• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

    2017-02-15 08:23:49SHAOTingQINChuanJieYUANDengYueWENZhengYongandLIHuaTao
    水生生物學(xué)報(bào) 2017年1期
    關(guān)鍵詞:內(nèi)江大豆油魚(yú)油

    SHAO Ting, QIN Chuan-Jie YUAN Deng-Yue WEN Zheng-Yongand LI Hua-Tao

    (1. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China; 2. College of Life Science, Sichuan Normal University, Chengdu 610101, China)

    RESTORATION OF FLESH FATTY ACID COMPOSITION IN DARKBARBEL CATFISH (PELTEOBAGRUS VACHELLI) USING A FINISHING FISH OIL DIET

    SHAO Ting1,2, QIN Chuan-Jie1, YUAN Deng-Yue1, WEN Zheng-Yong1and LI Hua-Tao1

    (1. Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China; 2. College of Life Science, Sichuan Normal University, Chengdu 610101, China)

    This study aimed to evaluate the effects of 50%—100% soybean oil on growth performance and flesh fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli), so as to assess the effects of refeeding fish oil (FO) on flesh fatty acid composition. Four isonitrogenous, isolipidic diets, i.e., FO, soybean oil (SO), 50% FO+50% SO (S1), and 25% FO+75% SO (S2), were fed to triplicate groups of 40 juvenile P. vachelli [(1.10±0.12) g] for 80d. At the end of the 80d period, all fish were fed with FO for 30d. The results showed that growth rates, hepatosomatic index (HSI), and proximate composition in darkbarbel catfish were not affected by SO. With increasing SO levels, the percentages of oleic acid, arachidonic acid, and monounsaturated fatty acids significantly increased (P<0.05). However, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), highly unsaturated fatty acid (HUFA) levels and n-3/n-6 ratios significantly reduced with dietary SO (P<0.05). After 30d on FO, flesh levels of DHA, EPA, and Σ n-3 HUFA significantly increased in groups S2 and SO (P<0.05), but not to the same extent as those in the FO-containing groups except S1. The results revealed that it was possible to substitute almost 100% of FO with SO in the diets of darkbarbel catfish without affecting growth performance. A re-feeding period of 30d with 100% FO significantly increased flesh levels of Σn-3 HUFA, 20:5n-3, and 22:6n-3 in fish which were fed diets containing SO in the first stage.

    Pelteobagrus vachelli; Fish oil; Vegetable oil; n-3 high unsaturated fatty acids; Restoration

    In 2002, fish oil (FO) consumption in aquaculture was estimated at 81%, which increased to 88% in 2012[1]. Total FO production in the five main FO-producing countries, i.e., Peru, Chile, Iceland, Norway, and Denmark, was 530000 tons in 2009, a decline of 100000 tons compared to 2008[2]. Global FO supplies are becoming more costly and less available; therefore, aquaculture requires sustainable alternatives to FO[1,3]. Vegetable oils (VOs) are considered to be good lipid sources for fish diets. Several VOs have been used as partial or complete replacements of FO[4,5].

    VOs are rich in linoleic acid (C18:2 n-6) and oleic acids (C18:1 n-9), but devoid of n-3 highly unsaturated fatty acids (n-3 HUFAs). Linoleic and oleic acids are absent from the natural diets of most fish[6,7]. VOs contribute to imbalances in certain dietary fatty acids and affect the n-6/n-3 dietary ratio, which negatively impacts fish growth. In addition, the complete or partial replacement of FO with VOs is likely to negatively impact intestinal and hepatic cellular structure, intestinal function, immune-associated gene expression, humoral immunity, and disease resistance[8]. However, FO is rich in health-promoting n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), especially eicosapentaenoic acid (EPA), which are beneficial for human health[8,9]. Therefore, in aquacul-

    Received date: 2016-03-22; Accepted date: 2016-07-10

    Foundation item: Supported by the National Natural Science Foundation of China (No. 31402305); the Educational Commission of Sichuan Province of China (No. 14ZA0249)

    Brief introduction of author: Shao Ting, E-mail: 991504974@qq.com; Tel +86-83-2341862

    To avoid a reduction in flesh n-3 LC-PUFA levels, VO-fed fish have been switched to FO diets to assess whether seawater fish can recover their n-3 HUFA levels during their final growth phase[6]. These studies, which have been conducted in European sea bass (Dicentrarchus labrax L.), gilthead sea bream (Sparus aurata L.), brown trout (Salmotrutta L), and brook charr (Salvelinus fontinalis)[7,10—12]revealed that introducing FO partly restored docosahexaneoic acid (DHA), arachidonic acid (ArA), and EPA levels in fish[13,14]. In freshwater fish, VOs may induce the activation of ⊿6 and ⊿5 desaturases, which could elongate and desaturate α-linolenic acid (C18: 3n-3) into n-3 HUFA[15]. However, few studies have focused on the effects of VOs and finishing FO diets on the fatty acid composition of freshwater species.

    Darkbarbel catfish, Pelteobagrus vachelli, is a valuable commercial species in China. Due to its high market value, the demand for this species has grown considerably in recent years. This study investigatedthe effects of soybean oil on darkbarbel catfish growth performance and flesh fatty acid composition, and the effects of re-feeding FO on flesh fatty acid composition.

