• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    2017-01-21 05:30:40XinfangHAN韓新方LiMA馬麗
    關鍵詞:馬麗

    Xinfang HAN(韓新方)Li MA(馬麗)

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS?

    Xinfang HAN(韓新方)Li MA(馬麗)?

    Department of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China

    E-mail:xfanghan@163.com;malihnsd@163.com

    Suppose that X is a right process which is associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jumping measure of(E,D(E))satisfying J(E×E?d)<∞.Let u∈D(E)b:=D(E)∩L∞(E;m),we have the following Fukushima’s decomposition ?u(Xt)??u(X0)=Mut+Nut.Defne Putf(x)=Ex[eNutf(Xt)].Let Qu(f,g)=E(f,g)+E(u,fg) for f,g∈D(E)b.In the frst part,under some assumptions we show that(Qu,D(E)b)is lower semi-bounded if and only if there exists a constant α0≥0 such that kPutk2≤eα0tfor every t>0.If one of these assertions holds,then(Put)t≥0is strongly continuous on L2(E;m). If X is equipped with a diferential structure,then under some other assumptions,these conclusions remain valid without assuming J(E×E?d)<∞.Some examples are also given in this part.Let Atbe a local continuous additive functional with zero quadratic variation. In the second part,we get the representation of Atand give two sufcient conditions forto be strongly continuous.

    semi-Dirichlet form;generalized Feynman-Kac semigroup;strong continuity; lower semi-bounded;representation of local continuous additive functional with zero quadratic variation

    2010 MR Subject Classifcation60J55;60J35

    1 Introduction

    Let E be a metrizable Lusin space and X=((Xt)t≥0,(Px)x∈E?)be a right process on E (see[11,IV,Defnition 1.8]).Suppose that X is associated with a semi-Dirichlet form(E,D(E)) on L2(E;m),where m is a σ-fnite measure on the Borel σ-algebra B(E)of E.Then,by[3, Theorem 3.22],(E,D(E))is quasi-regular.Moreover,(E,D(E))is quasi-homeomorphic to a regular semi-Dirichlet form(see[6,Theorem 3.8]).We refer the reader to[5]and[11]for the theory of Dirichlet forms.The notations and terminologies of this paper follow[5,11–13].Put D(E)Vn={u∈D(E)|u=0 q.e.on Vcn}and D(E)Vn,b=D(E)Vn∩L∞(E,m).For α>0, defne Eα(u,u):=E(u,u)+α(u,u)m,where(u,u)mmeans the product of u and u in L2(E,m).

    Assumption 1There exist a sequence of sets{Vn}∈Θ and a sequence of locally bounded functions{Cn}on R,such that for each n∈N,if u,v∈D(E)Vn,b,then uv∈D(E)and

    For u∈D(E)b,under Assumption 1,by[12,Proposition 2.8],we have the following Fukushima type decomposition

    where?u is a quasi-continuous m-version of u,is a local martingale additive functional (abbreviated as MAF)andis a continuous additive functional(abbreviated as CAF)of zero quadratic variation.For x∈E,denote by Exthe expectation with respect to(w.r.t.)Px. Defne the generalized Feynman-Kac transformation

    In this paper,we will investigate the strong continuity of the semigroup

    The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov processes was studied extensively by many people.We refer the reader to page 734 in[9]for a review.Suppose a symmetric Markov process(Xt)t≥0is associated with a Dirichlet form (E,E(E)).The researchers showed that the semigroupis strongly continuous on L2(E;m)if and only if the bilinear form(Qu,D(E)b)is lower semi-bounded.Here and henceforth

    For non-symmetric Dirichlet form,Ma and Sun gave two sufcient conditions for(Put)t≥0 to be strongly continuous in[9,Theorem 1.1,Theorem 1.2].In that paper,Beurling-Deny formula and Lejan’s transform rule are used essentially.

    For semi-Dirichlet form,Ma and Sun got Fukushima type decomposition for local semi-Dirichlet form in[8].Later Ma et al.generalized it to general semi-Dirichlet form in[12].Sois well-defned.It is natural to ask what’s the sufcient condition forto be strongly continuous in the setting of semi-Dirichlet form.

    There is a big diference between semi-Dirichlet form and Dirichlet form.For example, in general,the domain of semi-Dirichlet form is not an algebra,the symmetric part of semi-Dirichlet form and the dual form are only positive preserving forms not Dirichlet forms,the dual semigroup is not sub-Markov.So we need to put some assumptions under the framework of semi-Dirichlet form.For u∈D(E)b,let hMuitbe the sharp bracket process of Mutandμhuibe the Revuz measure of hMuit(see[8]).

    Assumption 2There are an E-nest{Fn}consisting of compact sets of E and some positive constants{Kn}such that for any n∈N,μhfi(Fn)≤KnE1(f,f)for any f∈D(E)Fn,b.

    Assumption 3There exists{Vn}∈Θ such that for each n∈N,there exists a Dirichlet form(η(n),D(η(n)))on L2(Vn;m)and a constant Cn>1 such that D(η(n))=D(E)Vnand forany u∈D(E)Vn,

    Denote by J(dx,dy)and K(dx)the jumping and killing measures of(E,D(E)),respectively (see[6]).

