• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-similar Solution of a Cylindrical Shock Wave under the Action of Monochromatic Radiation in a Rotational Axisymmetric Dusty Gas

    2018-01-22 09:13:13NathandSahu
    Communications in Theoretical Physics 2017年3期

    G.Nath and P.K.Sahu

    Department of Mathematics,Motilal Nehru National Institute of Technology Allahabad,Allahabad–211004,

    Uttar Pradesh,India

    1 Introduction

    The study of shock waves in the mixture of a gas and small solid particles is of great importance due to its applications to nozzle flows,lunar ash flows,bomb blasts,coal-mine blasts,underground,volcanic and cosmic explosions,metallized propellant rockets,supersonic flight in polluted air,collision of coma with a planet,description of star formation,particle acceleration in shocks,shocks in supernova explosions,the formation of dusty crystals and many other engineering problems(see Refs.[1]–[12]).An analytical solution of a planar dusty gas flow with constant velocities of the shock and the piston moving behind it was obtained by Miura and Glass.[9]Since the volume occupied by the solid particles mixed into the perfect gas is neglected by them,the dust virtually has a mass fraction but no volume fraction.Their results reflect the influence of the additional inertia of the dust upon the shock propagation.Paiet al.[1]generalized the well known solution of a strong explosion because of an instantaneous release of energy in gas(Sedov,[13]Korobeinikov[14])to the case of two-phase flow of a mixture of small solid particles and perfect gas,and brought out the key effects due to presence of dusty particles on such a strong shock wave.Paiet al.[1]have taken non-zero volume fraction of solid particles in the mixture,their results reflect the influence of both the decrease of mixture compressibility and the increase of mixture’s inertia on the shock propagation(see,Pai,[15]Steiner and Hirschler,[16]Vishwakarma and Nath[17]).

    In recent years considerable attention has been given to study the interaction between gas dynamics and radiation.When the effects of radiation are taken under consideration in gas dynamics the fundamental non-linear equations are very complicated type and thus it is essential to determine approximations which are physically accurate and afford considerable simplifications.The problems of the interaction of radiation with gas dynamics have been studied by many authors by using the self-similar method developed by Sedov,[13](see Marshak,[18]Elliott,[19]Wang,[20]Helliwell,[21]Nicastro,[22]Ray and Bhowmick[23]and many others). Many researchers have investigated the motion of a gas under the action of monochromatic radiation(see,Khudyakov,[24]Zheltukhin,[25]Nath and Takhar,[26]Nath,[27]Vishwakarma and Pandey,[28]Nath and Sahu[29]).

    The experimental studies and astrophysical observations show that the outer atmosphere of the planets rotates due to rotation of the planets.Macroscopic motion with supersonic speed occurs in an interplanetary atmosphere and shock waves are generated.Thus the rotation of planets or stars significantly affects the process taking place in their outer layers,therefore question connected with the explosions in rotating gas atmospheres are of definite astrophysical interest.In all of the works,mentioned above,the gas is either perfect or non-ideal under the action of monochromatic radiation.The effects of the presence of small solid particles in rotating medium are not taken into consideration by any of the authors under theaction of monochromatic radiation.In the present work,we generalize the solution of Nath[27]in perfect gas to the case of dusty gas(a mixture of perfect gas and small solid particles)by taking into account the axial component of fluid velocity and the component of the vorticity vector.Singh[30]has considered same problem with the assumption that medium to be non-rotating,whereas we have considered the medium to be rotating.

    The purpose of this study is to obtain similarity solutions for the cylindrical shock wave propagating in rotational axisymmetric dusty gas with monochromatic radiation(Nath,[31?33]Levin and Skopina[34]).The components of fluid velocity in the ambient medium are assumed to vary and obey the power laws.Also,the angular velocity of rotation of the ambient medium is assumed to be obeying a power law and to be decreasing as the distance from the axis increases.It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars.In order to get some essential features of the shock propagation,small solid particles are considered as a pseudo- fluid and the mixture at a velocity and temperature equilibrium with a constant ratio of specific heats(Pai[15]).Also,the heat conduction and viscous stress of the mixture are assumed to be negligible(Refs.[1–2,16–17]).

    Effects of change in the index for the time dependent energy law,the ratio of the density of solid particles to the initial density of the gas,the mass concentration of solid particles in the mixture and the radiation parameter are worked out in detail.It is observed that shock strength decreases in rotating medium.

    2 Equations of Motion and Boundary Conditions

    In Eulerian coordinates,the system of equations of gas dynamics describing the unsteady,adiabatic and cylindrically symmetric one-dimensional rotational axisymmetric flow of mixture of a perfect gas and small solid particles under the action of monochromatic radiation,may be expressed in the form(c.f.Paiet al.,[1]Vishwakarma and Nath,[17]Khudyakov,[24]Nath,[27]Nath,[31?33]Levin and Skopina,[34]Zedan[35])whererandtare independent space and time coordinates;u,v,andware the radial,azimuthal and axial components of the fluid velocity→qin the cylindrical coordinates(r,θ,z);p,emandρare the pressure,the internal energy per unit mass,and the density of the mixture respectively;jis the monochromatic radiation at a radial distancerand timet,Kis the absorption coefficient.

