荀靜宇, 李福軍, 孫 晨, 吳德全
哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院普通外科六病房,黑龍江 哈爾濱 150086
miR-135a在消化系統(tǒng)腫瘤中的研究進(jìn)展
荀靜宇, 李福軍, 孫 晨, 吳德全
哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院普通外科六病房,黑龍江 哈爾濱 150086
microRNAs(miRNAs)是由17~27個(gè)核苷酸組成的非編碼小RNA,它通過(guò)信使RNA(messenger RNA,mRNA)降解目標(biāo)RNA或抑制蛋白質(zhì)的翻譯來(lái)調(diào)節(jié)基因的表達(dá),大多數(shù)microRNAs都參與腫瘤細(xì)胞的增殖、擴(kuò)散、轉(zhuǎn)移和凋亡,并在腫瘤的發(fā)生、發(fā)展過(guò)程中扮演著重要角色。消化系統(tǒng)腫瘤的發(fā)生率和死亡率呈上升趨勢(shì),對(duì)人們的身體健康存在著嚴(yán)重威脅。相關(guān)研究表明miR-135a在腫瘤的早期診斷和相關(guān)治療中都起到重要作用,本文將對(duì)miR-135a在消化系統(tǒng)腫瘤中的研究進(jìn)展作一概述。
miR-135a;消化系統(tǒng)腫瘤;診斷;治療
microRNAs是一種保守的非編碼小RNA,它能與目標(biāo)RNA特定的3′-端非翻譯區(qū)(3′-UTR)的堿基互補(bǔ)配對(duì),從而抑制蛋白質(zhì)的翻譯,許多腫瘤的發(fā)生都與microRNAs的異常表達(dá)有關(guān)[1],有證據(jù)表明基于microRNAs的基因調(diào)節(jié)功能,它可作為癌基因或抑癌基因存在于腫瘤組織中[2]。其中miR-135家族包含miR-135a和miR-135b。黏著斑激酶(focal adhesion kinase,F(xiàn)AK)在許多腫瘤中過(guò)表達(dá),而miR-135a在FAK的3′-UTR上有一個(gè)恒定的結(jié)合位點(diǎn),與之結(jié)合后會(huì)抑制其熒光素酶的活性,從而影響腫瘤的發(fā)生與發(fā)展[3]。消化系統(tǒng)腫瘤的發(fā)生率呈現(xiàn)逐年上升趨勢(shì),而對(duì)其的早期診斷及后期治療均存在局限性,導(dǎo)致其死亡率也較高,近年的研究[4]發(fā)現(xiàn)miR-135a在消化系統(tǒng)腫瘤的早期診斷、靶基因治療和判斷預(yù)后等方面都起到重要的作用,現(xiàn)將miR-135a在消化系統(tǒng)腫瘤中的研究進(jìn)展作一概述。
在中國(guó),大多數(shù)肝癌患者都是因?yàn)楦腥玖薍BV或HCV,其發(fā)生率和死亡率均較高,中國(guó)肝癌患者約占全球肝癌患者的55%[5]。目前治療肝癌最有效的方法是外科手術(shù),但很多患者在確診時(shí)已經(jīng)是腫瘤晚期或伴遠(yuǎn)處轉(zhuǎn)移,從而失去了手術(shù)切除腫瘤的機(jī)會(huì),因此我們要深入了解肝癌轉(zhuǎn)移的分子機(jī)制,為肝癌患者的治療尋找新的靶點(diǎn)。Zeng等[6]研究發(fā)現(xiàn)miR-135a與FOXO1mRNA的3′-UTR相結(jié)合,導(dǎo)致SNAI1和MMP2超表達(dá)、促進(jìn)AKT磷酸化,抑制FOXO3a磷酸化。SNAI1和MMP2能促進(jìn)腫瘤的浸潤(rùn)和轉(zhuǎn)移,其超表達(dá)可促使腫瘤發(fā)生轉(zhuǎn)移,AKT磷酸化后可介導(dǎo)下游信號(hào)傳導(dǎo),增強(qiáng)細(xì)胞的抗凋亡能力。