    Now we can state the frst two main results of the paper.

    Theorem 1.1Suppose that X is a right process associated with a semi-Dirichlet form (E,D(E))on L2(E;m).Let J be the jump measure of(E,D(E))satisfying J(E×E?d)<∞. Let u∈D(E)b.Then under Assumptions 2 and 3,the following two conditions are equivalent to each other:

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).

    Notice that by[12],Assumption 3 implies Assumption 1 and Assumption 4.

    In Section 2,we give the proofs of Theorems 1.1 and 1.2.In Section 3,we will give some examples which satisfy Assumption 2 and Assumption 3.

    As is well-known,a CAF of zero energy has zero quadratic variation.It is natural to ask whether the zero quadratic variation processes are at least locally of zero energy or not. For symmetric irreducible difusion process,in[14],Oshima and Yamada gave an afrmative answer.For more general Markov process associated with non-symmetric Dirichlet form,in [20],Walsh got the similar result.

    In Section 4,for Markov processes associated with semi-Dirichlet forms,we will give a representation of local CAF of zero quadratic variation in terms of CAF with zero energy. Then we will study the strong continuity of generalized Feynman-Kac semigroups induced by a local CAF of zero quadratic variation.

    2 Proofs of Theorems 1.1 and 1.2

    By quasi-homeomorphism,we assume without loss of generality that X is a Hunt process and(E,D(E))is a regular semi-Dirichlet form on L2(E;m),where E is a locally compactseparable metric space and m is a positive Radon measure on E with supp[m]=E.We denote by?and ζ the cemetery and lifetime of X,respectively.It is known that every f∈D(E)has a quasi-continuous m-version.To simplify notation,we still denote this version by f.

    The proofs of Theorems 1.1 and 1.2 are similar to those of Theorems 1.1 and 1.2 in[9].In the following,we only point out the diferences.

    In[9],for u∈D(E),the Fukushima decomposition of u(Xt)?u(X0)always exists.But

    may be not locally integrable and the predictable dual process Bptof Btmay not exist,so instead of u,u?:=u+|u|Eis used to defne Bt,where|u|Eis the reduce function of u on E. Under semi-Dirichlet form setting,for u∈D(E),Fukushima decomposition of u(Xt)?u(X0) exists if and only if u satisfes condition(S)(see[12,Proposition 2.8]).So in this paper,we need u∈D(E)band J(E×E?d)<∞,which guarantee that u satisfes condition(S).Since u is bounded,so Btdefned by(2.1)is locally integrable and we can substitute u?in[9]by u or treat|u|Eas 0.

    Let Enbe the fne interior of some E-nest Fn.In inequalities(2.10)and(2.11)of[9],it is used that for any f∈D(E)En,b,

    In fact,for non-symmetric Dirichlet form,

    where?k(dx)is the killing measure of dual form ?E,which is also a Dirichlet form.However,for semi-Dirichlet form,the dual form is only a positive preserving form whose semi-group has no sub-Markov property,so the killing measure?k(dx)may not exist.So(2.2)may not hold in semi-Dirichlet form setting.For example,

    By[10,Remark 2.2(ii)],(E,D(E))is a regular local semi-Dirichlet form but not a Dirichlet form.Let Fn=[1n,1?1n],then{Fn}is an E-nest and En=(1n,1?1n)is the fne interior of Fn.For any f∈D(E)En,b,

    Denote by?E the symmetric part of E.The jumping measure?J and killing measures?K of the symmetric part(?E,D(E))are used to in(2.31)of[9].In semi-Dirichlet form setting,(?E,D(E)) is not a Dirichlet form,so?J and?K don’t exist.We can solve this by Assumption 2, Z

    Notice in(2.32)of[9],it is used that

    For semi-Dirichlet form,we can use Assumption 2 to overcome this difculty,

    So Assumption 2 is really needed in this paper.

    LeJan’s transformation rule and Lemma 2.4 of[9]are used in the proof of Theorem 1.1 in[9].We have corresponding results in semi-Dirichlet form setting(see[17,Theorem 3.3, Theorem 3.5])under Assumption 3.4 in[17].Our Assumption 3 guarantees the Assumption 3.4 in[17],so we can use the results of[17,Theorem 3.3,Theorem 3.5]and get Theorem 1.1.

    Beurling-Deny formula of Non-symmetric Dirichlet forms are used in the proof of Theorem 1.1 in[9].We have similar formula for semi-Dirichlet forms(see[6,Theorem 4.8]).Since u∈D(E)b,J(E×E?d)<∞in Theorem 1.1,so we can use[6,Theorem 4.8]directly.

    The expression of(E,D(E))is used in the proof of Theorem 1.2 in[9].In semi-Dirichlet form setting,under Assumption 4,(E,D(E))has similar expression(see[17,Theorem 1.4]).So we get Theorem 1.2.

