• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bound States Energies of a Harmonic Oscillator Perturbed by Point Interactions?

    2017-02-08 07:48:59FerkousandBoudjedaa
    Communications in Theoretical Physics 2017年3期

    N.Ferkous and T.Boudjedaa

    Laboratory of Theoretical Physics,Department of Physics,University of Jijel,PB 98 Ouled Aissa,DZ-18000 Jijel,Algeria

    1 Introduction

    In the past few decades,much attention has been paid to understanding and realization of one-dimensional quantum systems.The tremendous progress in nanotechnology has made it possible to obtain realizations of isolated onedimensional systems such as quantum wires,[1]Josephson junction arrays,[2]edge states in quantum Hall systems,[3]and nanotubes[4]see also the book.[5]From a theoretical point of view,the one-dimensional character makes the problem simple enough so that some complete solutions of particular quantum mechanical models could be obtained using specific methods.In addition,one of the important motivating factors for the study of these simple models was the extraction of physical insight that would be useful for the study of their higher-dimensional counterparts.

    Spectral properties of the Schr?dinger equation for the one-dimensional harmonic oscillator with one Dirac delta function have been studied by several authors.[6?9]This simple model has been used to describe the quark physics at small distances,in particular,the toponium physics.[10]In the present paper,we will consider the bound state energy problem of the one-dimensional harmonic oscillator plus two attractive point interactions of equal strength,by considering both momentum space and position space representations.This model could be regarded as a possible one-dimensional counterpart of the three-dimensional hydrogen molecule ion subjected to a static magnetic field in which the coulomb interactions are replaced by the corresponding one of simple point interactions.[11?12]The content of this work might be useful since the molecules,even the simplest diatomic molecules and their ionization are much more difficult to treat theoretically.

    As we know,the bound state problem for one dimensional Hamiltonian that involves delta function potentials has an exact implicit solution whenever the eigenvalue problem without the delta function potentials can be solved exactly.In this context,we determine the exact transcendental energy bound state equation for the aforementioned one-dimensional harmonic oscillator perturbed by two attractive Dirac delta potentials,using Green’s function techniques which are widely recognized as a powerful mathematical tools suitable for obtaining solutions of complex interacting systems.[13]

    Recently,the multidimensional quantum harmonic oscillator with point interactions problem has attracted great interest in connection to few body systems,especially in view of recent experiences in the field of ultra-cold atoms.[14?16]In these experiments neutral atoms are first cooled to extremely low temperatures(of the order nano-Kelvin)and then confined in an optical lattice formed by standing wave laser beams.Typically,the lattice sites that confine these atoms can be considered as harmonic oscillator potentials.The physical interaction between two ultra-cold atoms is replaced by a point interaction potentials to avoid the complications of a realistic atom-atom interaction.However,if we try to solve the problem of quantum harmonic oscillator with point interactions for more than one dimension,divergent sums appear and one needs a regularization scheme to extract a meaningful result for the energy bound states.[17]In this paper,we will use an exponential regulator to deal with this divergence,the idea of this technique is inspired from that used to remove divergence appeared when considering the Casimir effect.[18?19]The result obtained here is consistent with

    The further content of this paper will be as follows.In Sec.2,We present a new momentum space approach to the one-dimensional harmonic oscillator perturbed by a single point interaction by transforming the problem to an inhomogeneous differential equation.In Sec.3,we determine explicitly the exact transcendental equation for the energy of the one-dimensional harmonic oscillator plus two attractive delta functions in momentum space by considering both even and odd states solutions.Then,we deduce the corresponding limiting cases.In Sec.4,we enrich our study by considering the system treated in Sec.3 in position space using some properties of the Green’s function.In Sec.5,we consider the Schr?dinger equation for harmonic oscillator plus Dirac delta potential in more than one dimension.We will introduce an exponential regulator to deal with divergent series and then we redefine the strength of the Dirac delta potential to absorb the dependence on the regularization parameter.Some concluding remarks are reported in the last section.

    2 One-Dimensional Harmonic Oscillator Perturbed by a Single Point Interaction

    Let us consider a particle of a massmsubjected to a harmonic oscillator potential of frequencyωand perturbed by a single point interaction represented by delta function potential.The system is described by the following Schr?dinger equation

    for the bound stateα>0.In the momentum representation this equation takes the form

    To transform Eq.(2)to inhomogeneous differential equation,let us define the numbercas

    thus,Eq.(2)reads

    with the abbreviations

    Let us recall that the eigenstatesφn(p)corresponding toα=0,(i.e.,γ=0),form a complete set of states for the simple harmonic oscillator.