    The equation of state of the mixture of a perfect gas and small solid particles can be written as(Vishwakarma and Nath,[17]Nath,[36?37]Pai,[15]Singh[30])

    whereR?is the gas constant;Tis the temperature of the gas(and of the solid particles as the equilibrium flow condition is maintained);Kp=msp/mmixis the mass fraction(concentration)andZ=Vsp/Vmis the volume fraction of the solid particles in the mixture,wheremspandVspare the total mass and the volumetric extension of the solid particles and “Vm” and “mmix” are the total volume and total mass of the mixture.

    The specific volume of solid particles is assumed to remain unchanged by variations in temperature and pressure.Therefore,the equation of state of solid particles in the mixture is,simply,

    whereρspis the species density of the solid particles.

    The internal energy per unit mass of the mixture can be written as(see Nath,[37]Pai,[15]Paiet al.[1])

    where Γ is the ratio of the specific heats of the mixture which is given by(Paiet al.,[1]Pai[15])

    whereγ=cp/cv,δ′=Kp/(1?Kp),β′=Csp/Cv;CpandCvare specific heat of gas at constant pressure and constant volume;Cspis the specific heat of solid particles;CvmandCpmare specific heat of the mixture at constant volume and constant pressure.

    Also,

    where“A”is the angular velocity of the medium at radial distancerfrom the axis of symmetry.In this case the vorticity vector

    has the components

    The absorption coefficientKis considered to vary as(Nath,[27]Nath and Takhar,[26]Khudyakov[24])where the coefficientK0is a dimensional constant and the exponentsα,δ,q,s,lare rational numbers.

    A diverging cylindrical shock wave is supposed to be propagating outwards from the axis of symmetry into the mixture of perfect gas and small solid particles with constant density,which has zero radial velocity,variable azimuthal,and axial velocities.The flow variables immediately ahead of the shock front are

    wherev?,w?,σ,andμare constants,Ris the shock radius,and the subscript“0” refers to the condition immediately ahead of the shock.

    The momentum equation(2)in undisturbed state of mixture of perfect gas and small solid particles,gives

    Ahead of the shock,the components of the vorticity vector,therefore vary as

    The initial angular velocity of the medium at radial distanceRis given by,from Eq.(11),

    From Eqs.(16)and(22),we find that the initial angular velocity vary as

    The expression for the initial volume fraction of the solid particlesZ0is given by whereG0=ρsp/ρgais the ratio of the density of the solid particles to the initial species density of the gasρgain the mixture.

    The Rankine–Hugonite conditions i.e.the jump conditions at the shock wave,which are transparent for the radiation flux,are given by the principle of conservation of mass,momentum and energy across the shock(c.f.Nath,[27]Vishwakarma and Pandey,[28]Nath,[31,33]Zel’dovich and Raizer,[38]Chaturani[39])namely,where the subscript “1” denotes the conditions immediately behind the shock front,U(=dR/dt)denotes the velocity of the shock front.From Eq.(25),the conditions across a shock front becomes

    whereM?=(ρ0U2/γp0)1/2is the shock-Mach number referred to the frozen speed of sound(γp0/ρ0)1/2.The density ratioβ(0<β<1)across the shock front is obtained by the relation

    The total energy“E”of the flow field behind the shock is not constant,but assumed to be time dependent and varying as(Rogers,[41]Director and Dabora[40])

    whereE0andmare constants.Here,attention is confined to positive value ofmonly,that is,to those case in which the total energy increases with time.This increase can be achieved by the pressure exerted on the fluid by the inner expanding surface(a contact surface or a piston).This surface may be,physically,the surface of the stellar corona or the condensed explosives or the diaphragm containing a very high pressure driver gas.

    Following Levin and Skopina[34]and Nath,[31?32]we obtained the jump conditions for the components of vorticity vector across the shock front as

    The dimension of the constant coefficientK0in Eq.(13)isgiven by (Singh,[30]Vishwakarma and Pandey[28])

    For the self-similar solution(Sedov[13])the relation betweenρ0,j0,p0is given as

    Also,for self-similarity the radiation absorption coeffi cientK0must be dependent on the dimensions ofj0,ρ0,which is equivalent tos+l=?1.

    3 Self-Similarity Transformations

    By the dimensional analysis of Sedov,[13]the nondimensional variableηis defined by

    whereλ=(2+m)/5 and the parametervis taken so thatηtakes the value 1 at the shock surface.This discloses thatη=r/R.The position of the inner expanding surface is given byη=ηp(=rp/R).

    From relation(32),it follows that the motion of the shock front is described by the equation

    From relation(33)it can be seen that the valuem=3 corresponds to uniform expansion of a cylindrical shock.Therefore,the solution of physical significance appears to be those for whichmlies in the range 0 to 3.

    To obtain the similarity solutions,the field variables describing the flow pattern can be written in terms of the dimensionless functions ofηsuch that(Nath,[27]Nath and Takhar,[26]Vishwakarma and Pandey,[28]Nath[31])

    whereV,?,W,P,J,andDare functions ofηonly.

    For the existence of similarity solutions“M?” should be constant,therefore

    Using the similarity transformations(34),the system of governing Eqs.(1)–(6)can be transformed and simplified to the following system of ordinary differential equations

    where

    Also,2δ+3q+s+1=0 was necessary to use to obtain the similarity solution.The quantityξis a constant taken as the parameter which characterizes the interaction between the gas and the incident radiation flux(Nath,[27]Nath and Takhar,[26]Khudyakov[24]).