FOXO3a具有促使肝癌細(xì)胞增殖和形成細(xì)胞集落的能力[7],F(xiàn)OXO3a磷酸化后細(xì)胞核脫出,其功能將發(fā)生減退[8]。miR-135a在肝癌細(xì)胞和肝癌組織中超表達(dá),這種異常表達(dá)的miR-135a促進(jìn)了肝癌細(xì)胞的浸潤(rùn)和擴(kuò)散[6]。Liu等[9]研究發(fā)現(xiàn)miR-135a的超表達(dá)促進(jìn)肝癌患者門靜脈癌栓(portal vein tumor thrombus,PVTT)形成和癌細(xì)胞發(fā)生轉(zhuǎn)移,門靜脈癌栓形成嚴(yán)重影響患者生存,在裸鼠的原位移植模型中研究發(fā)現(xiàn)抑制miR-135a表達(dá)后,PVTT的發(fā)生率明顯降低。因此檢測(cè)miR-135a可以判斷PVTT患者的預(yù)后情況。KLF4在細(xì)胞增殖和凋亡周期中起到重要的作用[10],KLF4/VDR信號(hào)通路可阻止肝癌的進(jìn)展[11],過(guò)表達(dá)的KLF4可抑制肝癌細(xì)胞的增殖、侵襲和轉(zhuǎn)移[12]。Yao等[13]研究發(fā)現(xiàn),在肝癌組織中miR-135a通過(guò)與TGF-β1配對(duì)誘導(dǎo)KLF4的表達(dá)下調(diào),miR-135a在肝癌組織中的表達(dá)比癌旁組織高,當(dāng)miR-135a受到抑制后,KLF4的表達(dá)明顯升高。這些都提示miR-135a在肝癌治療中的價(jià)值,檢測(cè)miR-135a的表達(dá)水平既可以對(duì)肝癌做出早期診斷,也可以預(yù)測(cè)肝癌患者的預(yù)后,同時(shí)也可以通過(guò)基因的治療來(lái)降低miR-135a的表達(dá),為肝癌患者的治療提供新的方式。
膽囊癌惡性程度較高,很多患者確診時(shí)已經(jīng)是腫瘤晚期,患者預(yù)后非常差。Zhou等[14]研究發(fā)現(xiàn)極低密度脂蛋白受體(very low density lipoprotein receptor,VLDLR)在膽囊癌中過(guò)表達(dá),VLDLR被認(rèn)為是miR-135a的直接功能目標(biāo),p38 MAPK被證明參與miR-135a-VLDLR的下游信號(hào),miR-135a-VLDLR-p38軸可導(dǎo)致膽囊癌細(xì)胞增殖,所以在膽囊癌中miR-135a表達(dá)下調(diào),抑制膽囊癌細(xì)胞的增殖。Yin等[15]證實(shí)miR-135a在膽囊癌組織中低表達(dá),具有抑癌作用,但在膽囊癌細(xì)胞中過(guò)表達(dá),可促進(jìn)膽囊癌細(xì)胞的G1期阻滯,降低S期百分比,抑制膽囊癌細(xì)胞增殖。目前miR-135a在膽囊癌中研究相對(duì)較少,但可以證實(shí)miR-135a在膽囊癌中有抑癌基因的作用,可作為膽囊癌治療的靶點(diǎn)。
胰腺癌是消化系統(tǒng)惡性腫瘤中的一種,其中胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)占胰腺癌的90%,患者預(yù)后極差,5年生存率僅為5%左右,胰腺癌具有高侵襲性,早期缺乏典型的臨床癥狀,對(duì)于胰腺癌的早期診斷非常困難,在臨床上除了根治性手術(shù)切除之外,尚缺乏有效的靶向治療藥物[16]。有研究[17]證實(shí)Bmi1基因是原癌基因,在PDAC組織中高表達(dá),并與PDAC患者的不良預(yù)后有關(guān),當(dāng)下調(diào)Bmi1的表達(dá)后可以抑制PDAC細(xì)胞的增殖和侵襲能力。Dang等[18]研究發(fā)現(xiàn)Bmi1在胰腺癌組織中的表達(dá)明顯高于癌旁組織,通過(guò)熒光素酶檢測(cè)顯示miR-135a可與Bmi1的3′-UTR相結(jié)合,從而抑制Bmi1的轉(zhuǎn)錄,下調(diào)Bmi1的表達(dá)。