• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法*

      2017-02-10 03:19:30陶洪建張艷紅
      關(guān)鍵詞:數(shù)據(jù)量海量能耗

      陶洪建, 張艷紅, 湯 峰

      (1. 重慶理工大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院, 重慶 400050; 2. 重慶工業(yè)職業(yè)技術(shù)學(xué)院 信息工程學(xué)院, 重慶 401120; 3. 廣東技術(shù)師范學(xué)院 信息與傳媒學(xué)院, 廣州 510540; 4. 華南理工大學(xué) 軟件學(xué)院, 廣州 510006)

      海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法*

      陶洪建1,2, 張艷紅3, 湯 峰4

      (1. 重慶理工大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院, 重慶 400050; 2. 重慶工業(yè)職業(yè)技術(shù)學(xué)院 信息工程學(xué)院, 重慶 401120; 3. 廣東技術(shù)師范學(xué)院 信息與傳媒學(xué)院, 廣州 510540; 4. 華南理工大學(xué) 軟件學(xué)院, 廣州 510006)

      針對(duì)傳統(tǒng)方法對(duì)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗進(jìn)行優(yōu)化時(shí)存在傳輸能耗估計(jì)不準(zhǔn)確、不適合大范圍使用的缺陷,提出一種新的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗控制優(yōu)化方法.通過建立網(wǎng)絡(luò)數(shù)據(jù)傳輸模型,對(duì)網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)能耗進(jìn)行計(jì)算.選取合適節(jié)點(diǎn)對(duì)網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行參數(shù)設(shè)計(jì),利用分段曲線壓縮算法對(duì)采集的數(shù)據(jù)進(jìn)行壓縮傳輸,結(jié)合剩余能量實(shí)現(xiàn)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗的優(yōu)化.結(jié)果表明,在不同數(shù)據(jù)傳輸距離和數(shù)據(jù)量條件下,與傳統(tǒng)方法相比采用改進(jìn)算法可以很大程度降低海量數(shù)據(jù)的傳輸能耗,改進(jìn)算法具有的能耗優(yōu)化效果具有一定的實(shí)用性.

      海量網(wǎng)絡(luò); 傳輸模型; 能耗; 數(shù)據(jù)傳輸; 優(yōu)化方法; 分段壓縮; 剩余能量?jī)?yōu)化; 節(jié)點(diǎn)能耗控制

      隨著網(wǎng)絡(luò)技術(shù)的發(fā)展,網(wǎng)絡(luò)用戶數(shù)量逐年增加,借助于移動(dòng)網(wǎng)絡(luò)的升級(jí)和手機(jī)的推廣,移動(dòng)互聯(lián)網(wǎng)也迅速發(fā)展,用戶量明顯增加,互聯(lián)網(wǎng)成為了人們生活中不可缺少的一部分.互聯(lián)網(wǎng)具有結(jié)構(gòu)龐大、復(fù)雜的特點(diǎn)[1],導(dǎo)致其數(shù)據(jù)量迅速增加,傳輸量越來越大,隨之產(chǎn)生的能耗也越來越大.對(duì)網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗進(jìn)行優(yōu)化也成為該領(lǐng)域亟待解決的問題,受到廣大學(xué)者的關(guān)注,各種有效算法不斷被提出[2-5].