    We consider now the Fourier transform between the positio

    First,it is well known that the eigenstates of a nondegenerate even operator have definite parity;they are either even or odd.Then,since the Fourier transform preserves the parity of the wave function,ψ(p)should have a definite parity.[20]In addition,the delta function has no effect on odd states because in this casec=0.Hence the solution to the previous equation can be found by expandingψ(p)as

    whereφ2n(p)are given in terms of Hermite polynomials by[21]

    in whichλ=1/?mωand its corresponding eigenvalues

    As the second member of the inhomogeneous equation(4)is a constant,therefore,the wave functionψ(p)is given by

    whereG(p,p′)is the Green’s function for the homogeneous part of Eq.(4).In the present case,it reads as

    Inserting Eq.(9)in Eq.(3),the bound state energy is given simply by the condition

    The Green’s function(10)can be written explicitly as

    whereσ=1/2?E/?ω.Therefore,Eq.(11)reads

    Then,by using the following formula[22]

    thus,Eq.(13)becomes

    Noting that

    and using the doubling formula[22]

    Equation(15)can be written as

    Then,with the help of the binomial formula

    and performing the integral,we get the transcendental equation

    we obtain therefore the same result as that found in position space.[6]

    To end this section,let us recall some special cases.First,forα=0,the right hand side of Eq.(19)diverges.This divergence is matched by poles of the gamma function in the numerator

    and consequently we recover the energy spectrum for even eigenstates

    Forω=0,one can use the asymptotic behavior of the gamma function described by the famous Stirling formula[22]

    to obtain the well known single energy bound state for the Delta potential well as

    3 One-Dimensional Harmonic Oscillator Perturbed by a Double Point Interactions

    Let us now consider a system described by two attractive delta functions of strength?α<0,separated by a distance 2aand subjected to a harmonic oscillator potential.The Hamiltonian is then expressed as

    In the momentum representation,the Schr?dinger equation corresponding to the Hamiltonian(24)takes the form

    where

    Thus Eq.(25)can be rearranged as

    with?=E/m2ω2and ? =1/m2ω.

    3.1 Even State Solution

    Ifψ(p)is an even function,therefore,it can be written only in terms of even eigenstates

    in this case we haveA+=A?.Therefore,the wave functionψ(+)(p)is given by

    in which the Green’s function for even eigenstates,G+(p,p′),has the same expression as described in the previous section.

    To obtain the energy eigenvalues,we insert Eq.(29)in Eq.(26)we get

    by using Eq.(12),the last expression is explicitly written as

    in whichλ=1/?mω.To perform these integrals,we use the formula[22]

    we obtain

    whereσ=1/2?E/?ω.Noting that

    thus,Eq.(33)can be written as

    now,we use the formula[23]

    we get

    the integral on the right hand side of Eq.(35)can be evaluated in closed form in terms of parabolic cylinder functions(see Appendix),we obtain

    Equation(36)represents the transcendental equation of the energy eigenvalues for even state solution.

    3.2 Odd State Solution

    Ifψ(p)is an odd function,then it can be expressed in terms of odd eigenstates

    in this case we haveA+=?A?.Then,the wave functionψ(?)(p)is given by

    whereG?(p,p′)is given in terms of odd eigenstates as

    which can be written explicitly

    whereκ=3/2?E/?ω.

    Now,inserting Eq.(38)in Eq.(26)and using the Green’s function(40)we obtain the following expression

    then,we apply the formula[22]

    we obtain

    noting that

    thus,Eq.(43)can be written as

    and with the help of the formula[23]

    Equation(45)is then written as

    the integral on the right hand side of Eq.(47)can be evaluated in closed form(see Appendix)and we obtain

    Equation(48)represents the transcendental equation of the energy eigenvalues for odd state solution.This equation is valid only fora/=0 since fora=0 the delta potential has no effect on odd state.

    3.3 Special Cases

    As a check of the above results,let us consider some special cases.

    First,we consider thea→0 limit,in this case the parabolic cylinder function is reduced to[22]

    Thus,Eq.(36)is simplified to

    then,the doubling formula given by Eq.(16)simplifies the last expression to

    which is the same result as the previous section by replacingα→α/2.

    Now we consider theω→0 limit. In this case,σ=1/2?E/?ωbecomes very large.The parabolic cylinder function for large order behaves as[24]

    therefore,the transcendental equation for even states(36)reduces to where we have again used the doubling formula given by Eq.(16).Then,with the help of the Stirling formula Eq.(22),the last equation is simply written,forω→0,as

    in which we have setk2=?2mE/?2.Equation(52)represents the bound states condition for the double deltafunction potential well for even state.[25?26]

    In addition,theω→0 limit of the transcendental equation(48)for odd state can be obtained by similar steps as

    thus,one recovers the bound state condition for the double delta potential well for odd state.

