陳 振 韓江洪 劉征宇 陸 陽(yáng)
1(合肥工業(yè)大學(xué)計(jì)算機(jī)與信息學(xué)院 合肥 230009)2 (安徽大學(xué)計(jì)算機(jī)教學(xué)部 合肥 230601)(czahu@163.com)
VANET中利用未分配TDMA時(shí)隙協(xié)助重發(fā)數(shù)據(jù)的方法
陳 振1,2韓江洪1劉征宇1陸 陽(yáng)1
1(合肥工業(yè)大學(xué)計(jì)算機(jī)與信息學(xué)院 合肥 230009)2(安徽大學(xué)計(jì)算機(jī)教學(xué)部 合肥 230601)(czahu@163.com)
車載自組網(wǎng)(vehicular ad hoc network, VANET)中的分布式TDMA方法通常多出沒(méi)有被節(jié)點(diǎn)利用的空閑時(shí)隙,未能充分利用無(wú)線信道資源,且不能避免由于信道條件差所導(dǎo)致的丟包現(xiàn)象.與此同時(shí),協(xié)助通信近年來(lái)引起了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注,該方法利用了無(wú)線信道的廣播特性,能夠有效地修復(fù)信道,提高無(wú)線通信的可靠性.針對(duì)VANET應(yīng)用場(chǎng)合,提出了一種MAC層數(shù)據(jù)協(xié)助重發(fā)方法,即協(xié)助分布式TDMA方法(cooperative distributed TDMA, Co-DTDMA).在Co-DTDMA中,如果源節(jié)點(diǎn)未成功發(fā)送數(shù)據(jù),則附近的鄰居節(jié)點(diǎn)利用未分配的空閑時(shí)隙協(xié)助重發(fā)源節(jié)點(diǎn)數(shù)據(jù).與傳統(tǒng)的協(xié)助通信方法不同,Co-DTDMA中的所有操作都以分布式方式進(jìn)行,不依賴任何中心控制節(jié)點(diǎn),因而適應(yīng)于VANET應(yīng)用場(chǎng)合.此外,Co-DTDMA僅利用未分配的空閑時(shí)隙協(xié)助重發(fā)數(shù)據(jù),不影響網(wǎng)絡(luò)中的正常數(shù)據(jù)傳輸.理論分析和仿真實(shí)驗(yàn)表明:Co-DTDMA顯著地提高了數(shù)據(jù)成功接收概率,降低了數(shù)據(jù)傳輸時(shí)延.
移動(dòng)自組網(wǎng);車載自組網(wǎng);介質(zhì)訪問(wèn)控制;時(shí)分多址;可靠性
隨著嵌入式技術(shù)和無(wú)線通信技術(shù)的發(fā)展,車輛裝有具有不同功能的傳感器收集狀態(tài)信息,并通過(guò)車載通信模塊與其他車輛交換信息,從而產(chǎn)生了移動(dòng)自組網(wǎng)(mobile ad hoc network, MANET)的一種新應(yīng)用形態(tài)——車載自組網(wǎng)(vehicular ad hoc network, VANET).VANET是智能交通的基礎(chǔ),將會(huì)給人們帶來(lái)更安全和更有效率的駕駛體驗(yàn)[1].
網(wǎng)絡(luò)拓?fù)涞目焖僮兓?、無(wú)線通信的不可靠性、VANET安全業(yè)務(wù)信息的高可靠性要求和低時(shí)延限制等是VANET走向應(yīng)用所面臨的諸多挑戰(zhàn)[1].作為VANET的MAC層標(biāo)準(zhǔn),IEEE 802.11p以競(jìng)爭(zhēng)的方式訪問(wèn)無(wú)線信道,不能保證安全業(yè)務(wù)信息及時(shí)可靠地傳播[2-3].此外,IEEE 802.11p不能對(duì)廣播信息進(jìn)行確認(rèn),還會(huì)產(chǎn)生“信息碰撞”等問(wèn)題[4].為了避免節(jié)點(diǎn)競(jìng)爭(zhēng)信道帶來(lái)的不確定性,文獻(xiàn)[5-8]針對(duì)VANET應(yīng)用場(chǎng)合提出了分布式時(shí)分多址(time division multiple access, TDMA)方法.該方法以確定的方式訪問(wèn)信道,消去了隱藏節(jié)點(diǎn)的影響,相對(duì)于IEEE 802.11p,能夠及時(shí)穩(wěn)定地傳播VANET安全業(yè)務(wù)信息[7].
在分布式TDMA方法中,為使媒體訪問(wèn)控制(medium access control, MAC)層性能穩(wěn)定,幀內(nèi)時(shí)隙數(shù)通常要大于2跳范圍內(nèi)的節(jié)點(diǎn)平均數(shù)目[6-7,9],因此,幀內(nèi)通常會(huì)多出未被節(jié)點(diǎn)利用的空閑時(shí)隙.與此同時(shí),無(wú)線信號(hào)衰減、車輛高速移動(dòng)和車輛本身對(duì)無(wú)線信號(hào)的阻擋等使得VANET中的無(wú)線通信并不可靠[10].顯然,分布式TDMA方法未能充分利用無(wú)線信道資源,且不能避免由于信道條件差所導(dǎo)致的丟包現(xiàn)象.近年來(lái),協(xié)助通信引起了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注,該方法利用了無(wú)線通信的廣播特性,能夠有效地修復(fù)信道,提高無(wú)線通信的可靠性[11].當(dāng)源節(jié)點(diǎn)未成功發(fā)送數(shù)據(jù)到目標(biāo)節(jié)點(diǎn)時(shí),附近的其他節(jié)點(diǎn)與源節(jié)點(diǎn)和與目標(biāo)節(jié)點(diǎn)之間的信道狀態(tài)可能較好,因此可以利用這些節(jié)點(diǎn)來(lái)協(xié)助重發(fā)源節(jié)點(diǎn)數(shù)據(jù).雖然文獻(xiàn)[12-15]基于TDMA協(xié)議提出了相關(guān)協(xié)助通信方法,但都基于有中心控制節(jié)點(diǎn)的TDMA協(xié)議,其中的時(shí)隙分配、協(xié)助通信的協(xié)調(diào)和執(zhí)行等都需要中心控制節(jié)點(diǎn)管理,且上述方法大都關(guān)注移動(dòng)節(jié)點(diǎn)與中心控制節(jié)點(diǎn)之間的通信,因而并不適合VANET應(yīng)用場(chǎng)合.為此,本文基于文獻(xiàn)[5-8]提出一種協(xié)助分布式TDMA方法(cooperative distributed TDMA, Co-DTDMA),通過(guò)再利用幀內(nèi)未分配的空閑時(shí)隙來(lái)協(xié)助重發(fā)傳輸失敗的數(shù)據(jù),以提高分布式TDMA方法的可靠性.與已有的TDMA協(xié)助通信方法不同,Co-DTDMA中的所有操作,如時(shí)隙分配、協(xié)助通信的協(xié)調(diào)和執(zhí)行等,都完全以分布式方式進(jìn)行,不依賴任何中心控制節(jié)點(diǎn).此外,由于僅利用了未分配的空閑時(shí)隙進(jìn)行協(xié)助通信,Co-DTDMA沒(méi)有影響到網(wǎng)絡(luò)中的正常數(shù)據(jù)傳輸.