    Tab. 1 Ingredients (g/100 g) and chemical composition of the experimental diets

    1 Materials and methods

    1.1 Fish growth and experimental design

    Juvenile darkbarbel catfish were obtained from Longfeng fish farm (Meishan, Sichuan, China). Prior to the experiment, fish were fed a commercial catfish diet for 2 weeks (Haida, Chengdu, Sichuan, China). A total of 480 fish [mean weight ± SD, (1.10±0.12) g] were randomly assigned to 12300 L fiberglass tanks (40 fish per tank). Three tanks were assigned to one of four experimental diets. The fish lived in 12h∶12h light∶dark cycles at (25±2)℃ with a mean oxygen concentration of 6.1—7.3 mg/L. Ammonia and nitrate concentrations were < 0.1 mg/L.

    1.2 Experimental diets

    Four isonitrogenous, isolipidic, and isoenergetic diets were formulated (Tab. 1): (1) 100% fish oil as control (FO); (2) 100% soybean oil (SO); (3) 75% SO+25% FO (S1); and (4) 50% SO+50% FO (S2). The ingredients were thoroughly mixed, extruded (2-mm diameter), and air-dried. The fatty acid compositions of the diets are shown in Tab. 2.

    Following the 2-week acclimation period, fish were fed the experimental diets to apparent satiation twice daily (at 08:00 and 16:00) for 80d (growth period, GP); feed consumption was recorded weekly. Subsequently, 33 fish from each tank were fed a 100% FO-based diet for 30d (restoration period, RP).

    1.3 Fish performance and sample collection

    Fish were fed the experimental diets for 80d, followed by the FO-diet for 30d. At 80 and 110d, fish were fasted for 24h. Three fish per treatment were anaesthetized; tissues were sampled for the determination of live mass, liver mass, hepatosomatic index (HSI), flesh dry mass, specific growth rate (SGR), lipase activity (LPL and HL), and flesh lipid and fatty acid composition. Live mass was determined by blotting biological material onto filter paper before weighing. HSI, SGR, and feed conversion factor (FCR) were calculated by using the following equations: HSI=liver mass/live mass×100; SGR=[Ln(final weight)-Ln(initial weight)]/number of days×100; FCR=dry feed fed/wet weight gain.

    1.4 Chemical analyses

    Nutritional composition of the flesh and experimental diets were determined by proximate composition analyses (AOAC, 1990). Briefly, moisture content was determined by drying the samples to constant weight at 80℃; protein was determined in anautomated Kjeldahl instrument (SKD-100, Peiou, Shanghai, China) using a protein-nitrogen conversion factor of 6.25; total lipid was determined following chloroform/methanol (2:1 v:v) extraction; and ash was determined by incineration in a muffle furnace at 550℃ for 18h.

    Tab. 2 Fatty acid composition of the experimental diets (% total fatty acids; mean±SD, n=3)

    1.5 Enzymatic assays

    Frozen liver samples were thawed and homogenized in ice-cold 0.9% physiological saline using a Bio-gen Series homogenizer (PRO 200, Oxford, CT, USA). Hepatic homogenates were centrifuged at 15000×g for 15min at 4℃ (Centrifuge 5417R, Eppendorf, Germany). The supernatant, free from lipids, was used to determine the activities of LPL and HL and the soluble protein content. LPL and HL activities were determined using an LPL/HL commercial kit (A067; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) and expressed in units/mg soluble protein. Protein concentration in the homogenates was determined by the Bradford method (1976) using a commercial protein assay kit (Nanjing Jiancheng Bioengineering Institute) with bovine serum albumin as the standard.

    1.6 Fatty acid analysis

    Lipids were extracted using chloroform and methanol (2∶1)[16]. Fatty acids were converted into methyl esters using an acid-catalyzed methylation method (GB/T22223-2008). The fatty acid profile was determined in a capillary gas chromatograph (GC) coupled to an HP6890 flame ionization detector and an SPTM-2380 column (30 mm×0.25 mm×0.20 mm). Separation was performed using nitrogen as the carrier gas. The column temperature was maintained at 120℃ for 5min, then it was heated to 240℃ at 4℃/min and maintained at this temperature for 20min. The detector temperature and split injector (50∶1) were maintained at 260℃. Fatty acids were identified by comparing their retention times with those of fatty acid standards (Sigma, USA). Peak areas were determined using Varian software.

    1.7 Statistical analyses

    Results are presented as mean ± standard deviation (mean±SD). Data were analyzed by ANOVA and Duncan's multiple range test. The growth parameters and flesh fatty acid levels in growth and restoration periods were compared using independent t-tests within the same group; P<0.05 was considered statistically significant. Statistical analyses were performed using SPSS software (SPSS 18.0).

    2 Results

    2.1 Growth performance and proximate composition

    With dietary treatments of 80d, there were no significant differences in body weight. A-700% increase in weight was observed, with no animal deaths or differences in feed consumption (Tab. 3). Among the dietary treatments, there were no significant differences in SGR, which ranged from 1.89±0.49 to 2.28±0.39, or in HSI, which ranged from 1.59±0.34 to 1.83±0.38.

    After the 30d restoration period on FO, fish grew an additional -31% (-3 g) relative to their weights at the end of the 80d growth period (Tab. 3). Final mean weights at the end of the 30d restoration period ranged from (11.42±2.71) g (FO) to (14.65±4.13) g (S1), with no significant differences among the dietary treatments. However, fish previously fed S1 and SO had higher growth rates than fish previously fed FO or S2. There were no significant differences in SGR, HSI, or FCR at the end of the restoration period. In addition, there were no significant differences in SGR, HSI, or FCR between the growth period and restoration period within the same group (Tab. 3).