    4 Position Space Treatment

    To enrich further the content of the current study,we consider in this section the system described by the Hamiltonian(24)in the position space.For this goal,we begin by writing the corresponding inhomogeneous Schr?dinger equation as

    The Green’s function reads

    where the eigenstatesφn(x),corresponding toα=0,are given as[27]

    withμ=mω/?,and the discrete eigenvaluesEn=?ω(n+1/2).

    We can write the solutionψ(x)in terms ofG(x,x′)as

    and hence we obtain

    First,it is straightforward to see that the Green’s function satisfies the following two properties

    i)Sinceφn(x)is real thenG(x,x′)is symmetric

    ii)The Green functionG(x,x′)is an even function sinceφn(x)have a definite parity

    4.1 Even State Solution

    As mentioned above,the even solution is written as∑

    the corresponding Green’s function,G+(x,x′),satisfies,in addition to properties(59)and(60),the relation

    Therefore,for even solution,Eq.(58)is reduced to

    Now,taking the limitx=a,the energy eigenvalues are determined from the following equation

    where the Green’s functionG+(a,a)is expressed as

    which can be written by means of the expression(56)as

    withσ=1/2?E/?ω.From Eq.(66)and Eq.(64)we obtain

    As one can see,the last expression is the same as Eq.(33)and we will eventually arrive at the same transcendental equation(36).

    4.2 Odd State Solution

    The odd solution reads

    In addition to properties(59)and(60),the correspondingG?(x,x′)satisfies

    From Eq.(58),the odd solution can be written in terms of the Green’s function as

    taking the limitx→a,the eigenvalues are determined from

    where the Green’s functionG?(a,a)is

    which can be written explicitly

    whereκ=3/2?E/?ω.

    Again,the expression(74)is the same as Eq.(43)and we will of course arrive at the same transcendental equation(48).

    To end this section,let us mention that a solution to the transcendental equations(36)and(48)can be given graphically for specific values of the parameters.

    5 Multidimensional Case

    As discussed in the introduction,a system formed by two confined ultra-cold atoms of massμin interaction is described by the following Hamiltonian

    wherer1andr2are the position vectors of the two atoms.This Hamiltonian can be separated into a center of mass part and a relative part via the transformation

    and its corresponding canonical momentumpandP,we thus obtain

    where

    in whichM=2μandm=μ/2.

    As the solution of the center of mass part is well known,we will focus our attention on the relative part which represents a harmonic oscillator perturbed by a point interaction.The Schr?dinger equation corresponds to the Hamiltonian(79)can be written as

    Following similar steps as the previous section,one arrives to the following condition for the bound states energies

    where the Green’s functionG(0,0)reads

    with the eigenstatesφn,?,m(r)for theD-dimensional isotropic harmonic oscillator given explicitly by[28]

    in whichλ=mω/?,α?(α?+1)=?(?+D?2),Lνnthe associated Laguerre polynomials and Λm?(?)are the hyperspherical harmonics.The corresponding eigenvalues

    It is easy to note that only the s-waves(i.e.,?=0)contribute to Eq.(81).Using the formula[22]

    the relation(81)reads whereσ=D/2?E/?ω.As one can see,the series on the right-hand side of the last expression diverges forD≥2 since it behaves like a Riemann series for large values ofn:

    To remove this pathology,we need a regularization scheme.To this aim,we will introduce an exponential regulator where the general idea of this technique is inspired from that used for dealing with divergences appeared when considering the Casimir effect.[18?19]Thus,we rewrite the expression(86)as

    whereεis considered as a small dimensionless parameter.Therefore,the resulting series can be expressed in terms of the hypergeometric function,namely

    Eq.(88)becomes

    First,we note that forD=1 andε→0,we obtain the result(19)of the Sec.2.In addition,the series diverges forD≥4 and converges forD<4.

    First,we consider the caseD=3.One can use the following relation[22]to leading order inε

    we obtain

    in this case,the expression(89)reads

    As the energy is a physical observable it should be independent of the extra parameterε.The dependence on this parameter can be absorbed in a redefinition of the parameters of the theory

    The constantαRis defined as a finite quantity.Therefore,Eq.(92)reads in whichσ=3/2?E/?ω.