采用Western blotting檢測(cè)幾個(gè)與細(xì)胞周期和凋亡相關(guān)的Bmi1下游分子顯示,miR-135a過(guò)表達(dá)后cyclin D1、Cdk2、Cdk4的表達(dá)下調(diào)。這些都證明miR-135a可以抑制胰腺癌細(xì)胞的增殖與侵襲,可以為胰腺癌的診斷提出新的方向。秦濤等[19]通過(guò)體外試驗(yàn)研究miR-135a對(duì)人胰腺癌細(xì)胞株Bxpc-3的增殖及凋亡的影響發(fā)現(xiàn),miR-135a的高表達(dá)可能與胰腺癌的發(fā)生及Bxpc-3細(xì)胞的增殖有關(guān),下調(diào)miR-135a的表達(dá)后,可使Bxpc-3細(xì)胞的增殖率降低,同時(shí)也能增強(qiáng)Bxpc-3細(xì)胞對(duì)5-FU的敏感性,這為胰腺癌的基因治療提供了新的靶點(diǎn)。
胃癌患者在早期沒(méi)有典型的臨床癥狀,對(duì)于胃癌的早期診斷、治療及轉(zhuǎn)移的相關(guān)研究仍是一個(gè)棘手的問(wèn)題。有研究證實(shí)KIFC1可促進(jìn)胃癌細(xì)胞的生長(zhǎng)和促進(jìn)癌細(xì)胞集落形成,在調(diào)節(jié)胃癌細(xì)胞的發(fā)生和發(fā)展中起到重要作用[20]。Zhang等[21]同時(shí)轉(zhuǎn)染MKN-45和MGC-803細(xì)胞模仿miR-135a對(duì)于KIFC1的影響,實(shí)驗(yàn)證實(shí)miR-135a與KIFC1的3′-UTR結(jié)合后下調(diào)KIFC1的表達(dá),抑制其增殖,促進(jìn)胃癌細(xì)胞凋亡。Wu等[22]研究發(fā)現(xiàn)miR-135a在胃癌中過(guò)表達(dá)可以下調(diào)JAK2蛋白的表達(dá),同時(shí)減弱了p-STAT3的活性和cyclin D1、Bcl-xL蛋白的表達(dá),從而抑制胃癌細(xì)胞的增殖和胃癌細(xì)胞集落的生成。由此可見miR-135a在胃癌中發(fā)揮抑癌基因的作用。淋巴結(jié)轉(zhuǎn)移是胃癌患者相關(guān)死亡的主要原因,然而調(diào)節(jié)胃癌淋巴結(jié)轉(zhuǎn)移的相關(guān)因素尚未完全闡明[23],目前認(rèn)為腫瘤的淋巴管生成是胃癌淋巴結(jié)轉(zhuǎn)移的標(biāo)志,血管內(nèi)皮生長(zhǎng)因子C(vascular endothelial growth factor C,VEGF-C)在淋巴管生成中有重要的作用[24]。Yang等[25]研究發(fā)現(xiàn)VEGF-C可導(dǎo)致miR-135a表達(dá)下調(diào),miR-135a可作為胃癌早期診斷和判斷預(yù)后的指標(biāo)。Shin等[26]研究發(fā)現(xiàn)在早期胃癌伴淋巴結(jié)轉(zhuǎn)移患者ROCK1表達(dá)要比不伴淋巴結(jié)轉(zhuǎn)移顯著升高,而miR-135a在胃癌組織中可下調(diào)ROCK1的表達(dá),抑制胃癌淋巴結(jié)的轉(zhuǎn)移,阻滯了胃癌的進(jìn)一步發(fā)展,這也為miR-135a在胃癌早期診斷和判斷預(yù)后上指出了新的方向。miR-135a也會(huì)影響化療藥物對(duì)胃癌的敏感性,田甜甜等[27]通過(guò)體外研究發(fā)現(xiàn)miR-135a表達(dá)水平與化療藥物紫杉醇敏感性呈負(fù)相關(guān),在化療無(wú)效組中表達(dá)水平明顯高于化療有效組,miR-135a可抑制紫杉醇誘導(dǎo)的細(xì)胞周期G2期阻滯,從而抑制紫杉醇的抗腫瘤作用,miR-135a可作為臨床上預(yù)測(cè)化療藥物敏感性的標(biāo)志物。