      其中,文獻(xiàn)[6]提出基于弱監(jiān)督學(xué)習(xí)的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法,通過Bootstrapping思想的協(xié)同訓(xùn)練方法對(duì)弱監(jiān)督抽取模型進(jìn)行強(qiáng)化,并且對(duì)預(yù)測(cè)關(guān)系時(shí)的協(xié)同策略進(jìn)行詳細(xì)分析,通過實(shí)驗(yàn)證明,此方法可實(shí)現(xiàn)網(wǎng)絡(luò)數(shù)據(jù)傳輸過程能耗的優(yōu)化.文獻(xiàn)[7-9]提出基于MapReduce和HBase的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法,方法主要根據(jù)數(shù)據(jù)特點(diǎn),結(jié)合分布式框架對(duì)海量網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行計(jì)算,改進(jìn)網(wǎng)絡(luò)數(shù)據(jù)的傳輸模式和數(shù)據(jù)存儲(chǔ)模式,完成網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗的優(yōu)化.方案可有效地解決MapReduce讀取和解析二進(jìn)制數(shù)據(jù)的問題,但是其數(shù)據(jù)傳輸速度較快,無法對(duì)全部能耗進(jìn)行優(yōu)化.文獻(xiàn)[10]提出基于層次分析的網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法,該方法通過構(gòu)建海量網(wǎng)絡(luò)數(shù)據(jù)傳輸模式的預(yù)測(cè)模型,從多方面進(jìn)行了分析,為網(wǎng)絡(luò)數(shù)據(jù)的傳輸提供了基礎(chǔ)依據(jù).但針對(duì)大規(guī)模的網(wǎng)絡(luò)數(shù)據(jù),該方法在解析及傳輸方面應(yīng)用均有局限,使得傳輸能耗估計(jì)不準(zhǔn)確,不適合大范圍的使用.文獻(xiàn)[11]提出一種基于多條件休眠的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法.文獻(xiàn)對(duì)網(wǎng)絡(luò)主要狀態(tài)的穩(wěn)態(tài)概率和協(xié)議參數(shù)進(jìn)行推導(dǎo),獲取了節(jié)點(diǎn)在每個(gè)超幀內(nèi)的平均能耗,并以此為基礎(chǔ),利用數(shù)據(jù)包到達(dá)率、退避次數(shù)等參數(shù)對(duì)其進(jìn)行優(yōu)化,完成了網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化,但該方法時(shí)間復(fù)雜度較高,不易實(shí)現(xiàn).

      針對(duì)上述產(chǎn)生的問題,提出一種新的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法,通過建立網(wǎng)絡(luò)數(shù)據(jù)傳輸模型,對(duì)網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)能耗進(jìn)行優(yōu)化,并以此為基礎(chǔ),對(duì)網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行采集.通過分段曲線壓縮算法對(duì)采集的數(shù)據(jù)進(jìn)行壓縮傳輸;基于剩余能量?jī)?yōu)化方法,對(duì)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗進(jìn)行優(yōu)化處理,實(shí)現(xiàn)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗的優(yōu)化.通過實(shí)驗(yàn)結(jié)果分析可知,相比傳統(tǒng)的能耗優(yōu)化方法,改進(jìn)方法能耗優(yōu)化效果更好,具有一定的實(shí)用性.

      1 網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)能耗分析

      1.1 網(wǎng)絡(luò)數(shù)據(jù)傳輸模型

      在進(jìn)行網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化時(shí),需要建立網(wǎng)絡(luò)數(shù)據(jù)傳輸模型[12]降低數(shù)據(jù)傳輸帶來的能耗.

      在海量網(wǎng)絡(luò)通信過程中,假設(shè)節(jié)點(diǎn)m與另一個(gè)節(jié)點(diǎn)相遇時(shí),可能在相遇之后時(shí)間T內(nèi)的任意一個(gè)時(shí)刻發(fā)送鄰居探測(cè)信息,則節(jié)點(diǎn)m取值為0~T均勻分布,節(jié)點(diǎn)m的概率分布函數(shù)表示為

      (1)

      式中,a為概率分布的約束閾值.當(dāng)a<0時(shí),表示分布過程不符合實(shí)際情況,即節(jié)點(diǎn)通信時(shí)刻與下一節(jié)點(diǎn)發(fā)出第一個(gè)鄰居探測(cè)信息時(shí)刻之間的間隔大于持續(xù)時(shí)間.當(dāng)兩個(gè)節(jié)點(diǎn)通信時(shí),可發(fā)生通信的概率為1-P(Tx≤0),節(jié)點(diǎn)感知到通信事件的概率分布模型可表示為

      (2)

      式中:Tx為節(jié)點(diǎn)x的通信時(shí)間間隔周期;t為通信時(shí)間約束閾值.對(duì)節(jié)點(diǎn)感知到的通信事件的概率分布模型求導(dǎo),可得到鏈路持續(xù)時(shí)間Tf的表達(dá)式.

      通過獲取的節(jié)點(diǎn)實(shí)際相遇持續(xù)時(shí)間的概率密度函數(shù)建立海量網(wǎng)絡(luò)數(shù)據(jù)傳輸模型,將其作為分析海量數(shù)據(jù)傳輸能耗的基礎(chǔ).