    The expression(94)represents the transcendental equation for the energies bound states related to the problem(80)for the relative part with normalized strengthαR.This result is similar to that found by Bush[17]where the Dirac delta potential,for the same problem has been replaced by a regularized form,namely

    For the caseD=2,the expression(89)reads

    with Sinceεis a small parameter,we can use the following approximation formula[24]

    whereγis the Euler constant andψis the digamma function,we obtain

    in whichβ= ?2/m.In order to make the theory finite we introduce the renormalized coupling constant

    we therefore obtain the transcendental equation with normalized strengthαras

    Finally,let us mention that whenω→0,i.e.,σ?,we obtain from the transcendental equation(94)the binding energy,forD=3,as

    where we have used the Stirling formula(22).

    ForD=2,we use the fact thatψ(z)~ln(z)forz?.Thus,we obtain from(97)the following expression for the energy bound state

    in which we have used the notationε=(ω/ω0)ˉεfor convenience,andˉεis a small dimensionless parameter.

    Equations(100)and(101)represent the bound states energies for a nonrelativistic particle subjected to 3D and 2D Dirac delta potential respectively.The results are in agreement with Refs.[29–31].

    6 Conclusion

    In summary,we have used the momentum space representation to derive an exact transcendental bound state energy equation for one-dimensional harmonic oscillator perturbed by a single and double attractive delta functions via Green’s function techniques.We have considered the even and odd solutions of the system and their corresponding limiting cases.We have also considered the problem in the position space and we have shown that we obtain the same transcendental equations as expected.

    For a system described by a harmonic oscillator plus delta function potential in two or more dimensions,divergent series appear.We have introduced an exponential regulator to deal with this divergence and we have succeeded to give the transcendental equation for the energies bound states for the problem.The result of this paper essentially agrees with Ref.[17]forD=3 in which the authors have replaced the Dirac delta potential by a regularized form.

    In closing let us also mention that the problem of the two-and three-dimensional harmonic oscillator potential plusδ-function systems is considered in[34]by incorporating a different renormalization scheme and the self-adjoint extension method.

    Appendix

    (A)The integral corresponding to the even solution

    can be simplified as

    where

    To perform the integralI1,we use the changet2=1?u,we obtain

    then,we use the integral formula for the product of two parabolic cylinder functions[32]

    thus

    To perform the integralI2,we use the changes=t/(1?t),the integralI2is transformed into

    then,we use the formula[33]

    therefore,we obtain

    Substituting Eqs.(106)and(109)into(103),we get

    (B)The integral corresponding to the odd solution

    this integral can be simplified to

    where

    Obviously,these are the same integrals as above just one replacesσ→κ?1.Thus,we obtain

    [1]A.Yacoby,H.L.Stormer,N.S.Wingreen,et al.,Phys.Rev.Lett.77(1996)4612.

    [2]A.van Oudenaarden and J.E.Mooij,Phys.Rev.Lett.76(1996)4947.

    [3]W.Kang,H.L.Stormer,L.N.Pfeiffer,K.W.Baldwin,and K.W.West,Nature(London)403(2000)59.

    [4]P.L.McEuen,M.S.Fuhrer,and H.Park,IEEE Trans.Nan-otechnol.1(2002)78.

    [5]T.Giamarchi,Quantum Physics in One Dimension,Oxford University Press,Oxford(2004).

    [6]D.A.Atkinson and H.W.Crater,Am.J.Phys.43(1975)301.

    [7]O.Olendski,J.Phys.Condens.Matter 7(1995)5067.

    [8]S.H.Patil,Eur.J.Phys.27(2006)899.

    [9]J.Viana-Gomes and N.M.R.Peres,Eur.J.Phys.32(2011)1377.

    [10]M.P.Avakian,G.S.Pogosyan,and A.N.Sissakian,Phys.Lett.A 124(1987)233.

    [11]G.V.Dunne and C.S.Gauthier,Phys.Rev.A 69(2004)053409.

    [12]I.R.Lapidus,Am.J.Phys.38(1970)905;I.R.Lapidus,Am.J.Phys.50(1982)453.

    [13]E.N.Economou,Green’s Functions in Quantum Physics,Springer-Verlag,Berlin(1979).

    [14]C.C.Tannoudji,Rev.Mod.Phys.70(1998)707.

    [15]A.Aspect,E.Arimondo,R.Kaiser,N.Vansteenkiste,and C.C.Tannoudji,Phys.Rev.Lett.61(1988)826.

    [16]T.St?ferle,H.Moritz,K.Günter,M.K?hl,and T.Esslinger,Phys.Rev.Lett.96(2006)030401.

    [17]T.Bush,B.G.Englert,K.RzaSewski,and M.Wilkens,Found.Phys.28(1998)549.

    [18]J.R.Ruggiero,A.H.Zimerman,and A.Villani.Rev.Bras.Fis.7(1977)663.

    [19]K.A.Milton,The Casimir Effect:Physical Manifestations of Zero-Point Energy,World Scientific,Singapore(2001).