文獻(xiàn)[5]針對(duì)VANET應(yīng)用場(chǎng)合提出了著名的ADHOC MAC方法,它是一種分布式TDMA方法.在ADHOC MAC中,信道以幀(frame)為單位進(jìn)行分割,每幀再分割成若干時(shí)隙(slot).節(jié)點(diǎn)監(jiān)聽(tīng)信道,在監(jiān)聽(tīng)1次數(shù)據(jù)傳輸過(guò)程后,在自身包頭的幀信息域(frame information, FI)中標(biāo)注相關(guān)標(biāo)志信息來(lái)反映時(shí)隙的占用情況.各個(gè)節(jié)點(diǎn)通過(guò)交換包頭中的FI域,判斷出[6-7]:1) 2跳范圍內(nèi)的節(jié)點(diǎn)信息;2) 幀內(nèi)時(shí)隙的占用情況.節(jié)點(diǎn)基于2跳范圍內(nèi)的時(shí)隙占用信息選擇時(shí)隙,且只在自身時(shí)隙內(nèi)發(fā)送數(shù)據(jù),避免了信息碰撞和隱藏節(jié)點(diǎn)的影響.
在ADHOC MAC中,由于節(jié)點(diǎn)的相對(duì)移動(dòng),原來(lái)不在2跳范圍內(nèi)的節(jié)點(diǎn)彼此接近,造成了文獻(xiàn)[6-7]所定義的匯聚碰撞(merging collision)問(wèn)題.文獻(xiàn)[6-8]基于ADHOC MAC提出了VeMAC方法,將時(shí)隙分為3個(gè)獨(dú)立的子集,分別對(duì)應(yīng)了公路不同方向車輛和公路旁的固定通信設(shè)備,減少了由于節(jié)點(diǎn)相對(duì)移動(dòng)所導(dǎo)致的時(shí)隙再請(qǐng)求次數(shù),提高了網(wǎng)絡(luò)吞吐量[6-7].
但在ADHOC MAC及其相關(guān)改進(jìn)方法中,節(jié)點(diǎn)發(fā)送數(shù)據(jù)失敗時(shí),必須等待下一幀的自身時(shí)隙才能重發(fā)數(shù)據(jù),即使當(dāng)前幀內(nèi)的信道空閑(對(duì)應(yīng)了未分配的空閑時(shí)隙).為此,研究再利用未分配空閑時(shí)隙重發(fā)數(shù)據(jù)的方法.節(jié)點(diǎn)通過(guò)交換FI域,獲知幀內(nèi)的時(shí)隙占用情況,其中,未被節(jié)點(diǎn)占用的時(shí)隙為未分配的空閑時(shí)隙.在下面研究中:
1) 參考文獻(xiàn)[3,16-18],基于1維空間公路或高速公路場(chǎng)景進(jìn)行研究,并假設(shè)車輛在1維空間公路或高速公路上服從泊松分布[3,16].
2) 隨著導(dǎo)航系統(tǒng)的普及,假設(shè)車輛通過(guò)導(dǎo)航系統(tǒng)中的GPS脈沖信號(hào)實(shí)現(xiàn)時(shí)間同步[6-8,19-20].此外,如果GPS信號(hào)丟失,仍可利用GPS接收器中的振蕩器實(shí)現(xiàn)較長(zhǎng)時(shí)間的同步[6-7].
3) 基于單位圓盤模型表示信道[16].設(shè)所有車輛無(wú)線1跳傳輸距離為R,當(dāng)車輛之間距離小于或等于R時(shí),在不考慮信息碰撞的情形下,設(shè)車輛之間能夠成功發(fā)送數(shù)據(jù)的概率為p,p越大,信道質(zhì)量越好.當(dāng)車輛之間距離大于R時(shí),車輛之間不能直接通信.
4) 假設(shè)網(wǎng)絡(luò)節(jié)點(diǎn)通過(guò)VeMAC請(qǐng)求獲得時(shí)隙,在此基礎(chǔ)上,主要關(guān)注已獲得時(shí)隙的節(jié)點(diǎn)再利用未分配空閑時(shí)隙協(xié)助重發(fā)數(shù)據(jù)的方法.
5) 在1幀的時(shí)間窗口內(nèi)(通常小于0.1 s[6-7]),時(shí)間短,車輛之間的相對(duì)移動(dòng)小,況且VeMAC極大地減小了節(jié)點(diǎn)相對(duì)移動(dòng)對(duì)網(wǎng)絡(luò)性能的影響,因此假設(shè)同一幀內(nèi)各節(jié)點(diǎn)發(fā)送數(shù)據(jù)時(shí)車輛是靜止的.