      1.2 網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)能耗控制參數(shù)

      在建立網(wǎng)絡(luò)數(shù)據(jù)傳輸模型的基礎(chǔ)上,計(jì)算網(wǎng)絡(luò)最大吞吐量,獲取網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)的能量消耗值.當(dāng)相遇節(jié)點(diǎn)直接產(chǎn)生通信的概率為Pr時(shí),則其網(wǎng)絡(luò)數(shù)據(jù)通信持續(xù)時(shí)間總和T1及網(wǎng)絡(luò)數(shù)據(jù)傳輸鏈路持續(xù)時(shí)間總和T2的表達(dá)式分別為

      T1=KE(T)

      (3)

      T2=K(1-Pr)E(Tf)

      (4)

      式中:E(T)為網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)間通信持續(xù)時(shí)間的平均值;K為網(wǎng)絡(luò)中所有數(shù)據(jù)節(jié)點(diǎn)間的總相遇次數(shù);E(Tf)為鏈路持續(xù)過程時(shí)間的平均值.

      通信時(shí)間可用兩者比值ρ表示,即

      (5)

      由式(5)可知,ρ值與K的取值無關(guān),則把該參數(shù)帶入到網(wǎng)絡(luò)通信模型,可以得到能耗控制參數(shù),即

      c=λβ(1-Pr)E(Tf)

      (6)

      式中:λ為單位時(shí)間節(jié)點(diǎn)平均被選次數(shù);β為數(shù)據(jù)節(jié)點(diǎn)的傳輸速率.λ也被稱為數(shù)據(jù)節(jié)點(diǎn)相遇速率,取值由數(shù)據(jù)節(jié)點(diǎn)特性及網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)密度決定.

      2 結(jié)合控制參數(shù)的能耗優(yōu)化方法

      在獲取網(wǎng)絡(luò)數(shù)據(jù)節(jié)點(diǎn)能耗控制參數(shù)的基礎(chǔ)上,采用分段曲線壓縮算法對(duì)采集的網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行壓縮,并通過控制參數(shù)優(yōu)化剩余能量方法實(shí)現(xiàn)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗的優(yōu)化.

      為獲取海量網(wǎng)絡(luò)數(shù)據(jù)特征,假設(shè)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸初始端數(shù)據(jù)量為V1,傳輸終止端數(shù)據(jù)量為V,傳輸?shù)木W(wǎng)絡(luò)數(shù)據(jù)量級(jí)為N,則此時(shí)的網(wǎng)絡(luò)數(shù)據(jù)負(fù)載量為

      (7)

      通過分段曲線壓縮算法對(duì)海量網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行壓縮處理,以獲得較小數(shù)量級(jí)的海量網(wǎng)絡(luò)數(shù)能耗,此過程計(jì)算公式可表示為

      (8)

      式中:er為通信概率為Pr時(shí)的網(wǎng)絡(luò)通信能耗;α為傳輸約束參數(shù);εk為節(jié)點(diǎn)k的剩余能量.通過對(duì)傳輸約束參數(shù)進(jìn)行參數(shù)控制,降低在采集過程中所需的能耗.結(jié)合剩余能量?jī)?yōu)化方法,對(duì)海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗進(jìn)行優(yōu)化處理,假設(shè)T(A)表示數(shù)據(jù)A發(fā)送到簇頭所需時(shí)間,則其表達(dá)式為

      (9)

      式中:eref(A)為參考能量;et(A)為發(fā)送數(shù)據(jù)A到簇頭所需的能量;G為權(quán)重參數(shù).

      在時(shí)間間隔內(nèi),若滿足T(B)-T(A)-TAB-TS≥0,則可利用控制參數(shù)優(yōu)化剩余能量方法對(duì)數(shù)據(jù)傳輸時(shí)所需能耗進(jìn)行約束,使其降到最低,完成海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗的優(yōu)化,最終約束表達(dá)式為

      (10)

      式中,ei(A)為數(shù)據(jù)A在時(shí)間i內(nèi)的剩余能量;ei(B)為數(shù)據(jù)B在時(shí)間i內(nèi)的剩余能量;TAB為數(shù)據(jù)A與數(shù)據(jù)B傳輸所需時(shí)間;r為傳輸總數(shù)據(jù)量;p為數(shù)據(jù)傳輸率;Tc為數(shù)據(jù)壓縮后傳輸時(shí)間.

      3 實(shí)驗(yàn)結(jié)果與分析

      為了驗(yàn)證本文所提出的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法的有效性,通過仿真實(shí)驗(yàn)進(jìn)行了驗(yàn)證.實(shí)驗(yàn)在Red.Hat Linux6.1環(huán)境下搭建海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗控制仿真平臺(tái),平臺(tái)中的具體實(shí)驗(yàn)參數(shù)如表1所示,其中網(wǎng)絡(luò)數(shù)據(jù)的分布情況如圖1所示.

