• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    2017-01-21 05:31:22XiaosongLIU劉小松

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    E-mail:lxszhjnc@163.com

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    E-mail:tsliu@hutc.zj.cn

    In this article,frst,the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α on the unit ball in complex Banach spaces are given.Second,the sharp estimates of all homogeneous expansions for the above generalized mappings on the unit polydisk in Cnare also established.In particular, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings (include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables are get accordingly.Our results state that a weak version of the Bieberbach conjecture for quasi-convex mappings of type B and order α in several complex variables is proved,and the derived conclusions are the generalization of the classical results in one complex variable.

    homogeneous expansion;quasi-convex mapping of type B and order α;quasiconvex mapping;quasi-convex mapping of type A;quasi-convex mapping of type B

    2010 MR Subject Classifcation32A30;32H02

    1 Introduction

    In geometric function theorey of one complex variable,people show great interest in the following classical theorem.

    We are naturally to ask whether the corresponding result in several complex variables holds or not?In this article,we shall in part provide an afrmative answer.

    Concerning the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings(include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables,it was shown that the above result in general is invalid(see[13]). However,on a special domain,such as the unit polydisk in Cn,Liu[7],Liu and Liu[9]obtained the sharp estimates of all homogeneous expansions for quasi-convex mappings(include quasiconvex mappings of type A and quasi-convex mappings of type B)under diferent restricted conditions respectively.On the other hand,Liu and Liu[8]derived the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α (include quasi-convex mappings,quasi-convex mappings of type A and quasi-convex mappings of type B).We mention that the family of quasi-convex mappings of type B and order α is a signifcant family of holomorphic mappings in several complex variables,and the Bieberbach conjecture in several complex variables(i.e.,the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on the unit polydisk in Cnhold)(see[1,3,10])is a very signifcant and extremal difcult problem.Owing to this reason,the sharp estimates of all homogeneous expansions for quasi-convex mappings of type B and order α seem to be a meaningful problem as well.

    Let X denote a complex Banach space with the norm k.k,let X?denote the dual space of X,let B be the open unit ball in X,and let U be the Euclidean open unit disk in C.We also denote by Unthe open unit polydisk in Cn,Bnthe Euclidean unit ball in Cnand N?the set of all positive integers.Let?Undenote the boundary of Un,(?U)nbe the distinguished boundary of Un.Let the symbol′mean transpose.For each x∈X{0},we defne

    By the Hahn-Banach theorem,T(x)is nonempty.

    Let H(B)be the set of all holomorphic mappings from B into X.We know that if f∈H(B), then

    for all y in some neighborhood of x∈B,where Dnf(x)is the nth-Fr′echet derivative of f at x, and for n≥1,

    We say that a holomorphic mapping f:B → X is biholomorphic if the inverse f?1exists and is holomorphic on the open set f(B).A mapping f∈H(B)is said to be locally biholomorphic if the Fr′echet derivative Df(x)has a bounded inverse for each x∈B.If f:B→ X is a holomorphic mapping,then we say that f is normalized if f(0)=0 and Df(0)=I,where I represents the identity operator from X into X.

    We say that a normalized biholomorphic mapping f:B→X is a starlike mapping if f(B) is a starlike domain with respect to the origin.

    Suppose that ?∈Cnis a bounded circular domain.The frst Fr′echet derivative and the m(m>2)-th Fr′echet derivative of a mapping f∈H(?)at point z∈? are written by Df(z),Dmf(z),respectively.

    Now we recall some defnitions below.

    Defnition 1.1(see[8]) Suppose that α∈[0,1)and f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be quasi-convex of type B and order α.

    Let QαB(B)be the set of all quasi-convex mapping of type B and order α on B.

    Defnition 1.2(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping,and denote

    If

    then f is said to be a quasi-convex mapping of type A on B.

    We denote by QA(B)the set of all quasi-convex mapping of type A on B.

    Defnition 1.3(see[2]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping of type B on B.

    We refer to the set QB(B)as the set of all quasi-convex mapping of type B on B.

    When X=Cn,Defnitions 1.1 and 1.2 are the same defnitions which were introduced by Roper and Sufridge[13].

    Defnition 1.4(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping on B.

    Let Q(B)be the set of all quasi-convex mapping of type B on B.Gong[2]proved the inclusion relation

    Indeed,Defnitions 1.2,1.3 and 1.4 reduce to the criteria of biholomorphic convex functions in one complex variable.