    Proximate composition analysis of fish fillets revealed no significant differences among the dietary treatments during the growth period or restoration period. During the two periods, fillet lipid levels ranged from (7.83±0.76)% to (8.12±0.68)% and from (7.19±0.97)% to (8.02±0.54)%, respectively (Tab. 4).

    Tab. 3 Growth performance of darkbarbel catfish at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    2.2 LPL and HL activities

    Tab. 5 shows the effect of SO on hepatic HL and LPL activities. The dietary treatments had no effect on hepatic HL activity, but SO significantly reduced hepatic LPL activity (P<0.05). After re-feeding with FO, LPL activities in groups S2 and SO increased; however, the LPL activity in these groups was significantly lower than those in groups FO and S1 (P<0.05).

    2.3 Flesh fatty acid composition during growth and restoration periods

    During the 80d growth period, flesh fatty acid composition was affected by dietary treatment (Tab. 6). Total saturated fatty acids (∑SFAs) were 17.85% in SO and 28.51% in FO. SFAs were significantly reduced with dietary SO (P<0.05). However, the diet with 100% SO significantly increased (P<0.05) the levels of monounsaturated fatty acids (MUFAs) such as oleic acid (C18:1n-9). Total n-3 HUFA levels, which ranged from 3.04% in S2 to 4.39% in FO, significantly decreased with increasing SO levels (P<0.05). EPA ranged from 0.45% in SO to 0.66% inFO. DHA significantly decreased with increasing SO levels (P<0.05). However, ARA levels were significantly higher in SO (0.49%) than in FO (0.31%) (P<0.05).

    Tab. 4 Proximate composition (%) of darkbarbel catfish at the end of the 80d period on the experimental diets and at the end of the 30d

    The flesh fatty acid composition with the 30d restoration FO diet is shown in Tab. 6. For each group, the flesh fatty acid levels in the growth period were compared with those in the restoration period. In S1, flesh 22:6n-3 levels significantly increased (P<0.05). In S2, flesh C18:1n-9 and Σn-6 levels significantly decreased, while flesh Σn-3 HUFA, C20:5n-3, C22:5n-3, n-3/n-6, and C22:6n-3 levels significantly increased. In SO, flesh Σ n-9, Σ n-6, and 18:3n-6 levels significantly decreased, while flesh Σn-3 HUFA, C20:5n-3, C22:5n-3, and C22:6n-3 levels significantly increased.

    3 Discussion

    This study revealed that darkbarbel catfish fed diets containing SO for 80d had slightly higher growth rates than those fed FO (P>0.05) (Tab. 3). This result was similar to findings reported forsharpsnout sea bream (Diplodus puntazzo), brown trout (S. trutta L.), and brook char (Salvelinus fontinalis)[11,12,14]. The complete or partial replacement of FO with VO did not affect fish growth, possibly because there were no differences in FCR. Moreover, α-linolenic acid (C18:3n-3) was possibly desaturated into n-3 HUFA in the darkbarbel catfish P. vachelli, thereby meeting n-3 HUFA requirements for growth. In addition, previous studies have reported no significant effects of VO on the HSI of turbot (Psetta maxima) or rainbow trout (Oncorhynchus mykiss)[17,18]. Similarly, soybean oil did not significantly increase HSI in darkbarbel catfish P. vachelli. However, soybean oil-based diets significantly increased HSI, compared to FO-based diets in sharpsnout seabream (D. puntazzo)[14].

    Tab. 5 LPL and HL activities at the end of the 80d period on the experimental diets and at the end of the 30d period on the fish oil diet (mean±SD; n=9)

    Tab. 6 Flesh fatty acid composition at the end of growth period (GP) and restoration period (RP; % total fatty acids; mean±SD; n=9)

    In this study, SO diets significantly reduced hepatic LPL activities with decreasing dietary levels of DHA, EPA, and linoleic acid (Tab. 5). Similar results have been reported by Michaud et al.[19], who observed that EPA decreased LPL mRNA levels, but linoleic acid increased LPL mRNA levels. However, Richard et al.[20]reported that the replacement of 60% FO with VO did not significantly affect hepatic lipogenesis or LPL activity in the liver and adipose tissues. Also, VO did not significantly influence hepatic HL activity. In red sea bream (P. major), HL gene expression levels were not affected during fasting or refeeding stages[21].

    In this study, with increasing dietary SO, flesh Σ MUFA and C18:1n-9 levels increased (P<0.05), in accordance with the dietary fatty acid composition (Tab. 6). Similarly, the proportions of C18:1 n-9, C18:2 n-6, and C18:3 n-3 in Atlantic salmon (S. salar) flesh increased with increasing dietary rapeseed oil levels[22]. Meanwhile, C20:5n-3, C22:6n-3, Σ n-3 HUFA, and n-3/n-6 ratios in P. vachelli decreased with the addition of SO (P<0.05), correlating with the dietary levels. Similar results have been reported in marine species and fresh water species, such

    [1]Pike I H. Eco-efficiency in aquaculture: global catch of wild fish used in aquaculture [J]. International Aquafeed, 2005, 8: 38—39