      表1 實(shí)驗(yàn)參數(shù)
      Tab.1 Experimental parameters

      參數(shù)數(shù)值網(wǎng)絡(luò)范圍300m×300m通訊數(shù)量級(jí)1000Mbit數(shù)據(jù)初始總能量600nJ半徑30mmeref(A)參考能量50nJ/biteref(B)參考能量1 3nJ/bitTAB數(shù)據(jù)傳輸時(shí)間0 05s

      圖1 海量網(wǎng)絡(luò)數(shù)據(jù)分布Fig.1 Data distribution of massive network

      在網(wǎng)絡(luò)數(shù)據(jù)一定的情況下,采用本文方法與文獻(xiàn)[10]的基于層次分析的能耗優(yōu)化方法、文獻(xiàn)[11]的基于多條件休眠的能耗優(yōu)化方法在不同數(shù)據(jù)傳輸距離的條件下,進(jìn)行傳輸能耗的比對(duì),結(jié)果如圖2所示.

      圖2 不同傳輸距離下傳輸能耗對(duì)比Fig.2 Comparison in transmission energy consumption under different transmission distances

      由圖2可知,在傳輸數(shù)據(jù)量一定的情況下,采用文獻(xiàn)[10]提出的基于層次分析的能耗優(yōu)化方法對(duì)能耗進(jìn)行優(yōu)化時(shí),雖然在一開始其能耗最低,但在傳輸50 m后其傳輸能耗迅速增加,以至于之后達(dá)到最高能耗,由此可知,采用層次分析的能耗優(yōu)化方法時(shí),其能耗會(huì)隨著傳輸距離的增加而增加,不適合傳輸距離較長(zhǎng)的環(huán)境;文獻(xiàn)[11]基于多條件休眠的能耗優(yōu)化方法雖然開始時(shí)相比本文方法所需的能耗低,但在傳輸100 m之后,其傳輸能耗也迅速增加,最終能耗約為921 nJ;在采用本文所提方法時(shí),雖然其能耗一開始均比其它方法的能耗要高,但在100 m之后,明顯比其他兩種算法的能耗要低,且不會(huì)隨著傳輸距離的增加而過多產(chǎn)生能耗,使用不會(huì)受到傳輸距離的過多限制,具有一定的使用優(yōu)勢(shì).

      在傳輸網(wǎng)絡(luò)距離一定的情況下,采用本文方法與層次分析法、多條件休眠法在不同數(shù)據(jù)量條件下進(jìn)行傳輸能耗的比對(duì)結(jié)果如圖3所示.

      圖3 不同數(shù)據(jù)量條件下傳輸能耗對(duì)比圖Fig.3 Comparison in transmission energy consumption under different data amounts

      由圖3可知,在傳輸數(shù)據(jù)量一定的情況下,采用層次分析法進(jìn)行優(yōu)化時(shí),其能耗在數(shù)據(jù)量為400 Mbit之后迅速增加,無下降趨勢(shì),可知采用層次分析法時(shí)其能耗會(huì)隨著傳輸數(shù)據(jù)量的增加而增加,不適合海量數(shù)據(jù)傳輸?shù)沫h(huán)境;多條件休眠法所用能耗雖然一開始比本文方法所需的能耗要低,但在傳輸數(shù)據(jù)量大于100 Mbit后,其傳輸能耗也迅速增加,最終能耗高于本文方法;在采用本文方法時(shí),雖然其能耗開始比多條件休眠法所用能耗要高,但在大于100 Mbit后與多條件休眠法出現(xiàn)反差,且不會(huì)隨著傳輸數(shù)據(jù)量的增加而產(chǎn)生過多能耗.

      4 結(jié) 論

      針對(duì)傳統(tǒng)海量數(shù)據(jù)傳輸能耗優(yōu)化方法一直存在能耗優(yōu)化效果不佳的問題,提出一種新的海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化方法.分別通過對(duì)傳輸數(shù)據(jù)節(jié)點(diǎn)、數(shù)據(jù)壓縮過程及數(shù)據(jù)傳輸過程的能耗進(jìn)行優(yōu)化,以達(dá)到海量網(wǎng)絡(luò)數(shù)據(jù)傳輸能耗優(yōu)化的目的.通過實(shí)驗(yàn)結(jié)果分析可知,改進(jìn)方法相比傳統(tǒng)的能耗優(yōu)化方法,其能耗優(yōu)化效果明顯,具有一定的實(shí)用性.