    Defnition 1.5(see[5]) Let f∈H(B).It is said that f is k-fold symmetric if

    Defnition 1.6(see[6]) Suppose that ? is a domain(connected open set)in X which contains 0.It is said that x=0 is a zero of order k of f(x)if f(0)=0,···,Dk?1f(0)=0,but Dkf(0)6=0,where k∈N?.

    According to Defnitions 1.4 and 1.5,it is easily shown that x=0 is a zero of order k+1 (k∈N)of f(x)?x if f is a k-fold symmetric normalized holomorphic mapping f(x)(f(x)6≡x) defned on B.However,the converse is fail.

    Let QA,k+1(B)(resp.QB,k+1(B),Qk+1(B))be the subset of QA(B)(resp.QB(B),Q(B)) of mappings f such that z=0 is a zero of order k+1 of f(z)?z.

    2 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Ball of Complex Banach Spaces

    In order to prove the desired results in this section,we need to provide some lemmas as follows.

    Lemma 2.1Let α∈[0,1),f,p:B→ C∈H(B),f(0)=p(0)=1,f(e2πikx)=f(x), p(e2πikx)=p(x)(k∈N?),and f(x)+3Df(x)x+D2f(x)(x2)=(f(x)+Df(x)x)(α+(1?α)p(x)). Then

    ProofIn view of the hypothesis of Lemma 2.1,we have

    A simple calculation shows that

    Compare the homogeneous expansions of the two sides in the above equality.We derived the desired result.

    Lemma 2.2Let α∈[0,1),f,p:B→C∈H(B),f(0)=p(0)=1.If x=0 is a zero of order k+1(k∈N?)of xf(x)?x(resp.xp(x)?(x)),and f(x)+3Df(x)x+D2f(x)(x2)= (f(x)+Df(x)x)(α+(1?α)p(x)),then for any x∈B,

    ProofAccording to the conditions of Lemma 2.2,we obtain

    A direct computation shows that

    Compare the homogeneous expansions of the two sides in the above equality.It follows the desired result.

    We now begin to establish the desired results in this section.

    Theorem 2.1Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    ProofLet W(x)=(DF(x))?1D(DF(x)x)x.A straightforward computation shows that

    Since F(x)=xf(x)∈QαB(B),then according to Defnition 1.1,we see that

    Letting

    then p:B→C∈H(B),p(0)=f(0)=1,

    Also since F(x)=xf(x)is a k(k∈N?)-fold symmetric mapping,then f(e2πikx)=f(x)and p(e2πi

    kx)=p(x).We now deduce that

    hold by inductive method.When s=1,(2.3)holds from Lemma 2.1 and[11,Lemma 2.2](the case m=k+1).We assume that

    It sufces to prove that(2.3)holds for s=q+1.For this purpose,by applying Lemma 2.1, (2.4)and[11,Lemma 2.2],we know that

    That is

    Note that

    when F(x)=xf(x).Therefore in view of(2.3)and(2.5),it follows the result,as desired.

    It is easy to check that

    satisfes the condition of Theorem 2.1,where kuk=1.Taking x=ru(0≤r<1),it yields that

    We see that the estimates of Theorem 2.1 are sharp. ?

    Put α=0 in Theorem 2.1.Then we obtain the following corollary immediately.

    Corollary 2.1Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    Note that f(x)+Df(x)x 6=0,x∈B due to the growth theorem of F(x)=xf(x)∈QA(B) (or Q(B))and

    from S?(B)?QA(B)=Q(B)and Q(B)=QA(B)?QB(B)(see[2]).We readily get the following corollary from Corollary 2.1.

    Corollary 2.2Let f:B→C∈H(B),F(x)=xf(x)∈QA(B)(resp.Q(B)),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    By making use of Theorem 2.1,the Taylor expansion of F(x)=xf(x)and the triangle inequality of the norm in complex Banach spaces,we deduce the following two corollaries immediately(the details of the proof are omitted here).

    Corollary 2.3Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    The example of the sharpness of Corollary 2.1 is similar to that in Theorem 2.1,we need only to mention that

    holds for x=ru(0≤r<1).

    Corollary 2.4Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    ProofAccording to Corollary 2.1,triangle inequalities with respect to the norm in complex Banach spaces and the fact

    (see[4]),then it follows the result,as desired.Considering

    where kek=1,then F satisfes the conditions of Corollary 2.4.It is shown that

    by a direct calculation.We set x=re,ξ=Re(0≤r<1,R≥0).Then

    We see that the estimate of Corollary 2.4 is sharp. ?