結(jié)直腸癌是癌癥相關(guān)死亡的重要原因之一,居世界惡性腫瘤發(fā)病率第三位[28]。Wang等[29]通過(guò)對(duì)照研究發(fā)現(xiàn)結(jié)腸癌組患者的血清中miR-135a的表達(dá)要高于結(jié)腸息肉組和健康組,與結(jié)腸息肉組和健康組在靈敏性、特異性、準(zhǔn)確性、陽(yáng)性預(yù)測(cè)值和陰性預(yù)測(cè)值等方面相比,miR-135a的靈敏度和陰性預(yù)測(cè)值要比CEA和CA199單獨(dú)檢測(cè)或聯(lián)合檢測(cè)高。Quan等[30]通過(guò)試驗(yàn)證明,結(jié)腸癌患者血清中的miR-135a的表達(dá)水平明顯低于正常人。這些都證明了血清中的miR-135a可作為結(jié)腸癌診斷的生物學(xué)標(biāo)志物。Zhou等[31]研究發(fā)現(xiàn)在結(jié)腸癌SW480和SW620細(xì)胞系中,miR-135a與抑癌基因MTSS1的3′-UTR相結(jié)合,下調(diào)MTSS1的表達(dá),從而促進(jìn)結(jié)腸癌細(xì)胞的增殖和侵襲,如果抑制miR-135a的表達(dá),結(jié)腸癌細(xì)胞的增殖、侵襲能力就會(huì)降低。Vickers等[32]研究發(fā)現(xiàn)miR-135a可抑制抑癌基因APC的表達(dá),誘導(dǎo)Wnt信號(hào)通路,從而促進(jìn)結(jié)直腸癌的發(fā)展,與癌旁組織相比miR-135a在腫瘤組織中高表達(dá),具有促進(jìn)腫瘤轉(zhuǎn)移的能力。腺瘤性結(jié)腸息肉病是結(jié)腸癌的癌前病變,miR-135a在腺瘤性結(jié)腸息肉病的生成中起到了調(diào)控作用,Chen等[33]研究發(fā)現(xiàn)miR-135a可抑制下游Wnt/β-catenin信號(hào)通路,影響3T3-L1脂肪形成和分化,促進(jìn)腺瘤性結(jié)腸息肉病的發(fā)生,同時(shí)miR-135a可與結(jié)腸癌基因APC的3′-UTR端的兩個(gè)靶點(diǎn)Apc-m3和Apc-w相結(jié)合,從而下調(diào)APC的表達(dá),miR-135a具有促進(jìn)結(jié)腸癌細(xì)胞的增殖的作用,可作為判斷結(jié)腸癌患者預(yù)后的標(biāo)志物。
綜上所述,miR-135a可與靶基因的3′-UTR相結(jié)合,調(diào)控靶基因的表達(dá),同時(shí)可以抑制抑癌基因的活性,在消化系統(tǒng)腫瘤的發(fā)生和發(fā)展中起到調(diào)控作用,miR-135a也會(huì)影響消化系統(tǒng)腫瘤化療藥物的活性和細(xì)胞周期的進(jìn)程,由此證明miR-135a在消化系統(tǒng)腫瘤的進(jìn)程中發(fā)揮了重要的作用,但消化系統(tǒng)腫瘤的發(fā)病原因尚不明確,在早期診斷和治療方面還存在著一定的局限性,因此深入探索miR-135a在消化系統(tǒng)腫瘤中作用及通過(guò)各種信號(hào)轉(zhuǎn)導(dǎo)調(diào)控靶基因的表達(dá),可為消化系統(tǒng)腫瘤的早期診斷、治療和判斷預(yù)后等方面提供新的靶點(diǎn)。
[1]Tribollet V, Barenton B, Kroiss A, et al. miR-135a inhibits the invasion of cancer cells via suppression of ERRα [J]. PLoS One, 2016, 11(5): e0156445.