    [20]N.Zettili,Quantum Mechanics:Concepts and Applications,2nd ed.,John Wiley and Sons(2009)p.129.

    [21]M.Chester,Primer of Quantum Mechanics,Krieger,Malabar,FL(1992).

    [22]I.S.Gradshteyn and I.M.Ryzhik,Table of Integrals,Series,and Products,Elsevier,Amsterdam(2007)pp.896,895,1031,1009,1028.

    [23]Y.A.Brychkov,Handbook of Special Functions:Derivatives,Integrals,Series and Other Formulas,CRC Press,New York,NY,USA(2008)p.493.

    [24]M.Abramowitz and I.A.Stegun,Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables,10 printing,U.S.Government Printing Office,Washington,D.C.(1972)pp.687–689,559.

    [25]S.Gasiorowicz,Quantum Physics,3nd ed.,John Wiley&Sons,New York(2003).

    [26]M.Belloni and R.W.Robinett,Phys.Rep.540(2014)25.[27]S.Flügge,Practical Quantum Mechanics,2nded.,Springer,Berlin(1994)p.107.

    [28]K.J.Oyewumi and E.A.Bangudu,Arab.J.Sci.Eng.28(2A)(2003)173.

    [29]R.M.Cavalcanti,Rev.Bras.Ens.Fis.21(1999)336.

    [30]N.Ferkous,Phys.Rev.A 88(2013)064101.

    [31]B.R.Holstein,Am.J.Phys.82(2014)591.

    [32]C.A.Malyshev,Integr.Transf.Spec.F 14(2003)139;D.Veestraeten,Some Integral Representations and Limits for(Products of)the Parabolic Cylinder Function,E-print arXiv:1505.01948v2.

    [33]A.P.Prudnikov,Yu.A.Brychkov,and O.I.Marichev,Integrals and Series,Vol.1,Translated from the Russian by N.M.Gueen,Gordon and Breach Science Publishers,New York(1998)p.328.

    [34]D.K.Park and S.K.Yoo,Preprint arXiv:hep-th/9712134.