    In the proof of main theorems(p.750 of[9]),it is used that∪n≥1D(E)Enis dense in D(E). For semi-Dirichlet form,our results are constructed under Assumption 2 and Assumption 3 or Assumption 1 and Assumption 2,so we need revise the set Enand prove that∪n≥1D(E)Enis dense in D(E).Let{Fn}be the compact sets in Assumption 2 and{F′n}be the compact sets in p.737 of[9],we should takeLetbe the sets in Assumption 1 or Assumption 3.Put[7,Lemma 3.6],is dense in D(E).

    Remark 2.1Letμ=μ+?μ?,whereμ+andμ?are smooth measures,be positive CAFs(PCAFs in short)with Revuz measureμ+andμ?,respectively,let Aμt:=Defne

    and

    then by localization method,similar to the proofs of Theorem 1.1 and Theorem 1.2,we can show the following two conditions are equivalent to each other

    (i)there exists a constant α0≥0 such that

    (ii)there exists a constant α0≥0 such that

    Furthermore,if one of these conditions holds,then the semigroupis strongly continuous on L2(E;m).This result extends[9,Remark 2.7].

    3 Some Examples

    In this section,we will give some examples which satisfy Assumption 2 and Assumption 3.

    Example 3.1In this example,we study the generalized Feynman-Kac semigroup for the semi-Dirichlet form given in[8]and[15].

    Let d≥3,U be an open subset of

    we defne

    Assume that

    We denote vector d by d.Let b= β+γ.Then,by[15,Theorem 1.2],under some conditions on aij,b,d,β,γ and c,there exists α>0 such that(Eα,C∞0(U))is closable on L2(U;dx)and its closure(Eα,D(Eα))is a regular local semi-Dirichlet form on L2(U;dx).Defne ηα(u,u):=Eα(u,u)?Rh▽u,βiudx for u∈D(Eα).By[15,Theorem 1.2(ii)and(1.28)],we know(ηα,D(Eα))is a Dirichlet form and there exists ?∈(0,1)such that for any u∈D(Eα),

    Let X be the Markovprocess associated with(Eα,D(Eα)),u∈D(Eα)b,then u(Xt)has Fukushima’s type decompositions a locally square integrable MAF andis a locally CAF of zero quadratic variation.By (3.1),Assumption 3 holds.Notice there is no jump part in expression of E,so J(E×E?d)<∞holds automatically.Next,we check Assumption 2.Since

    it follows that

    Hence Assumption 2 holds.LetThen,forwe have

    Suppose that the following condition holds.

    (A4)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    Then Qu(f,f)≥?α0(f,f)for any f∈C∞0(U)and thus for any f∈D(E)bby approximation.

    Example 3.2(see[4]and[16]) Let(E,d)be a locally compact separable metric space, m a positive Radon Measure on E with full topological support,and k(x,y)a nonnegative Borel measurable function on{(x,y)∈E×E|x 6=y}.Set ks(x,y)=12(k(x,y)+k(y,x)) and ka(x,y)=12(k(x,y)?k(y,x)).Denote by Clip0(E)the family of all uniformly Lipschitz continuous functions on E with compact support.Suppose that the following conditions hold

    and

    In fact

    Let D(E)be the η1-closure ofThen by[4,Theorem 2.1],(Eβ0,D(E))be a regular semi-Dirichlet form on L2(E,m).Moreover,Assumption 3 holds.

    Next we check Assumption 2.By(3.2),

    Hence

    So Assumption 2 holds,

    (B.III)There exists a constant α0≥0 such that

    in the sense of Schwartz distribution.

    If(B.III)holds,then Qu(f,f)≥?α0(f,f)mfor any f∈Clip0(E)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.In Theorem 1.1,J(E×E?d)<∞is used in the proof of

    However,in this example,we can get(3.4)directly by the expression of(Eβ0,D(Eβ0))though J(E×E?d)<∞ may not be true here.Hence,by Theorem 1.1,if(B.III)holds,thenis a strongly continuous contraction semigroup on L2(E;m).

    Example 3.3(see[18]) Let d>3,G be an open set of Rd.Defne for u,v∈C10(G),

    and

    We refer to[18]for the conditions on aij,b,c,d,ksand ka.By previous example,we know

    By the proof of[18,Proposition 3.1 and Proposition 3.2],there exist some constants K1>0 and C>0 such that

    So

    If

    then

    Let1q+1d=12,by Cauchy-Schwarz’s inequality,

    and Assumption 2 holds.in the sense of Schwartz distribution.

    If(C.III)holds,then Qu(f,f)≥?α0(f,f)for any f∈Clip0(G)and thus for any f∈D(E)bby approximation.

    Let X be aμ-tight special standard jump process associated with(Eβ0,D(E))and(Put)t≥0be the generalized Feynman-Kac semigroup induced by u.If(C.III)and(3.7)holds,then by Theorem 1.2,is a strongly continuous contraction semigroup on L2(G;dx).

