白主要定位于細(xì)胞膜(50%),部分定位于細(xì)胞質(zhì)(40%),少數(shù)定位于細(xì)胞核(10%)[8,10]。ER-α66的另一剪切體ER-α46,相對(duì)分子質(zhì)量為4.6×104,在ER-α46的結(jié)構(gòu)中,選擇性剪切了第1個(gè)編碼外顯子,所以缺乏ER-α66 N端的173個(gè)氨基酸,即A/B區(qū)或AF-1區(qū),其它結(jié)構(gòu)和ER-α66相同[8]。ER-α46在乳腺癌中的作用,尚不清楚。
新型ER-α36可介導(dǎo)由乳腺癌細(xì)胞膜始發(fā)的雌激素信號(hào),激活磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase, PI3K)/蛋白激酶B(protein kinase B)、絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases, ERK)等胞內(nèi)信號(hào)通路-即非基因組信號(hào)通路,調(diào)節(jié)乳腺癌細(xì)胞的生長(zhǎng)增殖。研究發(fā)現(xiàn),ER-α36能抑制ER-α66和ER-β的E2依賴和E2非依賴轉(zhuǎn)錄活性,并參與其誘導(dǎo)的MAPK/ERK和PI3K/AKT快速磷酸化[9]。在E2作用下,在ER-α66+/ER-α36+乳腺癌細(xì)胞系MCF7、T47D和H3396中,胞內(nèi)MAPK/ERK信號(hào)通路被快速激活;當(dāng)用shRNA特異性沉默ER-α36后,E2不能誘導(dǎo)MAPK/AKT磷酸化。而當(dāng)特異性沉默ER-α66后,在ER-α36存在的狀態(tài)下,E2仍然能誘導(dǎo)MAPK/AKT磷酸化。該研究清楚表明,MAPK/AKT的磷酸化,不是由ER-α66而是由ER-α36的快速雌激素信號(hào)介導(dǎo)[11-12]。另有研究顯示,ER-α36能誘導(dǎo)胞內(nèi)信號(hào)通路RAS/MAPK/ERK和PI3K/AKT活化,并誘導(dǎo)原癌基因c-myc的編碼產(chǎn)物c-myc表達(dá),促進(jìn)腫瘤細(xì)胞的生長(zhǎng)與增殖[13]。新近一項(xiàng)實(shí)驗(yàn)發(fā)現(xiàn),ER-α36通過(guò)激活E2介導(dǎo)的MAPK/ERK信號(hào)通路,促進(jìn)腫瘤細(xì)胞的增殖和遷移[4]。除乳腺癌外,ER-α36在其它腫瘤亦能激活非基因組信號(hào)通路。在子宮內(nèi)膜癌Ishikawa細(xì)胞中,E2通過(guò)ER-α36快速激活PKCδ/ERK通路,增強(qiáng)Cyclin D1/CDK4表達(dá)[14]。上述研究結(jié)果均表明新型雌激素膜受體ER-α36,介導(dǎo)E2誘導(dǎo)的胞內(nèi)信號(hào)通路,促進(jìn)MAPK/ERK和PI3K/AKT快速磷酸化,影響腫瘤細(xì)胞生長(zhǎng)增殖等生物學(xué)特性。
EGFR和HER-2是HER上皮生長(zhǎng)因子受體家族(包括HER-1即EGFR、HER-2、HER-3和HER-4)中最重要的成員[15]。乳腺癌中EGFR基因擴(kuò)增和蛋白過(guò)表達(dá)現(xiàn)象已有明確報(bào)道[16]。HER-2基因擴(kuò)增和蛋白過(guò)表達(dá)是乳腺癌惡性特征的重要表現(xiàn)[17],而20%~30%乳腺癌呈HER-2陽(yáng)性。研究發(fā)現(xiàn),ER-α36和EGFR/HER-2存在分子間的雙向交互作用,ER-α36正向調(diào)節(jié)EGFR和HER-2表達(dá),EGFR亦可通過(guò)ER-α36基因的5’編碼區(qū)AP1結(jié)合位點(diǎn)誘導(dǎo)ER-α36表達(dá),且ER-α36可穩(wěn)定EGFR蛋白表達(dá),促進(jìn)E2誘導(dǎo)的HER-2表達(dá)[18-19]。