    Solving the above set of differential equations(36)–(41)for dV/dη,dD/dη,dP/dξ,d?/dη,dW/dη,and dJ/dξ,we obtain

    where

    Applying the similarity transformations(34)on Eqs.(12),we obtain the non-dimensional components of the vorticity vectorlr=ζr/(U/R),lθ=ζθ/(U/R),lz=ζz/(U/R)in the flow- filed behind the shock as

    Using the self-similarity transformations(34),the shock conditions(26)are transformed into

    whereσ=μwas necessary to use to obtain similarity solution.

    At the inner boundary surface(piston)of the flow- filed behind the shock,the condition is that the velocity of the surface is equal to the normal velocity of the fluid on the surface.This kinematic condition from Eq.(34)can be written as

    Normalizing the variablesu,v,w,ρ,Z,pandjwith their respective values at the shock,we obtain

    4 Results and Discussion

    The set of ordinary differential equations(43)–(48)have been integrated numerically with the boundary conditions(53)–(54)to obtain the distribution of flow variables between piston(η=ηp)and the shock front(η=1)by using the Runge–Kutta method of fourth order.Parameter of the inert mixture(glass or alumina Al2O3)are within the following range:dust particle size is of the order of 1μm–10μm(Higashino and Suzuki,[2]Fedrov and Kratova,[42]Nath,[12])the mass fraction(concentration)of solid particles in the mixture is varied fromKp=0 toKp=0.3 and the material density of solid particlesρsp=2.5 g/cm3.This case may be realized in an air flow with a suspension of alumina or glass particles.For the purpose of numerical integration,the values of the constant parameters are taken to be(Paiet al.,[1]Steiner and Hirschler,[16]Khudyakov,[24]Nath,[27]Vishwakarma and Pandey,[28]Miura and Glass[43])γ=1.4;β′=1;α=?1/2;q=0;s=1;δ=?1;M?2=25;Kp=0,0.1,0.3;G0=1,10,100;ξ=0.01,0.1,0.5,1;m=1.5,2.0,2.5.The valuesγ=1.4,β′=1 may correspond to the mixture of air and glass particles(Miura and Glass[9]),andKp=0 correspond to the dust free case(the solution obtained by Nath[27]).The valueM?=5 of the shock Mach-number is appropriate,because we have treated the flow of a pseudo- fluid(small solid particles)and a perfect gas at a velocity and temperature equilibrium.Our solution corresponds to the solution given by Nath[27]in dust free case.We have also considered the axial as well as azimuthal components of fluid velocity and components of vorticity vector(see Figs.1(c),1(g),1(h),and 2(c),2(g),2(h)).Also,our work corresponds to the solution given by Singh[30]in non-rotating dust case.Figures 1 and 2 show that the obtained solution is in good agreement with the existing solutions of Nath[27]and Singh.[30]

    Table 1 shows the variation of density ratioβ(=ρ0/ρ1)across the shock front and the position of the inner expanding surfaceηpfor different values ofm,G0andKpwithα=?1/2;q=0;s=1;δ=?1;M?2=25;γ=1.4;β′=1;ξ=0.1 in both the rotating and nonrotating cases.Table 2 shows the variation of density ratioβ(=ρ0/ρ1)across the shock front and the position of the inner expanding surfaceηpfor different values ofξandKpwithγ=1.4;β′=1;α=?1/2;q=0;s=1;δ=?1;M?2=25;m=2.0 in both the rotating and non-rotating cases.Tables 1 and 2 show that the distance of the inner boundary surface from the shock front is less in the case of non-rotating medium in comparison with that in the case of rotating medium.Physically,it means that the gas behind the shock is less compressed in rotating medium i.e.the shock strength is decreased in rotating medium.

    Table 1 The density ratio β across the shock and the position of the inner boundary surface ηpfor different values of Kp,G0and m with α =?1/2;q=0;s=1;δ= ?1;ξ=0.1;M?=5;γ=1.4;β′=1.

    Fig.1 Variation of the reduced flow variables in the region behind the shock front(a)radial component of fluid velocity u/u1,(b)Azimuthal component of fluid velocity v/v1,(c)Axial component of fluid velocity w/w1,(d)Density ρ/ρ1,(e)Pressure p/p1,(f)Radiation flux j/j1,(g)Non-dimensional azimuthal component of vorticity vector lθ,(h)Non-dimensional axial component of vorticity vector lz:1.Kp=0,m=1.5;2.Kp=0,m=2.5;3.Kp=0.3,G0=1,m=1.5 4.Kp=0.3,G0=1,m=2.5;5.Kp=0.3,G0=10,m=1.5;6.Kp=0.3,G0=10,m=2.5.

    Figures 1(a)–1(h)and 2(a)–2(h)show the variation of the reduced radial component of fluid velocityu/u1,the reduced azimuthal component of fluid velocityv/v1,the reduced axial component of fluid velocityw/w1,the reduced densityρ/ρ1,the reduced pressurep/p1,the reduced radiation fluxj/j1,the non-dimensional azimuthal component of vorticity vectorlθand the non-dimensional axial component of vorticity vectorlzagainst the simi-larity variableηfor different values of parametersm,G0,Kp;and with the parametersξ,Kprespectively.These two figures demonstrate that the flow variablesv/v1,ρ/ρ1,andj/j1decrease but the flow variablesw/w1,lz,andlθincrease as we move from the shock front to the inner expanding surface.