    4 Representation of Local CAF with Zero Quadratic Variation

    In this section,we consider representation of local CAF with zero quadratic variation under semi-Dirichlet form setting.For a quasi-open set V,let(EV,D(EV))be the part form of (E,D(E))on L2(V;m),then D(EV)=D(E)V.Let?GVαbe the co-resolvent of(EV,D(E)V) and XVbe the part process associated with(EV,D(E)V).Fix a function φ∈L1(E;m)with 0<φ≤1 m-a.e.,thenRVφ2dm ≤ REφ2dm ≤ REφdm<∞,hence φ∈L2(V,m).Put ˉhV=?GV1φ.For an AF Atof XV,defne

    whenever the limit exists in[0,∞],

    Theorem 4.1Let A be a local CAF of zero quadratic variation.Then,there exist a E-nest of fnely open sets{Gn}n∈N,a sequence{un}?D(E)Gn,band a nest of fnely open sets {Vn}n∈Nsuch that Vn?Gnand

    Px-a.s.for every x except in a exceptional set.Hereandis the zero energy part of Fukushima’s decomposition with respect to unand XGn.

    ProofThe proof is similar to that of[19,Theorem 1.1].We only list the diference here. In[19,Lemma 3.4],the co-semigroup?Ptand 1-co-resolvent?R1are expressed in terms of dual process?Xt,which dose not exist for semi-Dirichlet form.Notice?Ptand?R1still exist and are positivity preserving operators.Let g(x)= ?R1φ(x),then g is 1 co-excessive function.Hence when 0

    So[19,Lemma 3.4]still holds in semi-Dirichlet form case.

    Then by the proof of[19,Theorem 1.1],vnis bounded,Mnis a MAF of Xnand there exists {H0n}n∈N∈Θ such that for any n,IH0n?Mn∈ ˙MH0nand H0n? Gn.For fxed n∈N and anyLetthen h?is 1-co-excessive function with respect toof relatively compact set such that h?is bounded on H?n.Without loss of generality,assumeAlso,we can constructin Θ and sequence{gn}n∈Nand{hn}n∈Nin D(E)such that for all n∈N,

    Notice h?is 1-co-excessive function with respect to P0t,so

    and

    Notice gn∈D(E)H1nand h?is bounded up by Cnon H1n,so

    Since gn,h?∈D(E)H0n,so

    Let un=Rn1vn?γn+wn?Rn1wn,notice vnand gnare bounded,Rn1is sub-Markov and wn=vngn,so Rn1vn+wn?Rn1wnis bounded.By revising the nest?Gnsuch that I?Gnμn1and I?Gnμn2belongs to S00(En)instead of S0(En)in the proof of[19,Theorem 1.1],we can get γn∈D(E)Gn,b.Hence un∈D(E)Gn,band Px-a.e.for q.e.x∈E on{t<τVn},

    When s≤t<τVn,Xns=Xs,so let Gn=Gn,we get(4.2).

    Defne

    Theorem 4.2If(E,D(E)Gn)and its jumping measure Jnsatisfes the conditions of Theorem 1.1 or Theorem 1.2,then the following two are equivalent.

    (i)There exists a constant α0≥0 such that

    (ii)There exists a constant α0≥0 such that

    Further,if for any n∈N,(i)or(ii)holds,thenis strongly continuous.

    ProofBy section 2,we know(i)and(ii)are equivalent and they impliesare strongly continuous by looking Gnas E,Vnas En,unas u,undm as dμand

    If(ii)holds,then for?g∈L2(E;m),

    Since g∈L2(E;m)is arbitrary,we get

    Since f and n are arbitrary,is strongly continuous on L2(E;m).The proof is completed.

    AcknowledgementsWe thank Professor Wei Sun for helpful discussions.

    [1]Albeverio S,Ru-Zong F,R¨ockner M,Stannat W.A remark on coercive forms and associated semigroups. Oper Theory Adv Appl,1995,78:1–8

    [2]Chen C Z,Ma Z M,Sun W.On Girsanov and generalized Feynman-Kac transfromations for symmetric Markov processes.Infn Dimens Anal Quantum Probab Relat Top,2007,10:141–163

    [3]Fitzsimmons P J.On the quasi-regularity of semi-Dirichlet forms.Potential Anal,2001,15:158–185

    [4]Fukushima M,Uemura T.Hunt processes generated by lower bounded semi-Dirichlet forms.Ann Probab, 2012,40:858–889

    [5]Fukushima M,Oshima Y,Takeda M.Dirichlet Forms and Symmetric Markov Processes.Berlin:Walter de Gruyrer,1994

    [6]Hu Z C,Ma Z M,Sun W.Extensions of L′evy-Khintchine formula and Beurling-Deny formula in semi-Dirichlet forms setting.J Funct Anal,2006,239:179–213

    [7]Kuwae K.Maximum principles for subharmonic functions via local semi-Dirichlet forms.Can J Math,2008, 60:822–874

    [8]Ma L,Ma Z M,Sun W.Fukushima’s decomposition for difusions associated with semi-Dirichlet forms. Stoch Dyn,2012,12:1250003–1250031

    [9]Ma L,Sun W.On the generalized Feynman-Kac transformations for nearly symmetric Markov processes. J Theor Probab,2012,25:733–755