    [2]FAO. The State of World Fisheries and Aquaculture. 2010, as turbot (P. maxima), gilthead sea bream (S. aurata), and sharpsnout seabream (D. puntazzo)[6,14,17]. In Atlantic salmon (S. salar), VO diets (33% of total oil) significantly reduced the flesh levels of C20:5n-3 and C22:6n-3 (by 70% and 75%, respectively), relative to the flesh levels in FO-fed fish[22]. Therefore, flesh fatty acid composition was representative of the dietary fatty acid profile. In addition, there was selective deposition of DHA in darkbarbel catfish P. vachelli, turbot (P. maxima), and Atlantic salmon (S. salar)[17,22]. Flesh C22:6n-3 levels were consistently higher than those in the experimental diets in P. vachelli (Table 6). Bell et al.[23]and Fr?yland et al.[24]reported that this selective deposition was attributable to the high specificity of fatty acyl-transferases for C22:6n-3 and to higher beta oxidation of C22:6n-3, compared to that of C20:5n-3. C20:5n-3 levels in European sea bass (D. labrax) flesh were lower than those in rapeseed, linseed, or soybean oil-containing diets[25]. This result was similar to that obtained in this study (Tab. 6).

    After 30 d with a finishing FO diet, flesh Σn-3 HUFA, C20:5n-3, and C22:6n-3 levels in the S2 and SO groups significantly increased, but not to the extent found in fish fed FO for 110d (Tab. 6). Fountoulaki et al.[11]reported that feeding FO to gilthead sea bream (S. aurata L.) for 120d was not sufficient for the restoration of C20:5n-3 and C22:6n-3 levels. Similar conclusions were reached in European sea bass (D. labrax) fed 60% VO followed by FO for 5 months[25]. However, Izquierdo et al.[6]reported that flesh C22:6n-3 and C20:4n-6 levels in gilthead seabream (S. aurata) were restored after a 7-month feeding trial to levels of 60%—80% following a 3-month re-feeding period with FO. These results revealed that restoration of 20:5n-3 and 22:6n-3 in flesh with FO finishing diets may be different in different fish species; 30d FO finishing diets could significantly increase Σn-3 HUFA, C20:5n-3, and C22:6n-3 in P. vachelli fed with SO in the growth period.

    In summary, the results of this study suggest that in the diets of darkbarbel catfish, soybean oil may substitute for almost 100% of the FO without affecting the growth rates. A re-feeding period of 30 d with 100% FO may significantly increase levels of Σn-3 HUFA, C20:5n-3 and C22:6n-3 in flesh, after feeding diets containing ≥50% SO.

    63

    [3]Tacon A G J. Use of fish meal and fish oil in aquaculture: a global perspective [J]. Aquatic Resources, Culture and Development, 2004, 1(1): 3—14

    [4]Caballero M J, Obach A, Rosenlund G, et al. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss [J]. Aquaculture, 2002, 214(S1—4), 253—271

    [5]Bell G, Torstensen B, Sargent J. Replacement of marine fish oils with vegetable oils in feeds for farmed salmon [J]. Lipid Technology, 2005, 17: 7—11

    [6]Izquierdo M S, Montero D, Robaina L, et al. Alterations in fillet fatty acid profile and flash quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding [J]. Aquaculture, 2005, 250(1—2): 431—444

    [7]Mourente G, Bell J G. Partial replacement of dietary fish oil with blends of vegetable oils (rapeseed, linseed and palm oils) in diets for European sea bass (Dicentrarchus labrax L.) over a long term growth study: effects on flesh and liver fatty acid composition and effectiveness of a fish oil finishing diet [J]. Comparative Biochemistry Physiology, Part B, 2006, 145(4): 389—399

    [8]Izquierdo M S, Obach A, Arantzamendi L, et al. Dietary lipid sources for seabream and seabass: growth performance, tissue composition and flesh quality [J]. Aquaculture Nutrition, 2003, 9(9): 397—407

    [9]Francis D S, Turchini G M, Jones P L, et al. Growth performance, feed efficiency and fatty acid composition of juvenile Murray cod, Maccullochella peelii peelii, fed graded levels of canola and linseed oil [J]. Aquaculture Nutrition, 2007, 13(5): 335—350

    [10]Fountoulaki E, Vasilaki A, Hurtado R, et al. Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures [J]. Aquaculture, 2009, 289(S3—4): 317—326

    [11]Turchini G M, Mentasti T, Froyland L, et al. Effects of alternative lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L) [J]. Aquaculture, 2003, 225(1—4): 251—267

    [12]Guillou A, Soucy P, Khailil M, et al. Effects of dietary vegetable and marine lipid on the growth and organoleptic quality of flesh of brook charr (Salvelinus fontinalis) [J]. Aquaculture, 1995, 136(3): 351—362

    [13]Mourente G, Good J E, Bell J G. Partial substitution of fish oil with rapeseed, linseed and olive oil for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandin E2 and F2, immune functionsand effectiveness of fish oil finishing diet [J]. Aquaculture Nutrition, 2005, 11(1): 25—40

    [14]Piedecausa M A, Mazón M J, García B, et al. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo) [J]. Aquaculture, 2007, 263(S1—4): 211—219

    [15]Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver [J]. Aquaculture, 2009, 294(1—2): 123—131

    [16]Folch J M, Lees M, Sloane-Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues [J]. Journal of Biological Chemistry, 1957, 226(1): 497—509

    [17]Regost C, Arzel J, Robin J, et al. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima)-1. Growth performance, flesh fatty acid profile, and lipid metabolism [J]. Aquaculture, 2003, 217(1—4): 465—482

    [18]Panserat S, Hortopan G A, Plagnes-Juan E, et al. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver [J]. Aquaculture, 2009, 294(S1—2): 123—131