2.1 相關(guān)節(jié)點(diǎn)數(shù)據(jù)包結(jié)構(gòu)
為了建立相關(guān)分析模型和對(duì)網(wǎng)絡(luò)性能進(jìn)行比較,在節(jié)點(diǎn)獲得時(shí)隙后,主要考慮點(diǎn)到點(diǎn)的通信方式.如圖1所示,源節(jié)點(diǎn)S發(fā)送數(shù)據(jù)包到目標(biāo)節(jié)點(diǎn)D.S發(fā)送數(shù)據(jù)包時(shí),由于無(wú)線信道的廣播特性,在S與D共同傳輸范圍內(nèi)的其他節(jié)點(diǎn)也能成功接收數(shù)據(jù)包.因此,如果S未成功發(fā)送數(shù)據(jù)包到D,則可以嘗試?yán)眠@些節(jié)點(diǎn)來(lái)協(xié)助重發(fā)數(shù)據(jù)包.在下面研究中,源節(jié)點(diǎn)與目標(biāo)節(jié)點(diǎn)共同傳輸范圍內(nèi)的其他節(jié)點(diǎn)稱為候選協(xié)助節(jié)點(diǎn).
Fig. 1 Node H2 retransmits a packet for node S cooperatively圖1 H2協(xié)助重發(fā)S數(shù)據(jù)包
如果候選協(xié)助節(jié)點(diǎn)成功接收源節(jié)點(diǎn)數(shù)據(jù)包并且愿意重發(fā)數(shù)據(jù)包,則在當(dāng)前幀內(nèi)選定一未分配的空閑時(shí)隙(候選協(xié)助節(jié)點(diǎn)擬在該空閑時(shí)隙內(nèi)協(xié)助重發(fā)數(shù)據(jù)包),并在自身數(shù)據(jù)包包頭中通過(guò)插入重發(fā)請(qǐng)求域(retransmission request,R-REQ)來(lái)請(qǐng)求重發(fā)數(shù)據(jù)包.如圖2(a)所示,R-REQ含有以下信息:
1) 待重發(fā)數(shù)據(jù)包的源節(jié)點(diǎn)ID號(hào)、包序號(hào)和目標(biāo)節(jié)點(diǎn)ID號(hào)(從源節(jié)點(diǎn)包頭的MAC Header域獲取);
2) 候選協(xié)助節(jié)點(diǎn)在當(dāng)前幀內(nèi)選定的未分配空閑時(shí)隙序號(hào).
Fig. 2 Structure of a packet in Co-DTDMA圖2 Co-DTDMA的數(shù)據(jù)包結(jié)構(gòu)
其中,當(dāng)前幀為源節(jié)點(diǎn)當(dāng)前時(shí)隙到其下一時(shí)隙間的所有時(shí)隙,期間含有幀內(nèi)固定的時(shí)隙數(shù),不影響對(duì)問(wèn)題的分析和處理.此外,采用ID號(hào)來(lái)標(biāo)識(shí)節(jié)點(diǎn).每個(gè)節(jié)點(diǎn)隨機(jī)產(chǎn)生自身的ID號(hào),如果發(fā)現(xiàn)自身的ID號(hào)與其他節(jié)點(diǎn)的ID號(hào)相同,則更改自身的ID號(hào).ID號(hào)比MAC地址短,采用ID號(hào)標(biāo)識(shí)節(jié)點(diǎn)有效地減小了數(shù)據(jù)包大小[6].
在圖1中,S發(fā)送數(shù)據(jù)包后,如果候選協(xié)助節(jié)點(diǎn)H2成功接收S數(shù)據(jù)包并且愿意重發(fā)該數(shù)據(jù)包,則在自身包頭中通過(guò)插入R-REQ來(lái)請(qǐng)求重發(fā)S數(shù)據(jù)包,R-REQ包含了源節(jié)點(diǎn)S的ID號(hào)、待重發(fā)的數(shù)據(jù)包序號(hào)、目標(biāo)節(jié)點(diǎn)D的ID號(hào)和H2在當(dāng)前幀內(nèi)選定的未分配空閑時(shí)隙序號(hào).如果D未成功接收S數(shù)據(jù)包,則在H2發(fā)送數(shù)據(jù)包后,D從H2包頭的R-REQ域獲知:
1)S已發(fā)送數(shù)據(jù)包,但自身未成功接收數(shù)據(jù)包;
2)H2已成功接收S數(shù)據(jù)包并且愿意重發(fā)該數(shù)據(jù)包;
3)H2在當(dāng)前幀內(nèi)選定的未分配空閑時(shí)隙——如果D需要H2重發(fā)S數(shù)據(jù)包,則H2在該選定的未分配空閑時(shí)隙內(nèi)重發(fā)數(shù)據(jù)包.
如果目標(biāo)節(jié)點(diǎn)未成功接收源節(jié)點(diǎn)數(shù)據(jù)包,且已接收到相關(guān)候選協(xié)助節(jié)點(diǎn)發(fā)送的R-REQ,則目標(biāo)節(jié)點(diǎn)在自身包頭中通過(guò)插入重發(fā)確認(rèn)域(retransmission acknowledgement, R-ACK)來(lái)聲明需要重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包.如圖2(b)所示,R-ACK含有以下信息:
1) 待重發(fā)數(shù)據(jù)包的源節(jié)點(diǎn)ID號(hào)、包序號(hào)和目標(biāo)節(jié)點(diǎn)指定的候選協(xié)助節(jié)點(diǎn)ID號(hào)(可能存在多個(gè)候選協(xié)助節(jié)點(diǎn)發(fā)送R-REQ,目標(biāo)節(jié)點(diǎn)需要指定一個(gè)候選協(xié)助節(jié)點(diǎn)來(lái)重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包);
2) 指定候選協(xié)助節(jié)點(diǎn)在當(dāng)前幀內(nèi)選定的未分配空閑時(shí)隙序號(hào).
2.2 必要的信息交換過(guò)程
基于圖1的場(chǎng)景,圖3顯示了候選協(xié)助節(jié)點(diǎn)H2重發(fā)S數(shù)據(jù)包的必要信息交換過(guò)程:
1) 如圖3(a)所示,S在自身時(shí)隙內(nèi)發(fā)送數(shù)據(jù)包到目標(biāo)節(jié)點(diǎn)D,但D未成功接收數(shù)據(jù)包.在此過(guò)程中,如果候選協(xié)助節(jié)點(diǎn)(如H2)成功接收S數(shù)據(jù)包,則將S數(shù)據(jù)包保存在自身緩存中.