[2]Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4 [J]. Cancer Res, 2013, 73(4): 1434-1444.
[3]Golubovskaya VM, Sumbler B, Ho B, et al. MiR-138 and miR-135 directly target focal adhesion kinase, inhibit cell invasion, and increase sensitivity to chemotherapy in cancer cells [J]. Anticancer Agents Med Chem, 2014, 14(1): 18-28.
[4]Liu L, Ye JX, Qin YZ, et al. Evaluation of miR-29c, miR-124, miR-135a and miR-148a in prediciting lymph node metastasis and tumor stage of gastric cancer [J]. Int J Clin Exp Med, 2015, 8(12): 22227-22236.
[5]Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013 [J]. CA Cancer J Clin, 2013, 63(1): 11-30.
[6]Zeng YB, Liang XH, Zhang GX, et al. miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1 [J]. Cancer Cell Int, 2016, 16: 63.
[7]Xu D, He X, Chang Y, et al. Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells [J]. Oncol Rep, 2013, 29(2): 653-661.
[8]Lam EW, Brosens JJ, Gomes AR, et al. Forkhead box proteins: tuning forks for transcriptional harmony [J]. Nat Rev Cancer, 2013, 13(7): 482-495.
[9]Liu S, Guo W, Shi J, et al. MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma [J]. J Hepatol, 2012, 56(2): 389-396.
[10]Wang B, Zhao MZ, Cui NP, et al. Krüppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells [J]. FEBS Open Bio, 2015, 5(1): 147-154.
[11]Li Q, Gao Y, Jia Z, et al. Dysregulated Kruppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma [J]. Gastroenterology, 2012, 143(3): 799-810.
[12]Lin ZS, Chu HC, Yen YC, et al. Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression [J]. PLoS One, 2012, 7(8): 179-187.
[13]Yao S, Tian C, Ding Y, et al. Down-reguation of Kruppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1 [J]. Oncotarget, 2016, 7(27): 42566-42578.
[14]Zhou H, Guo W, Zhao Y, et al. MicroRNA-135a acts as a putative tumor suppressor by directly targeting very low density lipoprotein receptor in human gallbladder cancer [J]. Cancer Sci, 2014, 105(8): 956-965.
[15]Yin Baobing, Wang Yifei, Yang Guanghua, et al. miR-135a-5p inhibits the proliferation of gallbladder cancer [J]. J Surg Concepts Pract, 2014, 19(2): 140-144.
[16]項(xiàng)金峰, 施思, 梁丁孔, 等. 2015年胰腺癌研究及診療前沿進(jìn)展[J]. 中國(guó)癌癥雜志, 2016, 26(4): 281-289. Xiang JF, Shi S, Liang DK, et al. Recent advances in basic research, clinical diagnosis and treatment of pancreatic cancer in 2015 [J]. China Oncology, 2016, 26(4): 281-189.
[17]Proctor E, Waghray M, Lee CJ, et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma [J]. PLoS One, 2013, 8(2): 167-174.
[18]Dang Z, Xu WH, Lu P, et al. MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma [J]. Int J Biol Sci, 2014, 10(7): 733-745.
[19]秦濤, 付強(qiáng), 劉傳江, 等. 微小RNA-135a對(duì)人胰腺癌細(xì)胞增殖和凋亡的影響[J]. 中國(guó)實(shí)驗(yàn)外科雜志, 2014, 31(1): 28-31. Qin T, Fu Q, Liu CJ, et al. Influence of microRNA-135a on proliferation and apoptosis of human pancreatic cancer cells [J]. Chin J Exp Surg, 2014, 31(1): 28-31.