    [10]Ma Z M,Overbeck L,R¨ockner M.Markov processes associated with semi-Dirichlet forms.Osaka J Math, 1995,32:97–119

    [11]Ma Z M,R¨ockner M.Introduction to the Theory of(Non-Symmetric)Dirichlet Forms.Berlin:Springer-Verlag,1992

    [12]Ma Z M,Sun W,Wang L F.Fukushima type decomposition for semi-Dirichlet forms.Preprint, http://arxiv.org/abs/1402.4341

    [13]Oshima Y.Semi-Dirichlet Forms and Markov Processes.Walter de Gruyter,2013

    [14]Oshima Y,Yamada T.on some representations of continuous additive functionals locally of zero energy.J Math Soc Jpn,1984,36(2):315–339

    [15]R¨ockner M,Schmuland B.Quasi-regular Dirichlet forms:examples and counterexamples.Can J Math, 1995,47:165–200

    [16]Schilling R L,Wang J.Lower bounded semi-Dirichlet forms associated with L′evy type operators.Festschrift Masatoshi Fukushima,2015:507–526

    [17]Sun W,Zhang J.L′evy-Khintchine type representation of Dirichlet generators and semi-Dirichlet forms. Forum Math,2015,27:3111–3148

    [18]Uemura T.On multidimensional difusion processes with jumps.Osaka J Math,2014,51(4):969–993

    [19]Walsh A.On a representation of additive functionals of zero quadratic variation.Potential Anal,2013, 38(4):1173–1186

    [20]Walsh A.Stochastic integration with respect to additive functionals of zero quadratic variation.Bernoulli, 2013,19B(5):2414–2436

    ?Received June 2,2015;revised October 2,2015.This paper is supported by NSFC(11201102,11326169, 11361021)and Natural Science Foundation of Hainan Province(112002,113007).

    ?Corresponding author:Li MA.