ER-α36亦可和EGFR/Src/Shc復(fù)合體相互作用,活化Src和EGFR,進(jìn)而激活胞內(nèi)MAPK/ERK和EGFR/STAT5信號(hào)通路,從而促進(jìn)乳腺癌細(xì)胞生長(zhǎng)增殖[18]。低濃度E2誘導(dǎo)ER-α36通過(guò)Src-Y416磷酸化,激活Src,進(jìn)而激活EGFR/STAT5信號(hào)通路,促進(jìn)乳腺癌細(xì)胞增殖[20]。在ER-α66-/ER-α36+/HER-2+的乳腺癌SKBR-3細(xì)胞中,特異性沉默ER-α36后,降低HER-2蛋白的表達(dá),表明ER-α36和HER-2之間存在密切的關(guān)系[19]。上述實(shí)驗(yàn)結(jié)果均表明,ER-α36可能通過(guò)和EGFR/HER-2生長(zhǎng)因子受體家族的雙向交互作用,激活非基因組信號(hào)通路。
Tamoxifen是選擇性ER調(diào)節(jié)劑,廣泛用于治療進(jìn)展期ER陽(yáng)性乳腺癌,已成為絕經(jīng)前和絕經(jīng)后乳腺癌高危患者的預(yù)防藥物。但30%~40%的乳腺癌患者在Tamoxifen治療后出現(xiàn)繼發(fā)耐藥。主要的耐藥機(jī)制有ER表達(dá)缺失或突變、藥物代謝基因突變、多種生長(zhǎng)因子轉(zhuǎn)導(dǎo)的通路,如PI3K/AKT、AMPK/ERK通路異常激活等[21]。ER-α36在ER陽(yáng)性乳腺癌Tamoxifen耐藥方面的作用,近年來(lái)也倍受關(guān)注。ER-α66+/ER-α36+的乳腺癌患者,與ER-α66+/ER-α36-的乳腺癌患者相比,無(wú)瘤生存率和疾病特殊生存率DSS均較低,且不易從Tamoxifen治療中獲益[22]。一項(xiàng)對(duì)Tamoxifen耐藥的乳腺癌細(xì)胞研究顯示,Tamoxifen誘導(dǎo)ER-α66+乳腺癌MCF-7細(xì)胞過(guò)表達(dá)ER-α36,繼而腫瘤細(xì)胞對(duì)Tamoxifen產(chǎn)生耐藥。當(dāng)沉默ER-α36后,乳腺癌細(xì)胞可恢復(fù)對(duì)Tamoxifen治療的敏感性[23]??梢?jiàn),Tamoxifen可能通過(guò)ER-α36的介導(dǎo),激活胞內(nèi)信號(hào)通路RAS/MAPK/ERK和PI3K/AKT。MAPK/ERK信號(hào)通路的持續(xù)激活,在細(xì)胞生長(zhǎng)和增殖中發(fā)揮重要作用,而PI3K/AKT信號(hào)通路的持續(xù)激活,促使乳腺癌細(xì)胞逃逸Tamoxifen誘導(dǎo)的凋亡[3],ER-α36過(guò)表達(dá)或許是Tamoxifen耐藥的機(jī)制之一[7]。
在乳腺癌Tamoxifen治療獲得性耐藥的發(fā)展過(guò)程中,乳腺癌細(xì)胞從開(kāi)始的雌激素依賴性生長(zhǎng),轉(zhuǎn)變?yōu)樯L(zhǎng)因子依賴性生長(zhǎng)。在乳腺癌MCF-7/TAM耐藥細(xì)胞中,ER-α36和EGFR表達(dá)升高,細(xì)胞生長(zhǎng)速度加快,體外遷移和侵襲能力增強(qiáng)。當(dāng)特異性沉默ER-α36后,引起EGFR蛋白表達(dá)降低,從而導(dǎo)致細(xì)胞生長(zhǎng)增殖、體外遷移和侵襲能力均減弱[24]。另一研究亦表明,ER-α36與EGFR/HER-2相互作用,影響乳腺癌細(xì)胞生長(zhǎng)增殖,促進(jìn)Tamoxifen耐藥;用雙重絡(luò)氨酸激酶抑制劑Lapatinib或ER-α36下調(diào)劑Broussoflavonol B,阻斷ER-α36與EGFR/HER-2正向調(diào)節(jié)回路,能恢復(fù)MCF-7/TAM細(xì)胞對(duì)Tamoxifen處理的敏感性[25]。綜上所述,ER-α36和EGFR/HER-2相互作用,可能是乳腺癌細(xì)胞Tamoxifen耐藥的主要機(jī)制[26]。