[20]Oue N, Mukai S, Imai T, et al. Induction of KIFC1 expression in gastric cancer spheroids [J]. Oncol Rep, 2016, 36(1): 349-355.
[21]Zhang C, Chen X, Chen X, et al. miR-135a acts as a tumor suppressor in gastric cancer in part by targeting KIFC1 [J]. Onco Targets Ther, 2016, 9: 3555-3563.
[22]Wu H, Huang M, Cao P, et al. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation [J]. Cancer Biol Ther, 2012, 13(5): 281-288.
[23]Wang J, Guo Y, Wang B, et al. Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer: a systematic review and meta-analysis of the literature [J]. Mol Biol Rep, 2012, 39(12): 11153-11165.
[24]Zhao YC, Ni XJ, Wang MH, et al. Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients [J]. Med Oncol, 2012, 29(4): 2594-2600.
[25]Yang B, Jing C, Wang J, et al. Identification of microRNAs associated with lymphangiogenesis in human gastric cancer [J]. Clin Transl Oncol, 2014, 16(4): 374-379.
[26]Shin JY, Kim YI, Cho SJ, et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer [J]. PLoS One, 2014, 9(1): e85205.
[27]田甜甜, 李艷艷, 沈琳, 等. 胃癌細(xì)胞中miR-135a表達(dá)對(duì)紫杉醇敏感性的影響[J]. 基礎(chǔ)醫(yī)學(xué)與臨床, 2016, 36(5): 672-677. Tian TT, Li YY, Shen L, et al. Effect of miR-135a expression on the sensitivity of paclitaxel in gastric cancer cells [J]. Basic & Clinical Medicine, 2016, 36(5): 672-677.
[28]Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013 [J]. CA Cancer J Clin, 2013, 63(1): 11-30.
[29]Wang Q, Zhang H, Shen X, et al. Serum microRNA-135a-5p as an auxiliary diagnostic biomarker for colorectal cancer [J]. Ann Clin Biochem, 2017, 54(1): 76-85.
[30]Quan T, Xu X, Wu S, et al. Preliminary study of miRNA on early diagnosis of colorectal cancer [J]. Clin J Med Offic, 2013, 41(4): 355-356.
[31]Zhou W, Li X, Liu F, et al. MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro [J]. Acta Biochim Biophys Sin (Shanghai), 2012, 44(10): 838-846.
[32]Vickers MM, Bar J, Gorn-Hondermann I, et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease [J]. Clin Exp Metastasis, 2012, 29: 123-132.
[33]Chen C, Peng Y, Peng Y, et al. miR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/beta-catenin signaling [J]. J Mol Endocrinol, 2014, 52(3): 311-320.
(責(zé)任編輯:陳香宇)
Progress of miR-135a in digestive system tumor
XUN Jingyu, LI Fujun, SUN Chen, WU Dequan
The Sixth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
MicroRNAs (miRNAs) is composed of 17-27 nucleotide non-coding small RNA, it regulates gene expression through the degradation of target RNA or inhibition of protein translation. Most of the microRNAs involved in the proliferation, spreading, metastasis and apoptosis of tumor cells, which play an important role in the occurrence and development of tumors. The incidence and mortality of digestive system cancer have been on an upward trend, it is a serious threat to people’s health. Studies have shown that miR-135a plays an important role in early diagnosis and treatment of tumor, recently. This article will review the progress of miR-135a in digestive system tumor.
miR-135a; Digestive system tumor; Diagnosis; Therapy
10.3969/j.issn.1006-5709.2017.07.026
黑龍江省青年科學(xué)基金項(xiàng)目(QC2012C051)
荀靜宇,在讀碩士研究生。E-mail: 550654721@qq.com
吳德全,主任醫(yī)師,教授,博士生導(dǎo)師,研究方向:肝膽胰脾外科,器官移植。E-mail:dqwu56@163.com
R735
A
1006-5709(2017)07-0816-03
2016-09-13