    [19]Michaud S E, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPARs [J]. Diabetes, 2001, 50(3): 660—666

    [20]Richard N, Mourente G, Kaushik S, et al. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.) [J]. Aquaculture, 2006, 261(3): 1077—1087

    [21]Liang X F, Oku H, Ogata H Y. The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major [J]. Comparative Biochemistry Physiology, Part A, 2002, 131(2): 335—342

    [22]Bell J G, Tocher D R, Henderson R J, et al. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet [J]. The Journal of Nutrition, 2003, 133(9): 2793—2801

    [23]Bell J, Mcevoy J D, Mcghee F, et al. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism [J]. Journal of Nutrition, 2001, 131(5): 1535—1543

    [24]Fr?yland L, Madsen L, Eckhoff K M, et al. Carnitine palmitoyltransferase I, carnitine palmitoyltransferase Ⅱ, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar) [J]. Lipids, 1998, 33(9): 923—930

    [25]Montero D, Robaina M J, Caballero R, et al. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: a time-course study on the effect of a re-feeding period with a 100% fish oil diet [J]. Aquaculture, 2005, 248(S1—4): 121—134

    再投喂魚(yú)油對(duì)瓦氏黃顙魚(yú)肌肉脂肪酸組成的影響

    邵 婷1,2覃川杰1袁登越1文正勇1李華濤1

    (1. 內(nèi)江師范學(xué)院生命科學(xué)學(xué)院, 長(zhǎng)江上游魚(yú)類資源保護(hù)與利用四川省重點(diǎn)實(shí)驗(yàn)室, 內(nèi)江 641100; 2. 四川師范大學(xué)生命科學(xué)學(xué)院, 成都 610101)

    為研究植物油替代魚(yú)油對(duì)瓦氏黃顙魚(yú)(Pelteobagrus vachelli)生長(zhǎng)及肌肉脂肪組成的影響及重投喂魚(yú)油對(duì)瓦氏黃顙魚(yú)肌肉脂肪酸組成的影響, 實(shí)驗(yàn)以大豆油分別替代飼料中的0(FO)、50 (S1)、75 (S2)和100% (SO)的魚(yú)油配制等氮、等能的顆粒飼料, 每組設(shè)置3個(gè)平行, 養(yǎng)殖80d后, 再投喂魚(yú)油30d。結(jié)果表明, 飼料中添加豆油不會(huì)顯著影響瓦氏黃顙魚(yú)的增重率、肝體指數(shù)和體成分(P>0.05)。隨著飼料中大豆油含量的增加, S2和SO組肌肉中C18:1n-9、C18:2n-6和單不飽和脂肪酸比例顯著增加(P<0.05), 而C20:5n-3, C22:5n-3及n-3/n-6比例顯著下降(P<0.05)。再投喂魚(yú)油30d后, SO組肌肉中C18:3n-6、C20:4n-6、Σ n-9、Σ n-6和S2組中C18:1n-9、Σ n-6比例顯著下降(P<0.05), 而S2和SO組肌肉中Σn-3多不飽和脂肪酸、C20:5n-3和C22:5n-3比例顯著增加(P<0.05)。在生產(chǎn)中, 可采用先植物油飼料、后魚(yú)油飼料的養(yǎng)殖方式提高瓦氏黃顙魚(yú)肌肉品質(zhì)(增加有益人類健康的多不飽和脂肪酸)。

    瓦氏黃顙魚(yú); 魚(yú)油; 豆油; n-3多不飽和脂肪酸; 脂肪酸修復(fù)

    Qin Chuan-Jie, E-mail: qinchuanjie@126.comture, the substitution of FO with VOs may affect growth and disease resistance, and decrease flesh fatty acid composition.