越來(lái)越多的證據(jù)支持腫瘤干細(xì)胞學(xué)說(shuō),該學(xué)說(shuō)認(rèn)為腫瘤起源于具有干細(xì)胞特性的細(xì)胞亞群,具有細(xì)胞自我更新、腫瘤形成和多潛能分化的能力,腫瘤干細(xì)胞在乳腺癌發(fā)生、發(fā)展和轉(zhuǎn)移中的重要作用,日益受到關(guān)注。在SKBR-3(ER-α66-/ER-α36+)乳腺癌細(xì)胞中,ALDH1+干細(xì)胞亞群和高度表達(dá)ER-α36的亞群為同一細(xì)胞群體。當(dāng)特異性沉默ER-α36后,ALDH1+腫瘤干細(xì)胞數(shù)量顯著減少,表明ER-α36和乳腺癌干細(xì)胞亞群關(guān)系密切[19]。在MCF7和T47D乳腺癌細(xì)胞中,富集了CD44+CD24-腫瘤干細(xì)胞亞群,亦過(guò)度表達(dá)ER-α36,且通過(guò)ER-α36激活胞內(nèi)信號(hào)通路PI3K/AKT,促進(jìn)腫瘤細(xì)胞增殖及誘導(dǎo)Tamoxifen和ICI182,780耐藥[12]。ER-α36可能在乳腺癌干細(xì)胞及耐藥亞群中發(fā)揮重要作用。
目前,乳腺癌主要的治療方式包括手術(shù)治療、放療及靶向治療。靶向治療毒副作用輕、有廣泛的前景,如抗ER的Tamoxifen治療。然而,Tamoxifen治療過(guò)程中產(chǎn)生的耐藥,是乳腺癌靶向治療過(guò)程中最大的挑戰(zhàn)。ER-α36膜受體可能通過(guò)和生長(zhǎng)因子受體EGFR/HER-2分子間的雙向交互作用,激活胞內(nèi)AMPK/ERK、PI3K/AKT信號(hào)通路,最終導(dǎo)致乳腺癌細(xì)胞生長(zhǎng)增殖及Tamoxifen耐藥。因此,抗ER-α36可能成為抵御Tamoxifen耐藥的重要手段,并將可能成為今后乳腺癌治療的特異性新靶點(diǎn)。
[1] Wang Z Y, Yin L. Estrogen receptor alpha-36 (ER-alpha36): a new player in human breast cancer[J]. Mol Cell Endocrinol, 2015,418(3):193-206.
[2] Su X, Xu X, Li G,etal. ER-alpha36: a novel biomarker and potential therapeutic target in breast cancer[J]. Oncol Targets Ther, 2014,7:1525-1533.
[3] Teymourzadeh A, Mansouri S, Farahmand L,etal. ER-alpha36 interactions with cytosolic molecular network in acquired tamoxifen resistance[J]. Clin Breast Cancer, 2017,17(16):403-407.
[4] Sun Q, Liang Y, Zhang T,etal. ER-alpha36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells[J]. Biochem Biophys Res Commun, 2017,487(3):625-632.
[5] Gu W, Dong N, Wang P,etal. Tamoxifen resistance and metastasis of human breast cancer cells were mediated by the membrane-associated estrogen receptor ER-alpha36 signalinginvitro[J]. Cell Biol Toxicol, 2017,33(2):183-195.
[6] Kong E H, Pike A C, Hubbard R E. Structure and mechanism of the oestrogen receptor[J]. Biochem Soc Trans, 2003,31(1):56-59.