    国产成人aa在线观看| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 大香蕉97超碰在线| 麻豆乱淫一区二区| 美女中出高潮动态图| 涩涩av久久男人的天堂| 久久久欧美国产精品| 精品酒店卫生间| 国产成人精品无人区| freevideosex欧美| 日韩精品有码人妻一区| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩综合在线一区二区 | 另类亚洲欧美激情| 夜夜爽夜夜爽视频| 十八禁高潮呻吟视频 | 天天操日日干夜夜撸| 国产精品人妻久久久久久| 又黄又爽又刺激的免费视频.| 欧美丝袜亚洲另类| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 成人亚洲精品一区在线观看| 亚洲欧美精品专区久久| 国产亚洲最大av| 一本大道久久a久久精品| 国产无遮挡羞羞视频在线观看| av在线app专区| 亚洲精华国产精华液的使用体验| 男女啪啪激烈高潮av片| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 在线观看www视频免费| 久久国产精品男人的天堂亚洲 | 国产中年淑女户外野战色| 十八禁高潮呻吟视频 | 美女福利国产在线| 嘟嘟电影网在线观看| 久久这里有精品视频免费| 亚洲成人av在线免费| 一区二区三区精品91| xxx大片免费视频| 青春草亚洲视频在线观看| 亚洲欧美中文字幕日韩二区| 久久这里有精品视频免费| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 老司机影院成人| 亚洲不卡免费看| 午夜福利,免费看| av网站免费在线观看视频| 深夜a级毛片| 国产成人91sexporn| 欧美精品国产亚洲| 日韩av免费高清视频| 各种免费的搞黄视频| av免费在线看不卡| 精品午夜福利在线看| 人人妻人人添人人爽欧美一区卜| 久久精品夜色国产| 欧美老熟妇乱子伦牲交| 欧美精品一区二区大全| 国产精品免费大片| 我要看黄色一级片免费的| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久久久久婷婷小说| 亚洲精品亚洲一区二区| 亚洲欧美一区二区三区黑人 | 肉色欧美久久久久久久蜜桃| 亚洲第一区二区三区不卡| 汤姆久久久久久久影院中文字幕| 免费大片18禁| 51国产日韩欧美| 十八禁高潮呻吟视频 | kizo精华| 五月天丁香电影| 如何舔出高潮| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 日日啪夜夜爽| 又大又黄又爽视频免费| 国产成人精品婷婷| 久久午夜综合久久蜜桃| 99久久综合免费| 高清不卡的av网站| 亚洲国产精品一区三区| 成人影院久久| 国产黄片视频在线免费观看| 曰老女人黄片| 亚洲国产欧美日韩在线播放 | 久久久久国产精品人妻一区二区| 亚洲国产精品一区三区| 黑人猛操日本美女一级片| 国产视频首页在线观看| 欧美性感艳星| 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 全区人妻精品视频| 黑人猛操日本美女一级片| 亚洲精品第二区| 另类亚洲欧美激情| 一区在线观看完整版| 狂野欧美激情性xxxx在线观看| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 日韩欧美 国产精品| 在线观看三级黄色| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 22中文网久久字幕| 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 精品人妻熟女毛片av久久网站| 看非洲黑人一级黄片| 91久久精品国产一区二区成人| 亚洲精品国产av蜜桃| 色网站视频免费| 中国三级夫妇交换| 免费观看的影片在线观看| 免费黄频网站在线观看国产| 99视频精品全部免费 在线| 日韩人妻高清精品专区| 伦理电影免费视频| 天堂中文最新版在线下载| 国产一区二区在线观看日韩| 国产男女内射视频| 在线 av 中文字幕| 国产伦在线观看视频一区| 亚洲欧美精品专区久久| 啦啦啦视频在线资源免费观看| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 国产精品免费大片| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边摸边吃奶| 久久久国产一区二区| 国产精品久久久久久精品电影小说| 久久国产精品男人的天堂亚洲 | 波野结衣二区三区在线| 有码 亚洲区| 一级黄片播放器| 在线精品无人区一区二区三| 九九久久精品国产亚洲av麻豆| 国产免费视频播放在线视频| 久久久久久久亚洲中文字幕| 国产精品偷伦视频观看了| 亚洲色图综合在线观看| 老女人水多毛片| 亚洲欧美精品自产自拍| 丰满迷人的少妇在线观看| 国产精品一二三区在线看| 内射极品少妇av片p| 26uuu在线亚洲综合色| 丰满少妇做爰视频| 男人狂女人下面高潮的视频| 国产69精品久久久久777片| 国产精品一区二区在线不卡| 中文字幕精品免费在线观看视频 | 久久99蜜桃精品久久| 久久人人爽人人爽人人片va| av国产久精品久网站免费入址| 久久人人爽人人片av| 日韩视频在线欧美| 国产男女超爽视频在线观看| 只有这里有精品99| 欧美精品国产亚洲| 91精品国产国语对白视频| 大香蕉97超碰在线| 亚洲欧美日韩另类电影网站| 精品人妻一区二区三区麻豆| 97超碰精品成人国产| 国产精品久久久久久久电影| 亚洲av成人精品一二三区| 在线观看国产h片| 亚洲精品第二区| 一个人看视频在线观看www免费| 亚洲怡红院男人天堂| 六月丁香七月| 国产成人aa在线观看| 国产一级毛片在线| 久久 成人 亚洲| 色视频www国产| 国产精品国产av在线观看| 三级国产精品欧美在线观看| 久久精品久久久久久噜噜老黄| 精品久久国产蜜桃| 一本大道久久a久久精品| 美女视频免费永久观看网站| 国产毛片在线视频| 午夜av观看不卡| 久久97久久精品| 内地一区二区视频在线| 久久久久国产网址| 观看av在线不卡| 国产高清有码在线观看视频| 一级av片app| 国产精品不卡视频一区二区| 高清午夜精品一区二区三区| 免费人妻精品一区二区三区视频| 国产伦精品一区二区三区视频9| 国产男女内射视频| 午夜福利视频精品| 