    10.7541/2017.18

    猜你喜歡
    內(nèi)江大豆油魚(yú)油
    平安內(nèi)江,幸福的港灣
    眾說(shuō)紛紜話“魚(yú)油”
    四川內(nèi)江:青花椒成為增收新引擎
    內(nèi)江本土優(yōu)秀傳統(tǒng)文化傳承發(fā)展問(wèn)題研究
    眾說(shuō)紛紜話“魚(yú)油”
    精煉大豆油回色因素及延緩回色工藝的研究
    中海海洋耕魚(yú)油全產(chǎn)業(yè)鏈
    商周刊(2017年6期)2017-08-22 03:42:51
    微膠囊魚(yú)油蛋黃醬的研究
    食品界(2016年4期)2016-02-27 07:36:48
    大豆油基生物柴油氧化動(dòng)力學(xué)方程研究
    內(nèi)江市中區(qū)聯(lián)社:做“小微”金融服務(wù)專業(yè)銀行
    久久久久国产一级毛片高清牌| 午夜免费激情av| 亚洲精品一二三| videosex国产| 久久久久国内视频| 成人三级做爰电影| 91大片在线观看| 亚洲成a人片在线一区二区| 久久久精品欧美日韩精品| 在线观看www视频免费| 中文字幕高清在线视频| 午夜成年电影在线免费观看| www国产在线视频色| 欧美中文日本在线观看视频| 大码成人一级视频| 久久香蕉激情| 欧美乱码精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 成人永久免费在线观看视频| 午夜老司机福利片| av片东京热男人的天堂| 亚洲一区二区三区欧美精品| 国产精品久久视频播放| 女性生殖器流出的白浆| 国产不卡一卡二| 亚洲成人免费av在线播放| 午夜福利一区二区在线看| 亚洲欧美日韩另类电影网站| 级片在线观看| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 亚洲av片天天在线观看| 欧美不卡视频在线免费观看 | 一级毛片女人18水好多| 两个人看的免费小视频| 免费在线观看黄色视频的| av有码第一页| 一区二区日韩欧美中文字幕| 女人高潮潮喷娇喘18禁视频| 日本黄色视频三级网站网址| 精品人妻在线不人妻| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av日韩精品久久久久久密| 午夜两性在线视频| 久久性视频一级片| 亚洲精品国产精品久久久不卡| 亚洲成人免费电影在线观看| 国产精品电影一区二区三区| 性欧美人与动物交配| 真人一进一出gif抽搐免费| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 日韩国内少妇激情av| 丰满迷人的少妇在线观看| 国产精品亚洲av一区麻豆| 婷婷六月久久综合丁香| 一边摸一边做爽爽视频免费| 麻豆一二三区av精品| 可以免费在线观看a视频的电影网站| av欧美777| 黄色a级毛片大全视频| 亚洲免费av在线视频| 男人舔女人下体高潮全视频| 亚洲一区中文字幕在线| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 很黄的视频免费| 91成年电影在线观看| 亚洲国产看品久久| 99久久久亚洲精品蜜臀av| 国产精品98久久久久久宅男小说| 操出白浆在线播放| 久久久久久久久免费视频了| 亚洲,欧美精品.| 激情在线观看视频在线高清| 黄色a级毛片大全视频| 可以免费在线观看a视频的电影网站| 中文欧美无线码| 女人精品久久久久毛片| 欧美激情高清一区二区三区| 欧美午夜高清在线| 搡老熟女国产l中国老女人| 97超级碰碰碰精品色视频在线观看| 免费观看人在逋| 一区二区日韩欧美中文字幕| 精品免费久久久久久久清纯| 超碰97精品在线观看| 日日夜夜操网爽| 亚洲免费av在线视频| 69精品国产乱码久久久| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 精品国产超薄肉色丝袜足j| 在线永久观看黄色视频| 国产色视频综合| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 亚洲专区中文字幕在线| 一级黄色大片毛片| av欧美777| 亚洲精品一二三| 日本 av在线| 亚洲国产看品久久| 黄色女人牲交| 午夜福利欧美成人| 国产蜜桃级精品一区二区三区| 啦啦啦免费观看视频1| 黑人巨大精品欧美一区二区蜜桃| 热re99久久精品国产66热6| √禁漫天堂资源中文www| 国产精品美女特级片免费视频播放器 | 成人亚洲精品一区在线观看| 久99久视频精品免费| 日韩大尺度精品在线看网址 | 黄片小视频在线播放| 视频在线观看一区二区三区| 日韩大尺度精品在线看网址 | 久久精品影院6| 两性夫妻黄色片| 精品国产乱子伦一区二区三区| 一边摸一边做爽爽视频免费| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 热99国产精品久久久久久7| 波多野结衣av一区二区av| 久久人妻熟女aⅴ| 少妇的丰满在线观看| 亚洲专区字幕在线| 精品人妻在线不人妻| 一边摸一边抽搐一进一小说| 一级毛片女人18水好多| 亚洲成人精品中文字幕电影 | 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 男女下面插进去视频免费观看| 老司机福利观看| 又黄又爽又免费观看的视频| 久久中文看片网| 老鸭窝网址在线观看| 免费av中文字幕在线| 国产亚洲精品久久久久久毛片| 国产91精品成人一区二区三区| 国产色视频综合| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| 免费在线观看亚洲国产| 国产乱人伦免费视频| 韩国精品一区二区三区| 黑丝袜美女国产一区| 十分钟在线观看高清视频www| www日本在线高清视频| av在线播放免费不卡| 日韩人妻精品一区2区三区| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 亚洲人成77777在线视频| 操美女的视频在线观看| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 女人精品久久久久毛片| 久久精品91蜜桃| 国产一区二区在线av高清观看| 国产熟女午夜一区二区三区| 精品久久久久久成人av| 国产精品国产av在线观看| 在线永久观看黄色视频| 51午夜福利影视在线观看| 精品久久久久久成人av| 亚洲 欧美 日韩 在线 免费| 免费高清在线观看日韩| 欧美大码av| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 中文字幕av电影在线播放| 亚洲国产毛片av蜜桃av| 91国产中文字幕| 国产亚洲精品综合一区在线观看 | 亚洲人成伊人成综合网2020| 亚洲欧美激情在线| 91成年电影在线观看| 成人亚洲精品av一区二区 | 