    猜你喜歡
    馬麗
    消失的河流
    《哥,你好》魏翔&馬麗
    中國銀幕(2022年4期)2022-04-07 21:25:47
    “且”的真與假
    一首老歌
    江南詩(2020年3期)2020-06-08 10:20:40
    畫中迷
    嗨,馬麗
    馬麗 瘦弱女子勇挑家庭重擔
    從被嘲“丑女”到票房20億 諧星馬麗的逆襲之路
    好日子(2018年9期)2018-10-12 09:57:18
    馬麗設計作品
    藝術評論(2018年1期)2018-05-09 09:29:50
    馬麗蠟染作品
    藝術評論(2017年8期)2017-10-16 08:37:07
    欧美成人免费av一区二区三区 | 露出奶头的视频| 波多野结衣一区麻豆| 日本五十路高清| 色播在线永久视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产三级黄色录像| 一区二区日韩欧美中文字幕| 婷婷成人精品国产| avwww免费| 久久人妻福利社区极品人妻图片| av天堂久久9| 欧美一级毛片孕妇| 交换朋友夫妻互换小说| 亚洲欧美色中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 精品熟女少妇八av免费久了| 国产男女超爽视频在线观看| 一区二区av电影网| 亚洲精品久久午夜乱码| 久久精品亚洲精品国产色婷小说| aaaaa片日本免费| 一二三四社区在线视频社区8| 超碰97精品在线观看| 首页视频小说图片口味搜索| 一本色道久久久久久精品综合| 亚洲熟妇熟女久久| 大型黄色视频在线免费观看| 美女国产高潮福利片在线看| 精品少妇久久久久久888优播| 亚洲熟女精品中文字幕| 在线天堂中文资源库| 日韩精品免费视频一区二区三区| www.自偷自拍.com| 亚洲精品中文字幕在线视频| 999久久久精品免费观看国产| 国产精品 欧美亚洲| 日韩大码丰满熟妇| videosex国产| 啦啦啦 在线观看视频| 日本黄色日本黄色录像| 久久av网站| 欧美成人午夜精品| av天堂久久9| 日本vs欧美在线观看视频| 欧美日韩一级在线毛片| 精品国产乱码久久久久久男人| 欧美精品高潮呻吟av久久| 国产成人免费无遮挡视频| 精品久久久久久电影网| 麻豆国产av国片精品| 夜夜爽天天搞| 考比视频在线观看| 久久久久久人人人人人| 热99国产精品久久久久久7| 侵犯人妻中文字幕一二三四区| 国产成+人综合+亚洲专区| 国产97色在线日韩免费| 久久久久久久久久久久大奶| 19禁男女啪啪无遮挡网站| 欧美激情 高清一区二区三区| 久久av网站| 久久久久久久国产电影| 亚洲专区字幕在线| 国产男女内射视频| 国产精品久久电影中文字幕 | 免费在线观看完整版高清| 亚洲精品中文字幕在线视频| 国产精品1区2区在线观看. | 久久免费观看电影| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 精品国产亚洲在线| 夜夜骑夜夜射夜夜干| 欧美成人免费av一区二区三区 | 欧美日韩亚洲高清精品| 亚洲五月色婷婷综合| 一级黄色大片毛片| 啦啦啦中文免费视频观看日本| 在线av久久热| 99香蕉大伊视频| 久久久久久久久久久久大奶| 1024视频免费在线观看| 成人亚洲精品一区在线观看| 啦啦啦免费观看视频1| 欧美精品亚洲一区二区| 成年人午夜在线观看视频| 欧美精品亚洲一区二区| 久久久久久免费高清国产稀缺| 老熟女久久久| 国产成+人综合+亚洲专区| 国产精品一区二区在线不卡| 国产区一区二久久| 美女主播在线视频| 久久久精品国产亚洲av高清涩受| 国产亚洲欧美精品永久| 69精品国产乱码久久久| 麻豆国产av国片精品| 最近最新中文字幕大全免费视频| 国产成人精品久久二区二区91| 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 黄网站色视频无遮挡免费观看| 涩涩av久久男人的天堂| 黄网站色视频无遮挡免费观看| 丝袜美足系列| 欧美中文综合在线视频| 欧美一级毛片孕妇| 淫妇啪啪啪对白视频| 美女国产高潮福利片在线看| 亚洲欧美激情在线| 50天的宝宝边吃奶边哭怎么回事| 少妇的丰满在线观看| 嫁个100分男人电影在线观看| 男女边摸边吃奶| 国产欧美日韩一区二区三区在线| 亚洲色图av天堂| 在线 av 中文字幕| 欧美日韩黄片免| 亚洲伊人色综图| 少妇粗大呻吟视频| 丝袜在线中文字幕| 国产男靠女视频免费网站| 老熟女久久久| avwww免费| 久久精品人人爽人人爽视色| 午夜福利在线观看吧| 夫妻午夜视频| 免费日韩欧美在线观看| 亚洲全国av大片| 午夜福利视频在线观看免费| 精品国产超薄肉色丝袜足j| 国产精品98久久久久久宅男小说| 午夜福利影视在线免费观看| 99九九在线精品视频| 少妇粗大呻吟视频| cao死你这个sao货| 国产99久久九九免费精品| 嫩草影视91久久| 久久中文字幕一级| 欧美日韩亚洲高清精品| 国产91精品成人一区二区三区 | 99国产精品一区二区蜜桃av | 国产一区二区三区综合在线观看| 亚洲精品一二三| 欧美精品啪啪一区二区三区| 精品欧美一区二区三区在线| 久久久久久久久免费视频了| 国产日韩欧美视频二区| 男女无遮挡免费网站观看| 国产在线一区二区三区精| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品一区二区www | av天堂久久9| 男男h啪啪无遮挡| 午夜免费成人在线视频| 一二三四社区在线视频社区8| 人成视频在线观看免费观看| 久久久久国内视频| 亚洲一码二码三码区别大吗| 人成视频在线观看免费观看| 欧美老熟妇乱子伦牲交| 国产主播在线观看一区二区| 色94色欧美一区二区| 高清黄色对白视频在线免费看| 80岁老熟妇乱子伦牲交| 天天躁日日躁夜夜躁夜夜| 国产成人欧美在线观看 | 国产区一区二久久| 日韩中文字幕视频在线看片| 日韩人妻精品一区2区三区| 丁香六月天网| 国产一区有黄有色的免费视频| 搡老岳熟女国产| 久久精品人人爽人人爽视色| 麻豆国产av国片精品| 亚洲天堂av无毛| 汤姆久久久久久久影院中文字幕| 久久精品91无色码中文字幕| 日韩欧美免费精品| 69精品国产乱码久久久| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲国产一区二区在线观看 | 日本撒尿小便嘘嘘汇集6| 亚洲精品乱久久久久久| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91| 青青草视频在线视频观看| 午夜免费成人在线视频| 亚洲色图 男人天堂 中文字幕| 99国产综合亚洲精品| 高清毛片免费观看视频网站 | 大香蕉久久成人网| 91九色精品人成在线观看| 丁香欧美五月| 操出白浆在线播放| 黄色成人免费大全| 肉色欧美久久久久久久蜜桃| 国产一区二区 视频在线| 