    Fig.2 Variation of the reduced flow variables in the region behind the shock front(a)Radial component of fluid velocity u/u1,(b)Azimuthal component of fluid velocity v/v1,(c)Axial component of fluid velocity w/w1,(d)Density ρ/ρ1,(e)pressure p/p1,(f)Radiation flux j/j1,(g)Non-dimensional azimuthal component of vorticity vector lθ,(h)Non-dimensional axial component of vorticity vector lz:1.Kp=0,ξ=0.1;2.Kp=0,ξ=1.0;3.Kp=0.1,G0=10,ξ=0.1;4.Kp=0.1,G0=10,ξ=1.0.

    From Tables 1,2 and Figs.1(a)–1(h),2(a)–2(h)it is found that the effects of an increase in the value of the mass concentration of solid particlesKpin the mixture are as follows:

    (i)To decrease the value ofβi.e.to increase the shock strength;whereas the value ofβincreases i.e.the shock strength decreases forG0=1(see Tables 1,2);

    (ii)To decreaseηpwhenG0=1,i.e.to increase the distance of the inner expanding surface from the shock front.Physically,it means that the gas behind the shock is less compressed,i.e.the shock strength is decreased;whereas reverse behaviour is observed whenG0=10,100;which is same as in(i)above(see Tables 1,2);

    (iii)To increase the flow variableu/u1at any point in the flow- field behind the shock front(see Figs.1(a),2(a));

    (iv) To increase the flow variablesv/v1,ρ/ρ1,andp/p1whenG0=1 but to decrease them in general forG0=10;whereas the reverse behaviour is obtained for flow variablesw/w1,lθ,lzandj/j1in the flow- field behind the shock front(see Figures 1(b)–1(h)and 1(b)–1(h)).

    From Table 1 and Figs.1(a)–1(h)it is shown that the effects of an increase in the ratio of the density of the solid particles to the initial density of the gasG0are as follows:

    (i)To decrease the value ofβi.e.to increase the shock strength(see Table 1);

    (ii)To decrease distance of the inner boundary surface from the shock front,i.e.the flow- field behind the shock becomes denser.This illustrates same result as given in(i)above,i.e.to increase the shock strength(see Table 1);

    (iii)To decrease the flow variablesu/u1,v/v1,p/p1,andρ/ρ1;but to increase the flow variablesw/w1,lθ,lz,andj/j1at any point in the flow- field behind the shock front(see Figs.1(a)–1(h)).

    Table 2 The density ratio β across the shock and the position of the inner boundary surface ηpfor different values of Kpand ξ with α = ?1/2;q=0;s=1;δ= ?1;M?=5;γ =1.4;β′=1,m=2.0.

    The effects of an increase in the value of index for the time dependent energy law parametermare as follows:

    (i) To increaseηp,i.e.distance between the inner boundary surface from and shock front decreases.This means that shock strength increases(see Table 1);

    (ii)To increase the flow variablesp/p1,u/u1,lθ,lzandj/j1;but to decrease the flow variablev/v1,at any point in the flow- field behind the shock front(see Figs.1(a)–2(b),2(e)–2(h));

    (iii) To increase the flow variableρ/ρ1near the shock but to decrease it near the inner boundary surface;whereas reverse behaviour is obtained for the flow variablew/w1in the flow- field behind the shock front(see Figs.1(c)and 1(d)).

    From Table 2 and Figs.2(a)–2(h)it is found that the effects of an increase in the radiation parameterξare as follows:

    (i)To decrease the value ofηpi.e.to decrease shock strength(see Table 2);

    (ii)to decrease the flow variablesu/u1,w/w1,p/p1,j/j1,lθ,lz;but to increase the flow variablesv/v1,ρ/ρ1at any point in the flow- field behind the shock front(see Figs.2(a)–2(h)).

    5 Conclusion

    The present work investigates the self-similar flow behind a cylindrical shock wave propagating in a rotational axisymmetric dusty gas(a mixture of perfect gas and small solid particles)under the action of monochromatic radiation.On the basis of this work,one may draw the following conclusions:

    (i)The shock strength decreases as well as distance between shock front and inner boundary surface increases when radiation parameterξincreases;however reverse behaviour is observed whenmandG0increase.

    (ii)Mass concentration of solid particles in the mixtureKphas same effect on shock strength asξwhenG0=1.Also,Kphas same effect on shock strength asmwhenG0=10 or 100.

    (iii)The distance of the inner boundary surface from the shock front is less in the case of non-rotating medium in comparison with that in the case of rotating medium.Physically,it means that the gas behind the shock is less compressed in rotating medium i.e.the shock strength is decrease in rotating medium.

    (iv)An increase in the radiation parameterξdecreases the flow variablesu/u1,w/w1,p/p1,j/j1,lθ,lz;whereas reverse behaviour is observed in the case of the flow variablesv/v1,ρ/ρ1.

    (v)An increase in the parametersξandmhas opposite behaviour on the flow variablesu/u1,v/v1,p/p1,j/j1,lθandlz.

    (vi) An increase in the parametersξandKphas same behaviour on the flow variablesp/p1whenG0=10;whereas these parameters have opposite behaviour on the flow variablesu/u1,v/v1,w/w1,ρ/ρ1,j/j1,lθ,andlz.

    (vii)An increase in parametersξandG0has opposite behaviour on the flow variablesv/v1,w/w1,ρ/ρ1,j/j1,lθ,andlz;however same behaviour is obtained for the flow variablesu/u1andp/p1.