精品久久久久久电影网| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产 | 亚洲第一av免费看| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 国产欧美日韩精品亚洲av| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 亚洲熟妇熟女久久| 亚洲精品国产一区二区精华液| 欧美日韩黄片免| av在线天堂中文字幕 | 国产精品亚洲一级av第二区| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 欧美成人性av电影在线观看| 亚洲九九香蕉| 精品国产乱码久久久久久男人| 91av网站免费观看| 精品国产乱码久久久久久男人| 免费高清在线观看日韩| a在线观看视频网站| 日韩有码中文字幕| av免费在线观看网站| 天堂√8在线中文| 在线av久久热| 国产一区二区三区视频了| 欧美激情高清一区二区三区| 亚洲情色 制服丝袜| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 少妇裸体淫交视频免费看高清 | 欧美成人午夜精品| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频 | 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 天堂动漫精品| 美女扒开内裤让男人捅视频| 国产精品影院久久| 1024视频免费在线观看| 国产伦一二天堂av在线观看| 免费高清视频大片| www.精华液| 久久人人97超碰香蕉20202| 在线看a的网站| 黄色a级毛片大全视频| 天天影视国产精品| 国产国语露脸激情在线看| 欧美激情久久久久久爽电影 | 69精品国产乱码久久久| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 级片在线观看| 男人舔女人下体高潮全视频| bbb黄色大片| 一边摸一边抽搐一进一出视频| 亚洲久久久国产精品| 少妇的丰满在线观看| 黄色 视频免费看| 黄频高清免费视频| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲全国av大片| 免费女性裸体啪啪无遮挡网站| 97超级碰碰碰精品色视频在线观看| 操美女的视频在线观看| 久久天躁狠狠躁夜夜2o2o| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 老司机在亚洲福利影院| 一区福利在线观看| 亚洲一码二码三码区别大吗| 热99re8久久精品国产| 午夜日韩欧美国产| av中文乱码字幕在线| 一夜夜www| 校园春色视频在线观看| 97人妻天天添夜夜摸| 99热只有精品国产| 久久久精品国产亚洲av高清涩受| 国产成人免费无遮挡视频| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 99riav亚洲国产免费| 黄色怎么调成土黄色| 午夜精品国产一区二区电影| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 日韩精品中文字幕看吧| 男男h啪啪无遮挡| 老熟妇乱子伦视频在线观看| 日韩欧美国产一区二区入口| 免费高清在线观看日韩| 十八禁人妻一区二区| 日韩欧美在线二视频| 精品国产乱子伦一区二区三区| 男人舔女人的私密视频| 亚洲精品中文字幕一二三四区| 亚洲精品国产色婷婷电影| 少妇粗大呻吟视频| 丝袜美腿诱惑在线| 国产单亲对白刺激| 99久久99久久久精品蜜桃| 一区福利在线观看| 这个男人来自地球电影免费观看| 日日夜夜操网爽| 国产男靠女视频免费网站| 大陆偷拍与自拍| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 免费在线观看日本一区| 夜夜看夜夜爽夜夜摸 | 亚洲成人免费av在线播放| 免费观看人在逋| 成熟少妇高潮喷水视频| 欧美精品亚洲一区二区| 亚洲成人国产一区在线观看| 中文欧美无线码| 国产精品野战在线观看 | 久久性视频一级片| 一级作爱视频免费观看| xxx96com| 黑人巨大精品欧美一区二区蜜桃| 日韩人妻精品一区2区三区| 脱女人内裤的视频| 成人三级黄色视频| av超薄肉色丝袜交足视频| 国产99久久九九免费精品| av天堂在线播放| 精品免费久久久久久久清纯| 老司机福利观看| 久久 成人 亚洲| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| 18美女黄网站色大片免费观看| www国产在线视频色| 日日摸夜夜添夜夜添小说| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 欧美+亚洲+日韩+国产| av有码第一页| 91麻豆av在线| 欧美乱色亚洲激情| 久久久久国产一级毛片高清牌| 一区二区三区国产精品乱码| 国产无遮挡羞羞视频在线观看| a级片在线免费高清观看视频| 91国产中文字幕| 久久久国产一区二区| 国产午夜精品久久久久久| 十八禁人妻一区二区| 国产精品一区二区在线不卡| av天堂在线播放| 久久精品成人免费网站| 国产高清videossex| 最好的美女福利视频网| 久久午夜亚洲精品久久| 美女国产高潮福利片在线看| 五月开心婷婷网| 国产区一区二久久| 欧美日韩黄片免| 亚洲国产精品一区二区三区在线| 怎么达到女性高潮| 国产成人系列免费观看| 亚洲五月婷婷丁香| 欧美乱色亚洲激情| 欧美黑人欧美精品刺激| 视频区图区小说| 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 久久精品亚洲精品国产色婷小说| 80岁老熟妇乱子伦牲交| 女警被强在线播放| 亚洲av五月六月丁香网| 99精品欧美一区二区三区四区| 精品国产一区二区久久| 激情在线观看视频在线高清| 老汉色av国产亚洲站长工具| 成人国语在线视频| 欧美成人午夜精品| 久久久精品欧美日韩精品| 高清在线国产一区| 亚洲全国av大片| 夜夜爽天天搞| 91精品国产国语对白视频| 久久亚洲精品不卡| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 一级片'在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 日韩人妻精品一区2区三区| 欧美乱码精品一区二区三区| 久久精品影院6| 黑人猛操日本美女一级片| 久久欧美精品欧美久久欧美| 美女高潮到喷水免费观看| 一级片'在线观看视频| 女同久久另类99精品国产91| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 精品福利观看| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频 | 欧美av亚洲av综合av国产av| 婷婷丁香在线五月| 日本 