狠狠精品人妻久久久久久综合| 男女无遮挡免费网站观看| 亚洲精品国产区一区二| 日韩精品免费视频一区二区三区| 日本黄色日本黄色录像| 热99re8久久精品国产| 亚洲色图综合在线观看| 自线自在国产av| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色 | 91成年电影在线观看| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 岛国在线观看网站| tube8黄色片| 精品国产乱码久久久久久男人| 亚洲国产av新网站| 中文字幕高清在线视频| 国产视频一区二区在线看| 午夜福利欧美成人| 亚洲七黄色美女视频| 成人国语在线视频| 一区二区三区国产精品乱码| 美女视频免费永久观看网站| 欧美黑人精品巨大| 乱人伦中国视频| 久热这里只有精品99| 天天操日日干夜夜撸| 久久午夜亚洲精品久久| 无人区码免费观看不卡 | av电影中文网址| 久热爱精品视频在线9| 久久天堂一区二区三区四区| 国产成人影院久久av| 熟女少妇亚洲综合色aaa.| 美女福利国产在线| netflix在线观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲人成电影观看| 国产精品久久久av美女十八| 巨乳人妻的诱惑在线观看| 久久久欧美国产精品| 国产精品熟女久久久久浪| av福利片在线| 91国产中文字幕| 丁香六月欧美| 国产1区2区3区精品| 丰满人妻熟妇乱又伦精品不卡| 久久精品亚洲熟妇少妇任你| 免费看a级黄色片| 国产欧美日韩一区二区三区在线| 国产男女内射视频| 美女主播在线视频| 欧美中文综合在线视频| 亚洲第一欧美日韩一区二区三区 | 久久国产精品男人的天堂亚洲| 男女床上黄色一级片免费看| 国精品久久久久久国模美| 1024视频免费在线观看| 满18在线观看网站| 香蕉丝袜av| 久9热在线精品视频| 中文字幕色久视频| 日日摸夜夜添夜夜添小说| 一进一出抽搐动态| 亚洲情色 制服丝袜| 亚洲自偷自拍图片 自拍| 飞空精品影院首页| 日本精品一区二区三区蜜桃| 视频区欧美日本亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 久久影院123| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃| 成年人免费黄色播放视频| 男女床上黄色一级片免费看| 捣出白浆h1v1| 亚洲精华国产精华精| 69精品国产乱码久久久| 久久99热这里只频精品6学生| 999精品在线视频| 少妇精品久久久久久久| 国内毛片毛片毛片毛片毛片| 性少妇av在线| 又黄又粗又硬又大视频| 日本欧美视频一区| 亚洲黑人精品在线| 黄色毛片三级朝国网站| 在线天堂中文资源库| 成人影院久久| 国产高清激情床上av| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 亚洲人成电影免费在线| 国产高清视频在线播放一区| 久久久久国内视频| 精品少妇一区二区三区视频日本电影| 国产成人精品无人区| 中文字幕高清在线视频| videosex国产| 脱女人内裤的视频| 另类亚洲欧美激情| 日韩一卡2卡3卡4卡2021年| 十八禁人妻一区二区| 老鸭窝网址在线观看| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| 亚洲精品美女久久av网站| 国产人伦9x9x在线观看| 国产精品国产av在线观看| 老司机午夜福利在线观看视频 | 国产成人精品在线电影| 国产1区2区3区精品| 天堂动漫精品| 国产成人av激情在线播放| 久久久欧美国产精品| 国产精品免费大片| 成年动漫av网址| 国产国语露脸激情在线看| 午夜两性在线视频| 国产黄频视频在线观看| 亚洲中文字幕日韩| 国产成人影院久久av| 黄色视频在线播放观看不卡| 日韩人妻精品一区2区三区| 老司机深夜福利视频在线观看| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 久久久国产精品麻豆| 窝窝影院91人妻| 亚洲成av片中文字幕在线观看| 免费av中文字幕在线| avwww免费| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区 | 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 成年人黄色毛片网站| 久热爱精品视频在线9| 少妇裸体淫交视频免费看高清 | 777久久人妻少妇嫩草av网站| 青青草视频在线视频观看| 9热在线视频观看99| 国产日韩欧美在线精品| videosex国产| 三级毛片av免费| 一区二区三区乱码不卡18| 日韩精品免费视频一区二区三区| 免费人妻精品一区二区三区视频| 亚洲国产欧美网| 免费少妇av软件| 久久人妻熟女aⅴ| 成人三级做爰电影| 久久久久久久国产电影| 日韩免费高清中文字幕av| 中文字幕精品免费在线观看视频| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 一级毛片电影观看| 9191精品国产免费久久| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 日本a在线网址| 亚洲国产中文字幕在线视频| 国产精品亚洲一级av第二区| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡 | av片东京热男人的天堂| 最新美女视频免费是黄的| 亚洲欧美激情在线| 一二三四社区在线视频社区8| 国产成人av教育| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线一区亚洲| 成年女人毛片免费观看观看9 | a级片在线免费高清观看视频| 最新的欧美精品一区二区| 国产一区二区 视频在线| 91字幕亚洲| 亚洲中文av在线| 别揉我奶头~嗯~啊~动态视频| 国产99久久九九免费精品| 午夜福利视频在线观看免费| 国产精品久久久久久人妻精品电影 | 美女扒开内裤让男人捅视频| 在线亚洲精品国产二区图片欧美| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 777米奇影视久久| 美女午夜性视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产看品久久| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 淫妇啪啪啪对白视频| 捣出白浆h1v1| 99九九在线精品视频| 欧美黑人欧美精品刺激| 桃红色精品国产亚洲av| 99riav亚洲国产免费| 久久99热这里只频精品6学生| avwww免费| 国产精品秋霞免费鲁丝片| 淫妇啪啪啪对白视频| videos熟女内射| 