    The article concerns with the explosion problem in rotating medium,however the methodology and analysis presented here may be used to describe many other physical systems involving non-linear hyperbolic partial differential equations.The examples we have given make clear the nature of shock waves in rotating dusty gas under the action of monochromatic radiation.However,they serve mainly as illustrations of how the shock waves in dusty medium can be described.In reality,many other processes can be important and a more comprehensive analysis of the shock can be important for applications in astrophysics.The shock waves in a rotational axisymmetric dusty gas with monochromatic radiation and increasing energy can be important for description of shocks in supernova explosions and in the study of star burst galaxies,nuclear explosion,rupture of a pressurized vessel and explosion in the ionosphere etc.Other potential applications of this study include analysis of data from exploding wire experiments in dusty medium,and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles(c.f.Hutchens,[44]Nath[37]).Also,the present study can be important for the description of the following:

    5.1 Shocks in Supernova Explosions

    The layer of dust behind the supernova shock is observed usually.The problem is to verify whether the layer of dust is related to the process of dust condensation behind the shock wave front.

    5.2 Shocks in Intense Prolonged Flare Activity

    The present self-similar model may be used to describe some of the overall features of a “driven”shock wave produced by a flare energy releaseE(c.f.Eq.(28))that is time dependent.The energy“E”increases with time and the solutions then correspond to a blast wave produced by intense,prolonged flare activity in a rotating star when the wave is driven by fresh erupting plasma for some time and its energy tends to increase as it propagates from the star.

    [1]S.I.Pai,S.Menon,and Z.Q.Fan,Int.J.Eng.Sci.18(1980)1365.

    [2]F.Higashino and T.Suzuki,Z.Naturforsch.35a(1980)1330.

    [3]W.Gretler and R.Regenfelder,Eur.J.Mech.B/Fluids 24(2005)205.

    [4]S.I.Popel and A.A.Gisko,Nonlinear Process.Geophys.13(2006)223.

    [5]O.Igra,G.Hu,J.Falcovitz,and B.Y.Wang,Int.J.Mult.Flow 30(2004)1139.

    [6]M.Sommerfeld,Exper.Fluids 3(1985)197.

    [7]T.Elperin,G.Ben-Dor,and O.Igra,Int.J.Heat Fluid Flow 8(1987)303.

    [8]H.Miura,Fluid Dyn.Res.6(1990)251.

    [9]H.Miura and I.I.Glass,Proc.Roy.Soc.Lond.397A(1985)295.

    [10]G.Nath,Indian J.Phys.90(2016)1055.

    [11]G.Nath and J.P.Vishwakarma,Acta Astronaut.128(2016)377.

    [12]G.Nath,Astrophys.Space Sci.361(2016)1.

    [13]L.I.Sedov,Similarity and Dimensional Methods in Mechanics,Academic Press,New York(1959).

    [14]V.P.Korobeinikov,Proceedings of the Steklov Institute of Mathematics,119,American Mathematical Society,Providence(1976).

    [15]S.I.Pai,Two Phase Flows,Vieweg Tracts in Pure and Applied Physics,Vol.3,Braunschweig:Vieweg-Verlag,(1977)[Chapter V].

    [16]H.Steiner and T.Hirschler,Eur.J.Mech.B/Fluids 21(2002)371.

    [17]J.P.Vishwakarma and G.Nath,Phys.Scri.74(2006)493.

    [18]R.E.Marshak,Phys.Fluids 1(1958)24.

    [19]L.A.Elliott,Proc.Royal Soc.London Series A:Mathematical and Physical Sciences 258(1960)287.

    [20]K.C.Wang,J.Fluid Mech.20(1964)447.

    [21]J.B.Helliwell,J.Fluid Mech.37(1969)497.

    [22]J.R.NiCastro,Phys.Fluids 13(1970)2000.

    [23]G.Deb Ray and J.B.Bhowmick,Ind.J.Pure Appl.Math 7(1976)96.

    [24]V.M.Khudyakov,Sovit.Phys.Dokl.Trans.American Institute of Physics 28(1983)853.

    [25]A.N.Zheltukhin,Geophys.Astrophys.J.Appl.Math.Mech.52(1988)262.

    [26]O.Nath and H.S.Takhar,Astrophys.Space Sci.166(1990)35.

    [27]O.Nath,IL Nuovo.Cimento.D 20(1998)1845.

    [28]J.P.Vishwakarma and V.K.Pandey,Appl.Math.2(2012)28.

    [29]G.Nath and P.K.Sahu,Ain Shams Eng.J.(2016)DOI 10.1016/j.asej.2016.06.009.

    [30]K.K.Singh,Int.J.Appl.Math.Mech.9(2013)37.

    [31]G.Nath,Advan.Space Res.47(2011)1463.

    [32]G.Nath,Ain Shams Eng.J.3(2012)393.

    [33]G.Nath,Meccanica 50(2015)1701.

    [34]V.A.Levin and G.A.Skopina,J.Appl.Mech.Tech.Phys.45(2004)457.

    [35]H.A.Zedan,Appl.Math.Comput.132(2002)63.

    [36]G.Nath,Res.Astr.Astrophys.10(2010)445.

    [37]G.Nath,Shock Waves 24(2014)415.

    [38]Y.B.Zel’dovich and Y.P.Raizer,Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,Vol.II.Academic Press,New York(1967).

    [39]P.Chaturani,Appl.Sci.Res.23(1970)197.

    [40]M.N.Director and E.K.Dabora,AIAA J.15(1977)1315.

    [41]M.H.Rogers,Quarterly J.Mech.Appl.Math.11(1958)411.