2) 如圖3(b)所示,如果候選協(xié)助節(jié)點(diǎn)(如H2)的時(shí)隙在目標(biāo)節(jié)點(diǎn)D的時(shí)隙前,且已成功接收S數(shù)據(jù)包,則在自身包頭中插入R-REQ,并在自身時(shí)隙內(nèi)發(fā)送數(shù)據(jù)包,即在目標(biāo)節(jié)點(diǎn)時(shí)隙前,候選協(xié)助節(jié)點(diǎn)在自身時(shí)隙內(nèi)通過(guò)消息搭載機(jī)制(piggyback)發(fā)送R-REQ.如果其他候選協(xié)助節(jié)點(diǎn)(如H1,H3)接收到該R-REQ,則不再發(fā)送R-REQ來(lái)請(qǐng)求重發(fā)數(shù)據(jù)包.
3) 如圖3(c)所示,如果D未成功接收S數(shù)據(jù)包,但D從候選協(xié)助節(jié)點(diǎn)(如H2)發(fā)送的R-REQ獲知:①源節(jié)點(diǎn)S已發(fā)送數(shù)據(jù)包,但自身未成功接收數(shù)據(jù)包;②候選協(xié)助節(jié)點(diǎn)(如H2)已成功接收S數(shù)據(jù)包,并愿意重發(fā)該數(shù)據(jù)包,隨后,D在自身包頭中插入R-ACK域,并在R-ACK域中指定候選協(xié)助節(jié)點(diǎn)(如H2)(目標(biāo)節(jié)點(diǎn)也是在自身時(shí)隙內(nèi)通過(guò)消息搭載機(jī)制發(fā)送R-ACK).
4) 如圖3(d)所示,指定的候選協(xié)助節(jié)點(diǎn)(如H2)接收R-ACK后,在自身選定的未分配空閑時(shí)隙內(nèi)重發(fā)S數(shù)據(jù)包.
在圖3(b)中,候選協(xié)助節(jié)點(diǎn)通過(guò)消息搭載機(jī)制發(fā)送R-REQ來(lái)請(qǐng)求重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包;在圖3(c)中,如果目標(biāo)節(jié)點(diǎn)未成功接收源節(jié)點(diǎn)數(shù)據(jù)包,則通過(guò)消息搭載機(jī)制發(fā)送R-ACK來(lái)確認(rèn)需要重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包,并指定候選協(xié)助節(jié)點(diǎn)(在本文中,目標(biāo)節(jié)點(diǎn)指定第一個(gè)發(fā)送R-REQ的節(jié)點(diǎn));在圖3(d)中,如果接收到R-ACK,則指定候選協(xié)助節(jié)點(diǎn)在未分配的空閑時(shí)隙內(nèi)協(xié)助重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包.需要指出的是,即使節(jié)點(diǎn)在自身時(shí)隙內(nèi)沒(méi)有數(shù)據(jù)需要發(fā)送,也要發(fā)送實(shí)際數(shù)據(jù)為空的虛擬數(shù)據(jù)包(dummy packet)[6-7].在ADHOC MAC及其改進(jìn)方法中,節(jié)點(diǎn)在自身時(shí)隙內(nèi)發(fā)送虛擬包不產(chǎn)生與其他節(jié)點(diǎn)競(jìng)爭(zhēng)信道的問(wèn)題,也不產(chǎn)生任何形式的信道擁塞,但能使VANET中的節(jié)點(diǎn)更好地協(xié)調(diào)分配時(shí)隙[6-7].
Fig. 3 Information exchanges in Co-DTDMA圖3 Co-DTDMA的信息交換過(guò)程
上述過(guò)程通過(guò)消息搭載機(jī)制,利用了無(wú)線信道的廣播特性和分布式TDMA方法的確定信道訪問(wèn)方式(不同節(jié)點(diǎn)對(duì)應(yīng)了不同時(shí)隙,且只在自身時(shí)隙內(nèi)發(fā)送數(shù)據(jù)),使得源節(jié)點(diǎn)、目標(biāo)節(jié)點(diǎn)和候選協(xié)助節(jié)點(diǎn)能以確定和有序的方式進(jìn)行交互,且它們的協(xié)調(diào)方式完全是分布式的,不依賴任何中心控制節(jié)點(diǎn).
2.3 網(wǎng)絡(luò)開(kāi)銷分析
Co-DTDMA的開(kāi)銷主要包括候選協(xié)助節(jié)點(diǎn)發(fā)送的R-REQ和目標(biāo)節(jié)點(diǎn)發(fā)送的R-ACK.候選協(xié)助節(jié)點(diǎn)發(fā)送R-REQ后,如果其他候選協(xié)助節(jié)點(diǎn)接收到該R-REQ,則不再發(fā)送R-REQ來(lái)請(qǐng)求重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包.由于所有候選協(xié)助節(jié)點(diǎn)都在源節(jié)點(diǎn)S的1跳傳輸范圍內(nèi),因此最多存在2個(gè)候選協(xié)助節(jié)點(diǎn)發(fā)送R-REQ.R-REQ(R-ACK)包含了源節(jié)點(diǎn)ID號(hào)、包序號(hào)、目標(biāo)節(jié)點(diǎn)ID號(hào)(指定的候選協(xié)助節(jié)點(diǎn)ID號(hào))以及選定的未分配空閑時(shí)隙序號(hào).參考文獻(xiàn)[7],將節(jié)點(diǎn)的ID號(hào)設(shè)為7 b.此外,如果將數(shù)據(jù)包序號(hào)和時(shí)隙序號(hào)設(shè)置為2 B,則對(duì)于通常的應(yīng)用已經(jīng)足夠(數(shù)據(jù)包序號(hào)大于最大序號(hào)時(shí),從0開(kāi)始重新計(jì)數(shù)),所以R-REQ和R-ACK的長(zhǎng)度通常小于50 b.參考車輛專用短程通信標(biāo)準(zhǔn)(dedicated short range communication, DSRC),VANET中的數(shù)據(jù)傳輸速率為24 Mbps[21].如果將時(shí)隙時(shí)間設(shè)為1ms[7],則節(jié)點(diǎn)在自身時(shí)隙內(nèi)能夠發(fā)送25 165 b數(shù)據(jù).R-REQ和R-ACK的長(zhǎng)度通常小于50 b,遠(yuǎn)小于節(jié)點(diǎn)在自身時(shí)隙內(nèi)能夠發(fā)送的數(shù)據(jù)量,且發(fā)送R-REQ的候選協(xié)助節(jié)點(diǎn)不超過(guò)2個(gè),發(fā)送R-ACK的節(jié)點(diǎn)僅為目標(biāo)節(jié)點(diǎn),所以,相對(duì)于Co-DTDMA利用的未分配空閑時(shí)隙,上述開(kāi)銷可忽略不計(jì).在下面的性能分析和仿真比較中,假設(shè)R-REQ和R-ACK都能正確地發(fā)送和接收.