av在线| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 国产片内射在线| 久久久精品国产亚洲av高清涩受| 精品一区二区三区视频在线观看免费 | 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| 亚洲aⅴ乱码一区二区在线播放 | 青草久久国产| 丝袜在线中文字幕| 无人区码免费观看不卡| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 欧美日韩瑟瑟在线播放| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区av网在线观看| 美女高潮到喷水免费观看| 亚洲午夜理论影院| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 国产人伦9x9x在线观看| 国产一区二区三区综合在线观看| 黑人操中国人逼视频| 精品免费久久久久久久清纯| 在线观看66精品国产| 久久性视频一级片| 97碰自拍视频| 国产精品秋霞免费鲁丝片| 久热爱精品视频在线9| 叶爱在线成人免费视频播放| 宅男免费午夜| e午夜精品久久久久久久| 国产深夜福利视频在线观看| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影 | 黄色视频不卡| 99久久综合精品五月天人人| 大型黄色视频在线免费观看| 欧美乱妇无乱码| 成人手机av| 国产激情欧美一区二区| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区| a在线观看视频网站| 成人av一区二区三区在线看| a在线观看视频网站| 一二三四在线观看免费中文在| 午夜亚洲福利在线播放| 亚洲午夜理论影院| avwww免费| 久久人人精品亚洲av| 国产精华一区二区三区| 亚洲国产精品合色在线| 老汉色av国产亚洲站长工具| 欧美最黄视频在线播放免费 | 男女下面插进去视频免费观看| 男男h啪啪无遮挡| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 自线自在国产av| 久久天躁狠狠躁夜夜2o2o| 欧美激情久久久久久爽电影 | 啪啪无遮挡十八禁网站| 夜夜躁狠狠躁天天躁| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 美女高潮到喷水免费观看| 午夜免费鲁丝| 久久中文看片网| av天堂久久9| 欧美在线黄色| 国产精品亚洲av一区麻豆| 老熟妇仑乱视频hdxx| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 国产 在线| 18美女黄网站色大片免费观看| 午夜福利影视在线免费观看| 在线免费观看的www视频| 国产成人啪精品午夜网站| 亚洲三区欧美一区| 亚洲av熟女| 一本综合久久免费| 国产精品一区二区三区四区久久 | 亚洲成人免费av在线播放| 亚洲免费av在线视频| 亚洲自拍偷在线| 女人被狂操c到高潮| 在线观看66精品国产| 51午夜福利影视在线观看| 91精品国产国语对白视频| 亚洲第一青青草原| 国产区一区二久久| 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 9热在线视频观看99| 国产精品久久久久久人妻精品电影| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 超碰成人久久| 日本a在线网址| 亚洲一区二区三区不卡视频| 国产精品爽爽va在线观看网站 | 国产免费av片在线观看野外av| 亚洲avbb在线观看| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 精品福利永久在线观看| 精品福利观看| 中文字幕人妻丝袜制服| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人精品中文字幕电影 | 日韩国内少妇激情av| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 国产精品一区二区三区四区久久 | 天天影视国产精品| 成熟少妇高潮喷水视频| 天天影视国产精品| 欧美丝袜亚洲另类 | 免费少妇av软件| 男人操女人黄网站| 日韩免费av在线播放| 精品福利永久在线观看| 成人永久免费在线观看视频| 免费高清在线观看日韩| 久久久久久久精品吃奶| 国产成人精品久久二区二区免费| 久久久久久久午夜电影 | 另类亚洲欧美激情| 夫妻午夜视频| 他把我摸到了高潮在线观看| 9色porny在线观看| 久久中文字幕人妻熟女| 夜夜看夜夜爽夜夜摸 | 亚洲成人久久性| 老司机午夜福利在线观看视频| 亚洲第一青青草原| 精品久久久精品久久久| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 精品欧美一区二区三区在线| 天堂动漫精品| 国产精品乱码一区二三区的特点 | 丰满迷人的少妇在线观看| 天天添夜夜摸| 成年版毛片免费区| 操出白浆在线播放| 亚洲国产看品久久| 欧美最黄视频在线播放免费 | 9191精品国产免费久久| 久久久久久久精品吃奶| 一进一出抽搐gif免费好疼 | 亚洲av成人av| www日本在线高清视频| 在线观看日韩欧美| 久久国产精品男人的天堂亚洲| 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 麻豆久久精品国产亚洲av | 少妇被粗大的猛进出69影院| 久久 成人 亚洲| 国产精品久久视频播放| 亚洲精品在线观看二区| 国产高清国产精品国产三级| 久久久久久大精品| 亚洲中文字幕日韩| 美女 人体艺术 gogo| 18禁国产床啪视频网站| 亚洲国产欧美网| 国产精品偷伦视频观看了| 新久久久久国产一级毛片| 成人18禁高潮啪啪吃奶动态图| 99国产综合亚洲精品| 日本黄色视频三级网站网址| 欧美丝袜亚洲另类 | 国产一区二区三区综合在线观看| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 国产精品一区二区三区四区久久 | 欧美黄色淫秽网站| 日本精品一区二区三区蜜桃| 欧美性长视频在线观看| 成人黄色视频免费在线看| 国产又色又爽无遮挡免费看| 看片在线看免费视频| 亚洲一区二区三区欧美精品| 国产精品影院久久| 国产亚洲欧美精品永久| 日韩欧美一区二区三区在线观看| 中文字幕最新亚洲高清| 亚洲 欧美 日韩 在线 免费| 80岁老熟妇乱子伦牲交| 黄色丝袜av网址大全| 国产精品一区二区三区四区久久 | 亚洲专区国产一区二区| 成人黄色视频免费在线看| 国产精品影院久久| 精品久久蜜臀av无| 80岁老熟妇乱子伦牲交| 高潮久久久久久久久久久不卡| 色综合站精品国产| 欧美国产精品va在线观看不卡| 制服诱惑二区| 99re在线观看精品视频| 黑人操中国人逼视频| 国产熟女午夜一区二区三区| 国产精品国产av在线观看|