    [42]A.V.Fedorov and Y.V.Kratova,Heat Transf.Res.43(2012)123.

    [43]H.Miura and I.I.Glass,Proc.R.Soc.Lond.A 385(1983)85.

    [44]G.J.Hutchens,J.Appl.Phys.77(1995)2912.

    404 Not Found

    404 Not Found


    nginx
    亚洲专区中文字幕在线| 一级a爱片免费观看的视频| 国产精品久久久久久亚洲av鲁大| 黄色女人牲交| 69人妻影院| 乱系列少妇在线播放| 国产综合懂色| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久| 国产美女午夜福利| 18+在线观看网站| 免费在线观看影片大全网站| 88av欧美| 久久久国产成人免费| 国产又黄又爽又无遮挡在线| 日韩中文字幕欧美一区二区| 日本精品一区二区三区蜜桃| 日本欧美国产在线视频| 亚洲天堂国产精品一区在线| 欧美精品啪啪一区二区三区| 亚洲av中文av极速乱 | 99热这里只有是精品在线观看| 91精品国产九色| 亚洲男人的天堂狠狠| 极品教师在线视频| 国产单亲对白刺激| 亚洲avbb在线观看| 亚洲天堂国产精品一区在线| 联通29元200g的流量卡| 国产亚洲精品av在线| 黄色配什么色好看| 亚洲国产高清在线一区二区三| 亚洲专区中文字幕在线| 久久人人精品亚洲av| 国产伦精品一区二区三区视频9| 99久久中文字幕三级久久日本| 俄罗斯特黄特色一大片| 国产 一区 欧美 日韩| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 草草在线视频免费看| 99国产精品一区二区蜜桃av| 成熟少妇高潮喷水视频| 黄色日韩在线| 美女高潮喷水抽搐中文字幕| 国产真实乱freesex| 国产成人a区在线观看| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9| 亚洲av第一区精品v没综合| 久99久视频精品免费| 亚洲欧美激情综合另类| 91狼人影院| 日本与韩国留学比较| 亚洲狠狠婷婷综合久久图片| 夜夜夜夜夜久久久久| 韩国av一区二区三区四区| 亚洲精品在线观看二区| or卡值多少钱| 久久草成人影院| 国产精品99久久久久久久久| 国内揄拍国产精品人妻在线| 97热精品久久久久久| 色尼玛亚洲综合影院| 波野结衣二区三区在线| 亚洲综合色惰| 午夜爱爱视频在线播放| 久久久久免费精品人妻一区二区| 3wmmmm亚洲av在线观看| www.www免费av| 精品人妻一区二区三区麻豆 | 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 免费av观看视频| 精品人妻1区二区| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办 | 久久久色成人| 午夜日韩欧美国产| 97人妻精品一区二区三区麻豆| 日本a在线网址| 极品教师在线视频| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| xxxwww97欧美| 又黄又爽又免费观看的视频| 国产精品,欧美在线| 欧美日韩黄片免| 国产男人的电影天堂91| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 少妇被粗大猛烈的视频| 成人无遮挡网站| 99热这里只有是精品50| 最好的美女福利视频网| 欧美成人a在线观看| 一本精品99久久精品77| 91午夜精品亚洲一区二区三区 | 国产乱人伦免费视频| 一进一出好大好爽视频| 人妻少妇偷人精品九色| 小蜜桃在线观看免费完整版高清| 久久国产乱子免费精品| 中亚洲国语对白在线视频| 老师上课跳d突然被开到最大视频| 日韩精品中文字幕看吧| 他把我摸到了高潮在线观看| 国内精品宾馆在线| 麻豆一二三区av精品| 99国产极品粉嫩在线观看| 中文字幕av成人在线电影| 综合色av麻豆| 99热这里只有精品一区| 国产免费一级a男人的天堂| 有码 亚洲区| 在线看三级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 一级黄片播放器| 久久久久久久久久成人| 国产私拍福利视频在线观看| 简卡轻食公司| av在线亚洲专区| 欧美bdsm另类| 欧美色视频一区免费| 久久久久久久久中文| 亚洲欧美日韩无卡精品| 春色校园在线视频观看| 亚洲成av人片在线播放无| 少妇人妻一区二区三区视频| 99riav亚洲国产免费| 天堂网av新在线| 成人国产一区最新在线观看| 男女视频在线观看网站免费| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 午夜爱爱视频在线播放| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 国内精品久久久久精免费| 亚洲 国产 在线| 亚洲av第一区精品v没综合| 久久久久精品国产欧美久久久| 亚洲成人久久性| 成人特级av手机在线观看| 一本久久中文字幕| 蜜桃亚洲精品一区二区三区| 十八禁国产超污无遮挡网站| 日韩在线高清观看一区二区三区 | 他把我摸到了高潮在线观看| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 99热精品在线国产| 伦理电影大哥的女人| 国产男靠女视频免费网站| 国产亚洲91精品色在线| 99riav亚洲国产免费| 日韩欧美在线二视频| 不卡视频在线观看欧美| 国产三级中文精品| 波多野结衣高清作品| 午夜福利在线观看吧| 九九爱精品视频在线观看| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久亚洲 | 欧美+亚洲+日韩+国产| 亚洲av熟女| 十八禁国产超污无遮挡网站| 美女免费视频网站| 最近在线观看免费完整版| 亚洲,欧美,日韩| 99久久中文字幕三级久久日本| 美女 人体艺术 gogo| 免费无遮挡裸体视频| АⅤ资源中文在线天堂| 精品99又大又爽又粗少妇毛片 | 性欧美人与动物交配| .