[7] Encarnacion C A, Fuqua S A. Estrogen receptor variants in breast cancer[J]. Cancer Treat Res, 1994,71:97-109.
[8] Wang Z, Zhang X, Shen P,etal. Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptor-alpha66[J]. Biochem Biophys Res Commun, 2005,336(4):1023-1027.
[9] Wang Z, Zhang X, Shen P,etal. A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling[J]. Proc Natl Acad Sci USA, 2006,103(24):9063-9068.
[10] Rao J, Jiang X, Wang Y,etal. Advances in the understanding of the structure and function of ER-alpha36, a novel variant of human estrogen receptor-alpha[J]. J Steroid Biochem Mol Biol, 2011,127(3-5):231-237.
[11] Zhang X, Deng H, Wang Z Y. Estrogen activation of the mitogen-activated protein kinase is mediated by ER-alpha36 in ER-positive breast cancer cells[J]. J Steroid Biochem Mol Biol, 2014,143(6):434-443.
[12] Deng H, Yin L, Zhang X T,etal. ER-alpha variant ER-alpha36 mediates antiestrogen resistance in ER-positive breast cancer stem/progenitor cells[J]. J Steroid Biochem Mol Biol, 2014,144(Pt B):417-426.
[13] Lin S L, Yan L Y, Zhang X T,etal. ER-alpha36, a variant of ER-alpha, promotes tamoxifen agonist action in endometrial cancer cells via the MAPK/ERK and PI3K/Akt pathways[J]. PLoS One, 2010,5(2):9013-9021.
[14] Tong J S, Zhang Q H, Wang Z B,etal. ER-alpha36, a novel variant of ER-alpha, mediates estrogen-stimulated proliferation of endometrial carcinoma cells via the PKCdelta/ERK pathway[J]. PLoS One, 2010,5(11):15408-15418.
[15] Yarden Y, Sliwkowski M X. Untangling the ErbB signalling network[J]. Nat Rev Mol Cell Biol, 2001,2(2):127-137.
[16] Kumar R, Wang R A. Protein kinases in mammary gland development and cancer[J]. Microsc Res Tech, 2002,59(11):49-57.
[17] Arteaga C L, Engelman J A. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics[J]. Cancer Cell, 2014,25(3):282-303.
[18] Zhang X T, Kang L G, Ding L,etal. A positive feedback loop of ER-alpha36/EGFR promotes malignant growth of ER-negative breast cancer cells[J]. Oncogene, 2011,30(7):770-780.
[19] Kang L, Guo Y, Zhang X,etal. A positive cross-regulation of HER2 and ER-alpha36 controls ALDH1 positive breast cancer cells[J]. J Steroid Biochem Mol Biol, 2011,127(3-5):262-268.
[20] Zhang X T, Ding L, Kang L G,etal. Involvement of ER-alpha36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells[J]. Oncol Rep, 2012,27(6):2057-2065.
[21] Rondon-Lagos M, Villegas V E, Rangel N,etal. Tamoxifen Resistance: Emerging Molecular Targets[J]. Int J Mol Sci, 2016,17(8):1357-1387.
[22] Shi L, Dong B, Li Z,etal. Expression of ER-alpha36, a novel variant of estrogen receptor alpha, and resistance to tamoxifen treatment in breast cancer[J]. J Clin Oncol, 2009,27(21):3423-3429.
[23] Zhang X, Wang Z Y. Estrogen receptor-alpha variant, ER-alpha36, is involved in tamoxifen resistance and estrogen hypersensitivity[J]. Endocrinology, 2013,154(6):1990-1998.
[24] Li G, Zhang J, Jin K,etal. Estrogen receptor-alpha36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells[J]. Mol Oncol, 2013,7(3):611-624.
[25] Yin L, Pan X, Zhang X T,etal. Downregulation of ER-alpha36 expression sensitizes HER2 overexpressing breast cancer cells to tamoxifen[J]. Am J Cancer Res, 2015,5(2):530-544.
[26] Yin L, Wang Z Y. Roles of the ER-alpha36-EGFR/HER2 positive regulatory loops in tamoxifen resistance[J]. Steroids, 2016,111:95-99.