基于1維空間公路或高速公路場(chǎng)景進(jìn)行研究,并假設(shè)車輛在公路上服從泊松分布.設(shè)公路車輛平均密度為β(每米車輛數(shù)),則長(zhǎng)度為l的公路上有i輛車的概率為
(1)
設(shè)ps為VeMAC的1跳范圍內(nèi)節(jié)點(diǎn)的數(shù)據(jù)包成功接收概率.由于信息碰撞和信道質(zhì)量p相互獨(dú)立,ps為
(2)
其中,pc為信息碰撞概率.由于2跳范圍內(nèi)不同節(jié)點(diǎn)對(duì)應(yīng)了幀內(nèi)不同時(shí)隙,且節(jié)點(diǎn)只在自身時(shí)隙內(nèi)發(fā)送數(shù)據(jù),所以pc=0,ps=p.
Fig. 4 The common coverage road segment of a source-destination pair圖4 源節(jié)點(diǎn)S和目標(biāo)節(jié)點(diǎn)D的共同傳輸范圍
3.1 存在候選協(xié)助節(jié)點(diǎn)的概率
如圖4所示,源節(jié)點(diǎn)S與目標(biāo)節(jié)點(diǎn)D的共同傳輸范圍長(zhǎng)度為2R-d,其中d為S距D的距離.如果D隨機(jī)分布在S的1跳傳輸范圍內(nèi),則d的均值為0.5R,所以S與D共同傳輸范圍的平均長(zhǎng)度為1.5R[9].
當(dāng)S與D共同傳輸范圍內(nèi)的節(jié)點(diǎn)數(shù)小于或等于2時(shí),除源節(jié)點(diǎn)和目標(biāo)節(jié)點(diǎn)外,不存在候選協(xié)助節(jié)點(diǎn);當(dāng)S與D共同傳輸范圍內(nèi)的節(jié)點(diǎn)數(shù)為u+2且大于2時(shí),除源節(jié)點(diǎn)和目標(biāo)節(jié)點(diǎn)外,候選協(xié)助節(jié)點(diǎn)數(shù)為u.設(shè)Nc為S與D共同傳輸范圍內(nèi)的候選協(xié)助節(jié)點(diǎn)數(shù),則:
(3)
Pr{Nr=0|Nc=u}=
(4)
在Nc=u時(shí),存在能夠重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包的候選協(xié)助節(jié)點(diǎn)概率為
Pr{Nr>0|Nc=u}=
1-Pr{Nr=0|Nc=u}=
(5)
在Nc所有條件下,存在能夠重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包的候選協(xié)助節(jié)點(diǎn)概率為
Pr{Nr>0}=Pr{Nr>0|0≤Nc≤F-2}+
(6)
當(dāng)0≤Nc≤F-2時(shí):
Pr{Nr>0|0≤Nc≤F-2}=
(7)
當(dāng)u>F-2時(shí):
Pr{Nr>0|Nc>F-2}=
(8)
3.2 存在未分配空閑時(shí)隙的概率
由圖3可知,如果目標(biāo)節(jié)點(diǎn)未成功接收源節(jié)點(diǎn)數(shù)據(jù)包,則在自身時(shí)隙內(nèi)發(fā)送R-ACK來(lái)指定候選協(xié)助節(jié)點(diǎn)重發(fā)數(shù)據(jù)包,所以候選協(xié)助節(jié)點(diǎn)只能選定在目標(biāo)節(jié)點(diǎn)時(shí)隙后的未分配空閑時(shí)隙來(lái)重發(fā)數(shù)據(jù)包.
節(jié)點(diǎn)前后1跳范圍內(nèi)的鄰居節(jié)點(diǎn)數(shù)Nn(包括節(jié)點(diǎn)自身)為j的概率為
(9)
當(dāng)Nn≤F時(shí),所有節(jié)點(diǎn)都能獲得時(shí)隙,當(dāng)Nn>F時(shí),最多有F個(gè)節(jié)點(diǎn)能獲得時(shí)隙,為保證穩(wěn)定的MAC層性能,F(xiàn)需滿足[9]:
(10)
(11)
3.3 數(shù)據(jù)包成功接收概率
對(duì)于VeMAC,目標(biāo)節(jié)點(diǎn)在當(dāng)前幀內(nèi)成功接收源節(jié)點(diǎn)數(shù)據(jù)包的概率為ps;對(duì)于Co-DTDMA,當(dāng)目標(biāo)節(jié)點(diǎn)未成功接收源節(jié)點(diǎn)數(shù)據(jù)包時(shí),可能存在候選協(xié)助節(jié)點(diǎn)利用未分配的空閑時(shí)隙協(xié)助重發(fā)數(shù)據(jù)包,所以,目標(biāo)節(jié)點(diǎn)在當(dāng)前幀內(nèi)成功接收源節(jié)點(diǎn)數(shù)據(jù)包的概率為
(12)
3.4 數(shù)據(jù)包傳輸時(shí)延
如果目標(biāo)節(jié)點(diǎn)在當(dāng)前幀內(nèi)未成功接收源節(jié)點(diǎn)數(shù)據(jù)包,則源節(jié)點(diǎn)在下一幀內(nèi)繼續(xù)重發(fā)數(shù)據(jù)包,直到目標(biāo)節(jié)點(diǎn)成功接收數(shù)據(jù)包.將數(shù)據(jù)包傳輸時(shí)延定義為目標(biāo)節(jié)點(diǎn)成功接收源節(jié)點(diǎn)數(shù)據(jù)包所經(jīng)歷的幀數(shù).對(duì)于VeMAC,需要經(jīng)過(guò)i幀目標(biāo)節(jié)點(diǎn)才能成功接收源節(jié)點(diǎn)數(shù)據(jù)包的概率為
(13)
D服從幾何分布,其均值為
(14)
(15)
首先用NS2仿真一段高速公路車輛行駛場(chǎng)景.公路有正反2個(gè)方向,每個(gè)方向上的車輛服從泊松分布.設(shè)每個(gè)方向上的車輛密度為βl,則公路車輛密度β=2βl(假設(shè)2個(gè)方向上的車輛密度相等).在VANET中,如果R很小,則鏈路存在時(shí)間短,車輛不能與相鄰車輛建立穩(wěn)定的連接;如果R很大,則不利于復(fù)用無(wú)線信道資源.因此,參考文獻(xiàn)[22],將設(shè)置R=200 m.下面在不同參數(shù)下比較VeMAC與Co-DTDMA的數(shù)據(jù)包成功接收概率和傳輸時(shí)延.對(duì)于每組參數(shù)(主要包括p,β,F(xiàn)等參數(shù)),將其代入第3節(jié)中的相關(guān)公式,求得對(duì)應(yīng)的分析結(jié)果.在仿真過(guò)程中,對(duì)于每組參數(shù),根據(jù)其中的β值隨機(jī)產(chǎn)生50種不同的網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),并在每種拓?fù)浣Y(jié)構(gòu)上抽取105幀的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),對(duì)應(yīng)的仿真結(jié)果取均值.