母亲3免费完整高清在线观看| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 大陆偷拍与自拍| av网站在线播放免费| 热99国产精品久久久久久7| 国产一卡二卡三卡精品| aaaaa片日本免费| 九色亚洲精品在线播放| 曰老女人黄片| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 9热在线视频观看99| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡动漫免费视频| 国产精品熟女久久久久浪| 一进一出好大好爽视频| 国产色视频综合| 精品久久久精品久久久| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 国产精品98久久久久久宅男小说| 岛国毛片在线播放| 亚洲五月婷婷丁香| 十八禁人妻一区二区| 国产成人一区二区三区免费视频网站| 亚洲精品成人av观看孕妇| 十八禁网站免费在线| 一个人免费在线观看的高清视频| 亚洲国产av影院在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 国产精品亚洲一级av第二区| 男女免费视频国产| 99久久99久久久精品蜜桃| 深夜精品福利| 老司机午夜福利在线观看视频 | 日本黄色视频三级网站网址 | 一个人免费看片子| 久久久水蜜桃国产精品网| 777米奇影视久久| 国产高清视频在线播放一区| 在线观看免费日韩欧美大片| 汤姆久久久久久久影院中文字幕| 午夜91福利影院| 国产欧美日韩一区二区三| av片东京热男人的天堂| 成人特级黄色片久久久久久久 | 成人国产一区最新在线观看| 久久人妻福利社区极品人妻图片| 人人澡人人妻人| 不卡av一区二区三区| 在线观看一区二区三区激情| 久久人妻熟女aⅴ| 伦理电影免费视频| 丝袜美足系列| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 老司机亚洲免费影院| 黄色成人免费大全| 成年人免费黄色播放视频| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 黄色怎么调成土黄色| 岛国在线观看网站| 精品久久久久久久毛片微露脸| 国产高清videossex| 色在线成人网| 男女边摸边吃奶| 亚洲精品自拍成人| 超碰成人久久| 午夜福利免费观看在线| 午夜激情久久久久久久| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| netflix在线观看网站| 精品乱码久久久久久99久播| 精品一区二区三区四区五区乱码| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 少妇 在线观看| 国产男女超爽视频在线观看| 黄色视频在线播放观看不卡| 日韩有码中文字幕| 国产不卡一卡二| 色视频在线一区二区三区| 极品教师在线免费播放| 又紧又爽又黄一区二区| 女警被强在线播放| av欧美777| 99精品在免费线老司机午夜| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 99热网站在线观看| 91麻豆精品激情在线观看国产 | 最黄视频免费看| 国产野战对白在线观看| 免费av中文字幕在线| 国产午夜精品久久久久久| 在线十欧美十亚洲十日本专区| 青草久久国产| tube8黄色片| 国产一区二区 视频在线| 99精国产麻豆久久婷婷| 国产视频一区二区在线看| 久久久精品国产亚洲av高清涩受| 两个人免费观看高清视频| 9色porny在线观看| 中文字幕人妻丝袜制服| 日韩一区二区三区影片| 女人精品久久久久毛片| 欧美黄色片欧美黄色片| 高清欧美精品videossex| 一区二区三区精品91| 99久久人妻综合| 国产片内射在线| 国产成人精品在线电影| 又紧又爽又黄一区二区| 日本撒尿小便嘘嘘汇集6| 他把我摸到了高潮在线观看 | 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美软件| 成人手机av| 成人国产一区最新在线观看| 黑人猛操日本美女一级片| 亚洲av日韩精品久久久久久密| 欧美精品亚洲一区二区| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 中文字幕高清在线视频| 一边摸一边抽搐一进一小说 | 国内毛片毛片毛片毛片毛片| 久久久精品区二区三区| 精品久久蜜臀av无| 成年人免费黄色播放视频| av不卡在线播放| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 久久久久久久久免费视频了| 老司机亚洲免费影院| 69av精品久久久久久 | 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 国产男女超爽视频在线观看| xxxhd国产人妻xxx| 欧美激情久久久久久爽电影 | 欧美日韩视频精品一区| 国产精品久久久av美女十八| 精品国内亚洲2022精品成人 | 亚洲天堂av无毛| 国产淫语在线视频| 中文字幕高清在线视频| 又大又爽又粗| tube8黄色片| 脱女人内裤的视频| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 成在线人永久免费视频| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 亚洲男人天堂网一区| 一本大道久久a久久精品| 国产欧美日韩一区二区精品| 男女无遮挡免费网站观看| 热re99久久国产66热| 亚洲人成电影观看| 日本欧美视频一区| 在线观看免费高清a一片| 18在线观看网站| 午夜精品国产一区二区电影| 女人精品久久久久毛片| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 精品一区二区三卡| 亚洲avbb在线观看| 99re在线观看精品视频| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看 | 中国美女看黄片| 国产精品免费视频内射| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 国产av又大| 亚洲全国av大片| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| 国产精品免费大片| av视频免费观看在线观看| 9色porny在线观看| 久久精品人人爽人人爽视色| 热99国产精品久久久久久7| 久久天躁狠狠躁夜夜2o2o| 国产精品免费视频内射| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 国产深夜福利视频在线观看| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看|