      [1]衛(wèi)何.基于ERP應(yīng)用的企業(yè)網(wǎng)絡(luò)數(shù)據(jù)傳輸設(shè)計(jì)和實(shí)現(xiàn) [J].軟件工程師,2015(4):30-32.

      (WEI He.Based on the ERP application of enterprise network data transmission design and implementation [J].Software Engineer,2015(4):30-32.)

      [2]陳志華.分布式云計(jì)算環(huán)境下的海量數(shù)據(jù)有效查詢方法 [J].科技通報(bào),2015,31(8):222-224.

      (CHEN Zhi-hua.Huge amounts data effective query methods in distributed cloud computing environment [J].Bulletin of Science and Technology,2015,31(8):222-224.)

      [3]尹令,周皓恩,劉才興,等.無線傳感器網(wǎng)絡(luò)空中下載協(xié)議的研究 [J].湘潭大學(xué)學(xué)報(bào),2010,32(2):112-117.

      (YIN Ling,ZHOU Hao-en,LIU Cai-xing,et al.Research on reprogramming using OTA technology in wireless sensor network [J].Journal of Xiangtan University,2010,32(2):112-117.)

      [4]張俊虎,彭輝,邵峰晶.移動(dòng)傳感器網(wǎng)絡(luò)路由協(xié)議的多跳數(shù)據(jù)傳輸及能耗性能分析 [J].計(jì)算機(jī)應(yīng)用與軟件,2011,28(11):202-206.

      (ZHANG Jun-hu,PENG Hui,SHAO Feng-jing.Performance analysis on multi-hop data transmission and energy consumption of routing protocols for mobile wireless sensor networks [J].Computer Applications and Software,2011,28(11):202-206.)

      [5]張志東,孫雨耕,劉洋,等.無線傳感器網(wǎng)絡(luò)能量模型 [J].天津大學(xué)學(xué)報(bào),2007,40(9):1029-1034.

      (ZHANG Zhi-dong,SUN Yu-geng,LIU Yang,et al.Energy model in wireless sensor networks [J].Journal of Tianjin University,2007,40(9):1029-1034.)

      [6]王高才,馮鵬,王淖,等.一種速率自適應(yīng)的能耗優(yōu)化路由策略研究 [J].計(jì)算機(jī)學(xué)報(bào),2015,38(3):555-566.

      (WANG Gao-cai,F(xiàn)ENG Peng,WANG Nao,et al.Study on energy consumption optimization routing strategy based on rate adaptation [J].Chinese Journal of Computers,2015,38(3):555-566.)

      [7]景晗,鄭建生,陳鯉文,等.基于MapReduce和HBase的海量網(wǎng)絡(luò)數(shù)據(jù)處理 [J].科學(xué)技術(shù)與工程,2015,34(15):182-191.

      (JING Han,ZHENG Jian-sheng,CHEN Li-wen,et al.MapReduce and HBase based network data processing [J].Science Technology and Engineering,2015,34(15):182-191.)

      [8]廖雪寧,吳振強(qiáng),周異輝.一種新型無線網(wǎng)絡(luò)編碼數(shù)據(jù)傳輸方案 [J].計(jì)算機(jī)應(yīng)用與軟件,2015,32(3):97-100.

      (LIAO Xue-ning,WU Zhen-qiang,ZHOU Yi-hui.A new type of data transmission scheme for wireless network coding [J].Computer Applications and Software,2015,32(3):97-100.)

      [9]陳娟,徐力生,徐蒙,等.大壩廊道無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)鋪設(shè)方法 [J].沈陽工業(yè)大學(xué)學(xué)報(bào),2015,37(1):109-115.

      (CHEN Juan,XU Li-sheng,XU Meng,et al.Node placement method for wireless sensor network in dam corridor [J].Journal of Shenyang University of Technology,2015,37(1):109-115.)

      [10]王迤冉,王春霞.多層序列規(guī)劃的無線多跳網(wǎng)絡(luò)能耗優(yōu)化拓?fù)涓深A(yù)算法 [J].計(jì)算機(jī)應(yīng)用研究,2015,32(8):2475-2479.

      (WANG Yi-ran,WANG Chun-xia.Topology intervention algorithm with energy consumption optimization based on multi-layer sequential programming [J].Application Research of Computer,2015,32(8):2475-2479.)

      [11]蔣華,韓平梅,王鑫.關(guān)于無線網(wǎng)絡(luò)傳感器節(jié)點(diǎn)能耗優(yōu)化設(shè)計(jì)與仿真 [J].計(jì)算機(jī)仿真,2015,32(7):273-276.