VeMAC的數(shù)據(jù)包成功接收概率決定于信道質(zhì)量p,Co-DTDMA的數(shù)據(jù)包成功接收概率除決定于p外,還受到公路車輛密度β和幀內(nèi)時(shí)隙數(shù)F的影響.圖5~7表明,相對(duì)于VeMAC,Co-DTDMA顯著地提高了數(shù)據(jù)包成功接收概率,降低了數(shù)據(jù)包傳輸時(shí)延.這是因?yàn)樵垂?jié)點(diǎn)未成功發(fā)送數(shù)據(jù)包時(shí),Co-DTDMA能夠利用未分配的空閑時(shí)隙重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包.
Fig. 5 The performance of Co-DTDMA compared with VeMAC as a function of p圖5 在不同p值下2種方法的性能比較
Fig. 6 The performance of Co-DTDMA compared with VeMAC as a function of β圖6 在不同β值下2種方法的性能比較
Fig. 7 The performance of Co-DTDMA compared with VeMAC as a function of F圖7 在不同F(xiàn)值下2種方法的性能比較
圖5在不同的信道質(zhì)量下比較2種方法的性能,其中,β為每米0.05輛車,F(xiàn)=30.圖5表明,信道質(zhì)量越好,2種方法的數(shù)據(jù)包成功接收概率越大,傳輸時(shí)延越小.p=0時(shí),信道質(zhì)量差,所有數(shù)據(jù)包發(fā)送失敗,2種方法的數(shù)據(jù)包成功接收概率為0,傳輸時(shí)延無(wú)限大;p=1時(shí),信道質(zhì)量好,所有數(shù)據(jù)包發(fā)送成功,2種方法的數(shù)據(jù)包成功接收概率為1,傳輸時(shí)延相同.
圖6在不同的公路車輛密度下比較2種方法的性能,其中,p=0.5,F(xiàn)=40.圖6(a)表明,在車輛密度較小時(shí),隨著車輛密度的增大,候選協(xié)助節(jié)點(diǎn)的增多,Co-DTDMA的數(shù)據(jù)包成功接收概率增大.但在車輛密度較大時(shí)(接近每米0.1輛車),如果繼續(xù)增大車輛密度,Co-DTDMA的數(shù)據(jù)包成功接收概率反而會(huì)減小,這是因?yàn)閹瑑?nèi)的未分配空閑時(shí)隙越來(lái)越少.在β為每米0.1輛車時(shí),幀內(nèi)不存在未分配的空閑時(shí)隙,2種方法的數(shù)據(jù)包成功接收概率相同.對(duì)圖6(b)中的數(shù)據(jù)包傳輸時(shí)延可進(jìn)行類似分析.
Fig. 10 The performance of Co-DTDMA compared with VeMAC based on real traffic data圖10 基于交通流量數(shù)據(jù)的2種方法性能比較
圖7在不同的F值下比較2種方法的性能,其中,β為每米0.05輛車,p=0.5.圖7表明,在F值較小時(shí),隨著F增大,幀內(nèi)未分配的空閑時(shí)隙增多,Co-DTDMA的數(shù)據(jù)包成功接收概率增大,傳輸時(shí)延降低;但隨著F的繼續(xù)增大,Co-DTDMA的數(shù)據(jù)包成功接收概率和傳輸時(shí)延逐漸保持不變.
最后,采用1組實(shí)際交通流量數(shù)據(jù)來(lái)比較2種方法的性能.文獻(xiàn)[23]的課題組歷時(shí)6年,在G2,G15,G45,G60這4條城際高速路上以及在多條市內(nèi)快速路上采集了逾30萬(wàn)條數(shù)據(jù).下面采用該課題組采集的實(shí)際交通流量數(shù)據(jù).如圖8所示,采用數(shù)據(jù)的采集地點(diǎn)為滬杭高速(G60)嘉興王店服務(wù)區(qū)南側(cè),對(duì)應(yīng)時(shí)間為2011-07-26T14:14:00—16:14:00,主要采集迎面行駛的車輛速度、加速度、位置等數(shù)據(jù).在該時(shí)段中,車輛平均加速度為0.01 ms2.首先對(duì)本文中的假設(shè)條件進(jìn)行驗(yàn)證,即驗(yàn)證高速公路車輛是否滿足泊松分布的假設(shè).將時(shí)間窗口設(shè)為50 s,統(tǒng)計(jì)每50 s經(jīng)過(guò)該路段的車輛數(shù).圖9對(duì)應(yīng)了不同車輛數(shù)的出現(xiàn)概率.圖9表明,車輛在該路段上可近似為泊松分布,本文中假設(shè)條件成立.