国产精品久久| 精品久久久久久久久av| 亚洲久久久久久中文字幕| 成人av一区二区三区在线看| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 亚洲美女黄片视频| 麻豆成人午夜福利视频| 亚洲av二区三区四区| 精品久久久久久久久av| 国产久久久一区二区三区| 国产女主播在线喷水免费视频网站 | 日本色播在线视频| 国产成人aa在线观看| 少妇高潮的动态图| 天堂√8在线中文| 女人被狂操c到高潮| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 亚洲精品一区av在线观看| 午夜福利在线观看吧| 日韩在线高清观看一区二区三区 | 国产v大片淫在线免费观看| 亚洲中文字幕日韩| 久久6这里有精品| 中文字幕久久专区| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 精品一区二区三区视频在线观看免费| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 久久99热6这里只有精品| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 国产大屁股一区二区在线视频| 日本五十路高清| 久久久久九九精品影院| 尾随美女入室| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 午夜免费激情av| 韩国av一区二区三区四区| 日日摸夜夜添夜夜添av毛片 | 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 中亚洲国语对白在线视频| 91在线观看av| 变态另类丝袜制服| 久久国产精品人妻蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 国产美女午夜福利| 永久网站在线| 99riav亚洲国产免费| 久久久久久久久久成人| 日韩强制内射视频| 免费人成在线观看视频色| 精品国产三级普通话版| 性欧美人与动物交配| 免费在线观看影片大全网站| 春色校园在线视频观看| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 级片在线观看| 国产精品av视频在线免费观看| xxxwww97欧美| 久久热精品热| 俺也久久电影网| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 99热精品在线国产| 精品午夜福利在线看| 成人亚洲精品av一区二区| 嫩草影视91久久| 99久久精品国产国产毛片| 日韩精品中文字幕看吧| 一级毛片久久久久久久久女| 在线播放无遮挡| 午夜福利18| 欧美黑人巨大hd| 中国美白少妇内射xxxbb| 亚洲自拍偷在线| 一个人观看的视频www高清免费观看| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 直男gayav资源| 成人三级黄色视频| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 免费人成视频x8x8入口观看| 亚洲最大成人中文| 日本免费a在线| 可以在线观看毛片的网站| 久久精品国产清高在天天线| 亚洲图色成人| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 国产精品99久久久久久久久| 欧美一区二区亚洲| 尾随美女入室| 美女xxoo啪啪120秒动态图| 国产精品电影一区二区三区| 国产欧美日韩精品亚洲av| 日韩欧美国产在线观看| 久久久久久久久大av| 成熟少妇高潮喷水视频| eeuss影院久久| xxxwww97欧美| 日韩一本色道免费dvd| 欧美zozozo另类| 久久久久久久久久久丰满 | 美女免费视频网站| 少妇猛男粗大的猛烈进出视频 | 最好的美女福利视频网| 色精品久久人妻99蜜桃| 中文字幕久久专区| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 自拍偷自拍亚洲精品老妇| 18禁在线播放成人免费| 久久草成人影院| 国产熟女欧美一区二区| 国产成年人精品一区二区| 亚洲成人久久爱视频| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 麻豆国产av国片精品| 国产午夜精品论理片| 亚洲美女视频黄频| 久久九九热精品免费| 午夜免费男女啪啪视频观看 | 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 免费av毛片视频| 18禁黄网站禁片午夜丰满| 亚洲va日本ⅴa欧美va伊人久久| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 在现免费观看毛片| 两个人的视频大全免费| 亚洲成人久久爱视频| 一区二区三区高清视频在线| 能在线免费观看的黄片| 又粗又爽又猛毛片免费看| 国产淫片久久久久久久久| 精品一区二区三区视频在线观看免费| 男人和女人高潮做爰伦理| 夜夜看夜夜爽夜夜摸| a在线观看视频网站| 日本成人三级电影网站| 桃红色精品国产亚洲av| 亚洲一区二区三区色噜噜| 国内精品宾馆在线| 国产高清视频在线播放一区| 无人区码免费观看不卡| 日日啪夜夜撸| 久久久国产成人精品二区| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 国产在线男女| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 精品久久久久久久久av| 看片在线看免费视频| 久久精品久久久久久噜噜老黄 | 国产精品1区2区在线观看.| 日本免费a在线| 特级一级黄色大片| 欧美性感艳星| 欧美绝顶高潮抽搐喷水| 91久久精品国产一区二区成人| 看免费成人av毛片| 啪啪无遮挡十八禁网站| .