国产无遮挡羞羞视频在线观看| 精品视频人人做人人爽| 寂寞人妻少妇视频99o| 最新中文字幕久久久久| 日韩一本色道免费dvd| 熟女av电影| 免费大片黄手机在线观看| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www | 五月天丁香电影| 欧美成人精品欧美一级黄| 亚洲成色77777| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 久久免费观看电影| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区| 亚洲美女视频黄频| 久久99热6这里只有精品| 老司机影院毛片| 黑人猛操日本美女一级片| 自线自在国产av| 在线观看av片永久免费下载| 热re99久久国产66热| 男人添女人高潮全过程视频| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 久热久热在线精品观看| 我的老师免费观看完整版| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 久久午夜福利片| 成人午夜精彩视频在线观看| 日本wwww免费看| 少妇 在线观看| 女性生殖器流出的白浆| 97在线视频观看| 国产爽快片一区二区三区| 亚洲精品aⅴ在线观看| 最新的欧美精品一区二区| 久久青草综合色| videos熟女内射| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 内射极品少妇av片p| 国产亚洲91精品色在线| 三上悠亚av全集在线观看 | 秋霞在线观看毛片| 一级毛片黄色毛片免费观看视频| 黄色怎么调成土黄色| 亚洲第一av免费看| 国产成人91sexporn| 一级黄片播放器| 久久久国产精品麻豆| 黑人猛操日本美女一级片| 国产无遮挡羞羞视频在线观看| 五月开心婷婷网| 2018国产大陆天天弄谢| 高清在线视频一区二区三区| 日韩中字成人| 色视频www国产| 久久99一区二区三区| 精品少妇久久久久久888优播| 亚洲国产精品国产精品| 日韩中字成人| 国产中年淑女户外野战色| 亚洲成人av在线免费| 日本av手机在线免费观看| 99久久精品一区二区三区| 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 男女免费视频国产| 国产在视频线精品| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 久热这里只有精品99| 极品人妻少妇av视频| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 蜜桃在线观看..| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 国产在线免费精品| 黄色怎么调成土黄色| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 香蕉精品网在线| 久久久亚洲精品成人影院| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 97在线视频观看| 亚洲av成人精品一区久久| 人人妻人人澡人人看| 三级国产精品片| 国产女主播在线喷水免费视频网站| videossex国产| 99re6热这里在线精品视频| 一级毛片电影观看| 久久国产精品男人的天堂亚洲 | 街头女战士在线观看网站| 久久久久精品性色| 永久网站在线| 99九九在线精品视频 | 久久国内精品自在自线图片| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 人人妻人人爽人人添夜夜欢视频 | 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 如何舔出高潮| 午夜av观看不卡| 免费在线观看成人毛片| 这个男人来自地球电影免费观看 | 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 香蕉精品网在线| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 啦啦啦视频在线资源免费观看| 麻豆成人av视频| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 男女国产视频网站| 18+在线观看网站| 日韩av免费高清视频| 欧美精品高潮呻吟av久久| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 成人黄色视频免费在线看| 色视频www国产| 婷婷色麻豆天堂久久| 亚洲精品日本国产第一区| 插逼视频在线观看| 能在线免费看毛片的网站| 三级经典国产精品| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 国产精品.久久久| av在线播放精品| 亚洲,欧美,日韩| 久久ye,这里只有精品| a级一级毛片免费在线观看| 国产国拍精品亚洲av在线观看| 老女人水多毛片| 日本vs欧美在线观看视频 | 高清av免费在线| 精品久久久噜噜| 成人国产av品久久久| 国产精品三级大全| 狂野欧美白嫩少妇大欣赏| 国产在线视频一区二区| 黄色怎么调成土黄色| 日日摸夜夜添夜夜添av毛片| 国产亚洲最大av| 午夜视频国产福利| 亚洲精品国产成人久久av| 人妻 亚洲 视频| √禁漫天堂资源中文www| 久久国产精品男人的天堂亚洲 | 如日韩欧美国产精品一区二区三区 | 久久久久久久国产电影| 搡女人真爽免费视频火全软件| 中文字幕免费在线视频6| 哪个播放器可以免费观看大片| 国产视频内射| 国产 一区精品| 色视频www国产| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 男人舔奶头视频| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 国产伦精品一区二区三区四那| 午夜久久久在线观看| h视频一区二区三区| 国产亚洲午夜精品一区二区久久| 午夜视频国产福利| 青春草亚洲视频在线观看| 日韩成人伦理影院| 久久久久久久精品精品| 国产在线免费精品| 亚洲国产最新在线播放| 欧美日韩一区二区视频在线观看视频在线| 老司机亚洲免费影院| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 