Fig. 8 The location of data collecting圖8 數(shù)據(jù)采集地點(diǎn)
Fig. 9 The histogram of G60 traffic flow圖9 G60交通流量數(shù)據(jù)柱狀圖
在1幀的時(shí)間窗口內(nèi)(通常小于0.1 s[6-7]),時(shí)間短,車輛之間的相對(duì)移動(dòng)小,況且VeMAC極大地減小了節(jié)點(diǎn)相對(duì)移動(dòng)對(duì)網(wǎng)絡(luò)性能的影響,基于此,論文假設(shè)同一幀內(nèi)各節(jié)點(diǎn)發(fā)送數(shù)據(jù)時(shí)車輛是靜止的.因此,實(shí)驗(yàn)根據(jù)實(shí)際交通流量數(shù)據(jù)來(lái)確定不同的高速公路車輛快照,并在每種快照中抽取實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì).將上述2 h的實(shí)際交通流量數(shù)據(jù)分割成144組,每組數(shù)據(jù)的時(shí)間間隔為50 s.如第1組數(shù)據(jù)的對(duì)應(yīng)時(shí)間為2011-07-26T14:14:00—14:14:50,第2組數(shù)據(jù)的對(duì)應(yīng)時(shí)間為2011-07-26T14:14:50—14:15:40等.每組數(shù)據(jù)確定了1組車輛快照.如對(duì)于第1組數(shù)據(jù),根據(jù)各個(gè)車輛的觀察時(shí)間、觀察時(shí)的位置、觀察時(shí)的速度等信息,計(jì)算出該組數(shù)據(jù)所觀察到的車輛在該組數(shù)據(jù)結(jié)束時(shí)(2011-07-26T14:14:50)的位置,從而得到在該組數(shù)據(jù)結(jié)束時(shí)的1組車輛快照(由于車輛的平均加速度很小,僅為0.01 ms2,因此可以認(rèn)為在每組數(shù)據(jù)的時(shí)間窗口內(nèi),車輛保持勻速行駛).每次隨機(jī)選擇2組數(shù)據(jù),分別對(duì)應(yīng)了公路不同方向的車輛,一共進(jìn)行50次實(shí)驗(yàn),每次實(shí)驗(yàn)抽取105幀的數(shù)據(jù)進(jìn)行統(tǒng)計(jì).在實(shí)驗(yàn)中,由于每組實(shí)際交通流量數(shù)據(jù)的車輛平均密度為每米0.012 6輛車,所以公路車輛平均密度為每米0.025 2輛車,此外,實(shí)驗(yàn)中的F=20.圖10對(duì)應(yīng)了實(shí)驗(yàn)的平均結(jié)果.結(jié)果表明,本文中的分析模型較好地?cái)M合了實(shí)驗(yàn)結(jié)果.由于本文中的分析模型基于車輛服從泊松分布的假設(shè),且高速公路上車輛的實(shí)際分布可近似為泊松分布,所以本文中的分析模型較好地?cái)M合了實(shí)驗(yàn)結(jié)果.
本文提出了一種利用未分配空閑時(shí)隙重發(fā)數(shù)據(jù)包的方法.源節(jié)點(diǎn)未成功發(fā)送數(shù)據(jù)包時(shí),候選協(xié)助節(jié)點(diǎn)利用未分配的空閑時(shí)隙協(xié)助重發(fā)源節(jié)點(diǎn)數(shù)據(jù)包;隨后,對(duì)本文方法的性能進(jìn)行了分析,并通過(guò)仿真實(shí)驗(yàn)加以驗(yàn)證.由于利用了未分配的空閑時(shí)隙重發(fā)傳輸失敗的數(shù)據(jù)包,本文方法顯著地提高了數(shù)據(jù)包成功接收概率,降低了數(shù)據(jù)包傳輸時(shí)延.
此外,源節(jié)點(diǎn)、目標(biāo)節(jié)點(diǎn)和候選協(xié)助節(jié)點(diǎn)之間的交互以及候選協(xié)助節(jié)點(diǎn)利用未分配的空閑時(shí)隙重發(fā)數(shù)據(jù)包都是在通信協(xié)議棧中的MAC層完成,不影響上層的路由協(xié)議和應(yīng)用協(xié)議.
本文基于基本的信道模型對(duì)所提方法進(jìn)行了分析和比較.在后續(xù)研究中,將進(jìn)一步研究更加真實(shí)的無(wú)線信道模型對(duì)所提方法的性能影響.
[1]Hartenstein H, Laberteaux K P. A tutorial survey on vehicular ad hoc networks [J]. IEEE Communications Magazine, 2008, 46(6): 164-171
[2]Daniel J, Luca D. IEEE 802.11p: Towards an international standard for wireless access in vehicular environments[C]Proc of IEEE VTC’08. Piscataway, NJ: IEEE, 2008: 2036-2040
[3]Ma Xiaomin, Zhang Jinsong, Yin Xiaoyan, et al. Design and analysis of a robust broadcast scheme for vanet safety-related services [J]. IEEE Trans on Vehicular Technology, 2012, 61(1): 46-61
[4]Wisitpongphan N, Tonguz O K, Parikh J S, et al. Broadcast storm mitigation techniques in vehicular ad hoc networks [J]. IEEE Wireless Communications, 2007, 14(6): 84-94
[5]Borgonovo F, Capone A, Cesana M, et al. ADHOC MAC: New MAC architecture for ad hoc networks providing efficient and reliable point-to-point and broadcast services [J]. Wireless Networks, 2004, 10(4): 359-366
[6]Omar H, Zhuang Weihua, Li Li. VeMAC: A TDMA-based mac protocol for reliable broadcast in VANETs [J]. IEEE Trans on Mobile Computing, 2013, 12(9): 1724-1736
[7]Omar H, Zhuang Weihua, Li Li. Performance evaluation of VeMAC supporting safety applications in vehicular networks [J]. IEEE Trans on Emerging Topics in Computing, 2013,1(1): 69-83
[8]Omar H, Zhuang Weihua, Li Li. On multi-hop communi-cations for in-vehicle Internet access based on a TDMA MAC protocol [C]Proc of IEEE INFOCOM’14. Piscataway, NJ: IEEE, 2014: 1770-1778
[9]Sailesh B, Zhuang Weihua. Performance analysis of cooperative ADHOC MAC for vehicular networks [C]Proc of IEEE Globecom’12. Piscataway, NJ: IEEE, 2012: 5482-5487
[10]Boban M, Vinhoza T, Ferreira M, et al. Impact of vehicles as obstacles in vehicular ad hoc networks [J]. IEEE Journal on Selected Areas in Communications, 2011, 29(1): 15-28
[11]Yang Fan, Tang Yuliang. Cooperative clustering-based medium access control for broadcasting in vehicular ad-hoc networks [J]. IET Communications, 2014, 17(8): 3136-3144
[12]Sadek A, Liu K, Ephremides A. Collaborative multiple-access protocols for wireless networks [C]Proc of IEEE ICC’06. Piscataway, NJ: IEEE, 2006: 4495-4500
[13]Yuan Guangxiang, Peng Mugen, Wang Wenbo. Opportunistic user cooperative relaying in TDMA-based wireless networks [J]. Wireless Communications and Mobile Computing, 2012, 10(7): 972-98
[14]Yang Zhuo, Yao Yudong, Li Xiaochen, et al. A TDMA-based MAC protocol with cooperative diversity [J]. IEEE Communications Letters, 2010, 14(6): 542-544
[15]Hu Nansai, Yao Yudong, Yang Zhuo. Analysis of cooperative TDMA in rayleigh fading channels [J]. IEEE Trans on Vehicular Technology, 2013, 62(3): 1158-1168
[16]Zhang Wuxiong, Chen Yu, Yang Yang, et al. Multi-Hop connectivity probability in infrastructure-based vehicular networks [J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4): 740-747