      (JIANG Hua,HAN Ping-mei,WANG Xin.Simulation and design of energy optimization of senor node in wireless network [J].Computer Simulation,2015,32(7):273-276.)

      [12]許冬敏,黃有方,楊斌,等.多Agent的集裝箱供應(yīng)鏈能耗優(yōu)化數(shù)學(xué)模型 [J].上海海事大學(xué)學(xué)報(bào),2014,35(2):22-27.

      (XU Dong-min,HUANG You-fang,YANG Bin,et al.Mathematical energy consumption optimization model of container supply chain with multi-Agents [J].Journal of Shanghai Maritime University,2014,35(2):22-27.)

      (責(zé)任編輯:景 勇 英文審校:尹淑英)

      Optimization method for energy consumption during data transmission of massive network

      TAO Hong-jian1,2, ZHANG Yan-hong3, TANG Feng4

      (1. School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400050, China; 2. School of Information Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China; 3. Information and Media Academy, Guangdong Polytechnic Normal University, Guangzhou 510540, China; 4. School of Software Engineering, South China University of Technology, Guangzhou 510006, China)

      In order to solve the problem that when the energy consumption during data transmission of massive network is optimized with the traditional method, the estimation of transmission energy consumption is not accurate and the traditional method is not suitable for a wide range of use, a new optimization method for the energy consumption control during data transmission of massive network was proposed. Through establishing the transmission model for network data, the energy consumption of network data nodes was calculated. In addition, the appropriate nodes were selected to perform the parameter design for the network data, the compressive transmission for the acquired data was carried out with the piecewise curve compression algorithm, and the optimization of energy consumption during data transmission of massive network was realized in combination with the remaining energy. The results show that under the condition of different data transmission distances and different data amounts, compared with the traditional methods, the improved algorithm can greatly reduce the energy consumption during the data transmission of massive network. Furthermore, the improved method has better optimization effect for the energy consumption, and has a certain practicality.

      massive network; transmission model; energy consumption; data transmission; optimization method; subsection compression; remaining energy optimization; node energy consumption control

      2016-05-24.

      廣東省教育廳課題資助項(xiàng)目(14JXN060); 重慶市教委科技資助項(xiàng)目(渝教科2013-4).

      陶洪建(1979-),男,重慶人,講師,碩士,主要從事計(jì)算機(jī)網(wǎng)絡(luò)工程與檢測(cè)系統(tǒng)設(shè)計(jì)等方面的研究.

      17∶39在中國知網(wǎng)優(yōu)先數(shù)字出版.

      http:∥www.cnki.net/kcms/detail/21.1189.T.20161222.1739.004.html

      10.7688/j.issn.1000-1646.2017.01.19

      TP 393

      A

      1000-1646(2017)01-0099-05

      猜你喜歡
      數(shù)據(jù)量海量能耗
      一種傅里葉域海量數(shù)據(jù)高速譜聚類方法
      120t轉(zhuǎn)爐降低工序能耗生產(chǎn)實(shí)踐
      昆鋼科技(2022年2期)2022-07-08 06:36:14
      能耗雙控下,漲價(jià)潮再度來襲!
      基于大數(shù)據(jù)量的初至層析成像算法優(yōu)化
      計(jì)算Lyapunov指數(shù)的模糊C均值聚類小數(shù)據(jù)量法
      探討如何設(shè)計(jì)零能耗住宅
      高刷新率不容易顯示器需求與接口標(biāo)準(zhǔn)帶寬
      寬帶信號(hào)采集與大數(shù)據(jù)量傳輸系統(tǒng)設(shè)計(jì)與研究
      電子制作(2019年13期)2020-01-14 03:15:18
      海量快遞垃圾正在“圍城”——“綠色快遞”勢(shì)在必行
      日本先進(jìn)的“零能耗住宅”
      岳西县| 富阳市| 赞皇县| 绥棱县| 湘潭县| 五指山市| 东乌| 周至县| 永德县| 深州市| 平度市| 桃江县| 蒲江县| 洛扎县| 定边县| 宜兰县| 呼图壁县| 台北市| 兰坪| 柞水县| 阆中市| 东兰县| 灌阳县| 平邑县| 阿拉善右旗| 公主岭市| 新沂市| 东城区| 宝坻区| 措勤县| 远安县| 白城市| 同德县| 临武县| 凤台县| 渭源县| 东阿县| 大厂| 壶关县| 西林县| 陵川县|