国产精品久久| 一区二区三区免费毛片| 免费观看在线日韩| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 桃色一区二区三区在线观看| 日本与韩国留学比较| 欧美丝袜亚洲另类 | 日韩欧美在线二视频| 久久这里只有精品中国| 国产 一区 欧美 日韩| 99热只有精品国产| 日韩大尺度精品在线看网址| 国产一区二区亚洲精品在线观看| 国产av麻豆久久久久久久| 琪琪午夜伦伦电影理论片6080| 看片在线看免费视频| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 91久久精品国产一区二区三区| 久久久久久久久中文| 乱人视频在线观看| 日韩,欧美,国产一区二区三区 | 嫩草影院入口| 亚洲电影在线观看av| 一本一本综合久久| 嫩草影视91久久| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 黄片wwwwww| 99热这里只有精品一区| 国产精品免费一区二区三区在线| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添av毛片 | 在线天堂最新版资源| 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 日本黄色片子视频| 最新中文字幕久久久久| 观看免费一级毛片| 久久久久久国产a免费观看| 亚洲精华国产精华液的使用体验 | 国产一区二区在线av高清观看| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 亚洲无线观看免费| 岛国在线免费视频观看| 精品不卡国产一区二区三区| 午夜精品在线福利| 日韩人妻高清精品专区| 免费看av在线观看网站| 一区福利在线观看| 日韩欧美国产在线观看| 精品久久久久久久久av| 伦精品一区二区三区| 日韩av在线大香蕉| 在线观看66精品国产| 国产亚洲精品久久久com| 91久久精品电影网| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 亚洲精品粉嫩美女一区| 特级一级黄色大片| 中国美女看黄片| 国内精品美女久久久久久| 亚洲成人久久爱视频| 免费看a级黄色片| 国产精品久久久久久久久免| 日日撸夜夜添| 麻豆一二三区av精品| 日韩欧美免费精品| 国产高清不卡午夜福利| 亚洲欧美日韩高清专用| 麻豆av噜噜一区二区三区| 最好的美女福利视频网| 九九爱精品视频在线观看| 99热只有精品国产| 色综合婷婷激情| 最近中文字幕高清免费大全6 | 男女之事视频高清在线观看| av天堂中文字幕网| 好男人在线观看高清免费视频| 成人国产一区最新在线观看| 精品日产1卡2卡| 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 一进一出抽搐动态| 欧美日韩精品成人综合77777| 精品久久久久久久久久久久久| 亚洲av成人av| 尾随美女入室| 亚洲黑人精品在线| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 欧美最黄视频在线播放免费| 精品不卡国产一区二区三区| 亚洲欧美日韩卡通动漫| 国产精品亚洲美女久久久| 国产一区二区三区在线臀色熟女| 日韩欧美在线二视频| 久久久久久伊人网av| 别揉我奶头~嗯~啊~动态视频| 国产高清视频在线播放一区| 欧美色视频一区免费| 国产一区二区三区视频了| 美女cb高潮喷水在线观看| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 国语自产精品视频在线第100页| 国模一区二区三区四区视频| 亚洲中文字幕日韩| 真人一进一出gif抽搐免费| 人妻制服诱惑在线中文字幕| а√天堂www在线а√下载| netflix在线观看网站| 色哟哟·www| 色尼玛亚洲综合影院| 亚洲av.av天堂| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 国产色婷婷99| 波多野结衣高清作品| 中文字幕久久专区| 少妇的逼好多水| 欧美潮喷喷水| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 变态另类丝袜制服| 国产av麻豆久久久久久久| 色综合站精品国产| 亚洲午夜理论影院| av在线天堂中文字幕| 韩国av一区二区三区四区| 偷拍熟女少妇极品色| 久久久久久久久久成人| 69人妻影院| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 日韩欧美精品免费久久| 动漫黄色视频在线观看| 亚洲最大成人手机在线| 成人av一区二区三区在线看| 欧美xxxx性猛交bbbb| 午夜免费成人在线视频| 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 99热这里只有精品一区| 丰满的人妻完整版| 久久久久久久亚洲中文字幕| 国产一区二区亚洲精品在线观看| 中文资源天堂在线| 在线观看美女被高潮喷水网站| 精品免费久久久久久久清纯| 日韩一区二区视频免费看| 长腿黑丝高跟| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 一区二区三区四区激情视频 | 欧美一区二区亚洲| 欧美日本视频| 免费观看人在逋| 欧美高清成人免费视频www| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 变态另类成人亚洲欧美熟女| 亚洲欧美清纯卡通| 成人av一区二区三区在线看| 99热6这里只有精品| 国产精品无大码| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮喷水抽搐中文字幕| 国产高清三级在线| 变态另类丝袜制服| 在线观看舔阴道视频| а√天堂www在线а√下载| 免费av不卡在线播放| 国产精品三级大全| 禁无遮挡网站| 人妻久久中文字幕网| 久久久成人免费电影| 国产又黄又爽又无遮挡在线| 亚洲熟妇熟女久久| 在线播放无遮挡| 女人十人毛片免费观看3o分钟| 永久网站在线| 夜夜夜夜夜久久久久| 九九久久精品国产亚洲av麻豆| 联通29元200g的流量卡| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 最近在线观看免费完整版| 最好的美女福利视频网| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区 | avwww免费| 人妻丰满熟妇av一区二区三区| ponron亚洲| 久久久久久国产a免费观看| 国产精品乱码一区二三区的特点| 久久午夜福利片| 国产乱人视频| 欧美另类亚洲清纯唯美| 深夜精品福利| 成人永久免费在线观看视频| 精品久久久久久久末码| 日韩一本色道免费dvd| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 日日夜夜操网爽| 少妇裸体淫交视频免费看高清| 在线a可以看的网站| 精品一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 高清在线国产一区| 欧美一区二区国产精品久久精品| 欧美日韩瑟瑟在线播放| 99在线视频只有这里精品首页| 国产精品福利在线免费观看| 午夜福利成人在线免费观看| 日日撸夜夜添| 可以在线观看毛片的网站| 综合色av麻豆| 国产毛片a区久久久久| 久久九九热精品免费| 午夜福利在线在线|