[17]Liu Jianhang, Sun Jiangming, Bi Jingping, et al. VANET cooperative downloading approach study based on dynamic slot [J]. Chinese Journal of Computers, 2011, 34(8): 1378-1386 (in Chinese)(劉建航, 孫江明, 畢經(jīng)平, 等. 基于動(dòng)態(tài)時(shí)槽的車聯(lián)網(wǎng)協(xié)助下載方法研究 [J]. 計(jì)算機(jī)學(xué)報(bào), 2011, 34(8): 1378-1386)
[18]Yao Yuan, Rao Lei, Liu Xue. Performance and reliability analysis of IEEE 802.11p safety communication in a highway environment [J]. IEEE Trans on Vehicular Technology, 2013, 62(9): 4198-4212
[19]Tarik T, Abderrahim B, Khaled B L. Toward an effective risk-conscious and collaborative vehicular collision avoidance systems [J]. IEEE Trans on Vehicular Technology, 2010, 59(3): 1474-1486
[20]He Peng, Yan Baoping, Li Zhi, et al. CM-MAC: A cluster-based multi-channel MAC protocol for VANET [J]. Journal of Computer Research and Development, 2014, 51(3): 502-510 (in Chinese)(何鵬, 閻保平, 李志, 等. CM-MAC:一種基于分簇的多信道車載網(wǎng)MAC協(xié)議 [J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 51(3): 502-510)
[21]Yu Fan, Biswas S. Self-configuring TDMA protocols for enhancing vehicle safety with DSRC based vehicle-to-vehicle communications [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(8): 1526-1537
[22]Mohammad A R, Robert M. A new scalable hybrid routing protocol for VANETs [J]. IEEE Trans on Vehicular Technology, 2012, 61(6): 2625-2635
[23]Wu Shengchun, Zheng Xianqing, Guo Mingmin, et al. Survey report on urban freeway traffic flow of several typical cities in China [J]. Scientia Sinica: Physica, Mechanics & Astronomy, 2011, 41(6): 791-800 (in Chinese)
(吳勝春, 鄭賢清, 郭明旻, 等. 國(guó)內(nèi)典型大城市快速路交通流實(shí)測(cè) [J]. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2011,41(6): 791-800)
Chen Zhen, born in 1980. PhD candidate in Hefei University of Technology. His main research interests include wireless sensor networks and distributed system.
Han Jianghong, born in 1954. Professor and PhD supervisor in Hefei University of Technology. His main research interests include wireless sensor networks, embedded system and distributed system (hjh@hfut.edu.cn).
Liu Zhengyu, born in 1980. Associate professor in Hefei University of Technology. His main research interests include Internet of things and wireless sensor networks (liuzhengyu@hfut.edu.cn).
Lu Yang, born in 1967. Professor and PhD supervisor in Hefei University of Technology. His main research interests include distributed control systems, industrial Internet of things and reliability engineering.
Using Unreserved TDMA Slots for Retransmitting Packets in VANET
Chen Zhen1,2, Han Jianghong1, Liu Zhengyu1, and Lu Yang1
1(SchoolofComputerandInformation,HefeiUniversityofTechnology,Hefei230009)2(ComputerStudiesDepartment,AnhuiUniversity,Hefei230601)
The distributed TDMA approach for vehicular ad hoc network (VANET) does not take advantage of idle slots, failing to effectively utilize radio resources, and the approach is not free from packet dropping due to a poor channel condition. Cooperative communication, on the other hand, has drawn significant attention from both academia and industry in recent years, since it can be effective in mitigating wireless channel impairments by utilizing the broadcast nature of the wireless channel. In the paper, a cooperative scheme for medium access control (MAC), referred to as cooperative distributed TDMA (Co-DTDMA) is presented for VANET. In Co-DTDMA, neighboring nodes utilize unreserved slots for cooperatively retransmitting a packet which has failed to reach the destination node owing to a poor channel condition. Different from traditional cooperative approaches, all Co-DTDMA operations, such as synchronization among nodes, reserving a time slot, cooperation decision and cooperative transmission are done in a fully distributed manner, which makes it suitable for VANET. In addition, cooperative transmission is conducted in unreserved slots, without interrupting the normal transmission. Both theoretical analysis and experimental results demonstrate that the proposed scheme significantly increases the probability of successful packet transmission and decreases the delay of packet transmission in various network parameters.
mobile ad hoc network (MANET); vehicular ad hoc network (VANET); medium access control; time division multiple access (TDMA); reliability
2015-06-19;
2016-03-22
國(guó)家自然科學(xué)基金項(xiàng)目(61370088,61502142);安徽省自然科學(xué)基金項(xiàng)目(1408085MKL80) This work was supported by the National Natural Science Foundation of China(61370088,61502142) and the Natural Science Foundation of Anhui Province of China(1408085MKL80).
TP393