日韩av不卡免费在线播放| 亚洲精品第二区| 日本与韩国留学比较| 男人狂女人下面高潮的视频| av免费观看日本| 中文字幕制服av| av在线观看视频网站免费| 国产乱来视频区| 亚洲真实伦在线观看| 韩国高清视频一区二区三区| av福利片在线| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| av在线老鸭窝| 国产精品免费大片| 熟女av电影| 久久久久久久精品精品| 黄色日韩在线| av不卡在线播放| 国产成人精品久久久久久| 久久久久精品性色| 一区二区三区精品91| 国产精品久久久久久精品古装| 日本色播在线视频| 亚洲精品乱码久久久v下载方式| 色婷婷av一区二区三区视频| 夜夜爽夜夜爽视频| 亚洲欧洲精品一区二区精品久久久 | 中国国产av一级| 亚洲国产精品国产精品| 日产精品乱码卡一卡2卡三| 婷婷色综合www| 内射极品少妇av片p| 有码 亚洲区| av线在线观看网站| 中文欧美无线码| 国产片特级美女逼逼视频| 黄色日韩在线| 观看美女的网站| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 精品国产国语对白av| 国产在线视频一区二区| 丰满乱子伦码专区| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 国产无遮挡羞羞视频在线观看| 最近中文字幕2019免费版| 国产日韩一区二区三区精品不卡 | 国产亚洲午夜精品一区二区久久| 一个人免费看片子| 男女边吃奶边做爰视频| 高清视频免费观看一区二区| 久久 成人 亚洲| 美女脱内裤让男人舔精品视频| 日韩亚洲欧美综合| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美日韩在线播放 | 欧美一级a爱片免费观看看| 国国产精品蜜臀av免费| 国产成人一区二区在线| 亚洲成人手机| 天天操日日干夜夜撸| a级毛色黄片| 国产欧美日韩综合在线一区二区 | 国产一区二区在线观看日韩| 十八禁高潮呻吟视频 | 欧美人与善性xxx| 久久 成人 亚洲| 你懂的网址亚洲精品在线观看| 精品一区二区三区视频在线| 国产亚洲5aaaaa淫片| 三上悠亚av全集在线观看 | 97超碰精品成人国产| 丰满迷人的少妇在线观看| 女人久久www免费人成看片| 一本大道久久a久久精品| 男女啪啪激烈高潮av片| 久久久久久久大尺度免费视频| 日韩制服骚丝袜av| 日韩精品免费视频一区二区三区 | 国产亚洲5aaaaa淫片| 久久久久久久国产电影| 国产男人的电影天堂91| 亚洲精品一二三| 国产免费视频播放在线视频| 免费观看在线日韩| 97精品久久久久久久久久精品| 观看av在线不卡| 免费黄频网站在线观看国产| 久久久精品94久久精品| www.av在线官网国产| 国产精品久久久久成人av| 2022亚洲国产成人精品| 老熟女久久久| √禁漫天堂资源中文www| 免费看光身美女| 美女cb高潮喷水在线观看| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| xxx大片免费视频| 中国美白少妇内射xxxbb| 91久久精品国产一区二区成人| 制服丝袜香蕉在线| 啦啦啦啦在线视频资源| av免费在线看不卡| 国产精品不卡视频一区二区| 精品少妇内射三级| 精品人妻偷拍中文字幕| 亚洲人成网站在线播| 大片电影免费在线观看免费| 在线精品无人区一区二区三| 国产在视频线精品| 国产亚洲5aaaaa淫片| 亚洲精品一区蜜桃| 亚洲精品国产成人久久av| 国产白丝娇喘喷水9色精品| 五月天丁香电影| 国产精品无大码| 高清毛片免费看| 国产亚洲午夜精品一区二区久久| 黄色配什么色好看| av女优亚洲男人天堂| 日本色播在线视频| 欧美一级a爱片免费观看看| 青青草视频在线视频观看| 大香蕉久久网| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 看免费成人av毛片| av在线播放精品| 人妻制服诱惑在线中文字幕| 天堂8中文在线网| 麻豆成人av视频| 国产精品女同一区二区软件| 午夜福利,免费看| 午夜免费鲁丝| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 日本黄色日本黄色录像| 久久青草综合色| 日韩熟女老妇一区二区性免费视频| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 午夜免费鲁丝| 欧美激情极品国产一区二区三区 | 国产伦精品一区二区三区视频9| 80岁老熟妇乱子伦牲交| 亚洲婷婷狠狠爱综合网| 亚洲精品乱久久久久久| 青春草亚洲视频在线观看| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 尾随美女入室| 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 久久久久人妻精品一区果冻| 久久久久久久久久成人| 在线观看免费高清a一片| 精品国产露脸久久av麻豆| 简卡轻食公司| 黄片无遮挡物在线观看| 亚洲国产欧美日韩在线播放 | 人妻系列 视频| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 欧美性感艳星| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 熟女电影av网| 少妇 在线观看| 久久99一区二区三区| 日本与韩国留学比较| 一级黄片播放器| 91aial.com中文字幕在线观看| 热re99久久精品国产66热6| 国产永久视频网站| 国产精品久久久久久精品电影小说| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 中文欧美无线码| 纯流量卡能插随身wifi吗| 草草在线视频免费看| av在线app专区| 国产男女内射视频| 久久av网站| 久久韩国三级中文字幕| 大陆偷拍与自拍| 国产精品嫩草影院av在线观看| 日韩一本色道免费dvd| 亚洲国产欧美日韩在线播放 | 极品教师在线视频| 亚洲伊人久久精品综合| 国产淫语在线视频| 亚洲欧洲日产国产| 尾随美女入室| 国产av国产精品国产| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| 日韩人妻高清精品专区| 国产日韩欧美视频二区| 五月伊人婷婷丁香|