    Taking α=0 in Corollaries 2.3 and 2.4,we directly obtain the corollaries as follows.

    Corollary 2.5Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    Corollary 2.6Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    With the analogous explanation of Corollary 2.4,we get the following corollary from Corollary 2.6.

    Corollary 2.7Let f:B→C∈H(B),F(x)=xf(x)∈Q(B)(or QA(B)),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X. Then

    and the above estimate is sharp.

    Remark 2.1The sharp growth and covering theorem for QA(B)(resp.Q(B))was given by Roper and Sufridge[13](the case of fnite dimension)(resp.Zhang and Liu[14](the case of infnite dimension)).However,up to now,the sharp growth and covering theorem for QB(Un), and the sharp distortion theorem for QA(Un)(Q(Un)and QB(Un)are still open problems in several complex variables.

    Theorem 2.2Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofIn view of the hypothesis of Theorem 2.2,Lemma 2.2 and[11,Lemma 2.2],it yields that

    and

    Noticing that

    if F(x)=xf(x).Then we derive the desired result.The example which shows the sharpness of Theorem 2.2 is similar to that in Theorem 2.1.

    Letting α=0,it is easy to obtain the corollary as follow.

    Corollary 2.8Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the explanation of Corollary 2.4,we drive the following corollary from Corollary 2.8.

    Corollary 2.9Let f:B→C∈H(B),F(x)=xf(x)∈Qk+1(B)(or QA,k+1(B)).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    3 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Polydisk in Cn

    In this section,let each mjbe a non-negative integer,N=m1+m2+···+mn∈N?,and mj=0 implies that the corresponding components in Z and F(Z)are omitted.Uml(resp. UN)is denoted by the unit polydisk of Cml(l=1,2,···,n)(resp.CN).

    It is necessary to establish the following lemmas in order to get the desired results in this section.

    Lemma 3.1(see[8]) Suppose that α∈[0,1),and f is a normalized locally biholomorphic mapping on Un.Then f∈QKαB(Un)if and only if

    Theorem 3.1Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    ProofIn view of the condition of Theorem 3.1,for any Z=(Z1,Z2,···,Zn)′∈UN,it is shown that

    by a direct calculation.We pay attention to that

    Then we know that

    from Lemma 3.1.Noticing that

    here kZlkml(resp.kZkN)is briefy denoted by kZlk(resp.kZk),it follows the desired result.

    For any Z=(Z1,Z2,···,Zn)′∈UN,it is not difcult to check that

    satisfes the condition of Theorem 3.1,where Zl=(Zl1,Zl2,···,Zlml)′∈Uml,l=1,2,···,n. We set Zl=(R,0,···,0)′(0≤R<1),l=1,2,···,n.It is easy to obtain

    Hence the estimates of Theorem 3.1 are sharp.

    We set α=0 in Theorem 3.1.Then we easily get the following corollary.

    Corollary 3.1Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    With the similar interpretation of Corollary 2.4,it is apparent to obtain the corollary as follow.

    Corollary 3.2Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···, Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈Q(UN)(QA(UN)),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    Theorem 3.2Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofWith the analogous arguments as in the proof of Theorem 2.2,it follows the desired result. ?

    Put α=0 in Theorem 3.2.Then we readily obtain the following corollary.

    Corollary 3.3Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the interpretation of Corollary 2.2,we easily obtain the corollary as follow.

    Corollary 3.4Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2), ···,Znfn(Zn))′∈Qk+1(UN)(QA,k+1(UN)).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    and the above estimates are sharp.

    ProofFixWe writeLet

    by a simple calculation.Therefore,we have

    It is also easy to know that

    from(3.1).Comparing the coefcients of the two sides in the above equality,it is shown that

    Hence,by Theorem 2.1(the case X=C,B=U),we conclude that

    When z0∈(?U)n,it yields that

    Also in view of Dsk+1Fl(0)(zsk+1)is a holomorphic function on Un,we have

    by the maximum modulus theorem of holomorphic functions on the unit polydisk.This implies that

    Therefore,

    It is not difcult to verify that

    satisfes the condition of Theorem 3.3.Put z=(r,0,···,0)′(0≤r<1),we see that

    by a direct computation.Then we know that the sharpness for the estimates of Theorem 3.3.

    Taking α=0 in Theorem 3.3,we get the following corollary immedately.

    and the above estimates are sharp.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    We set α=0 in Theorem 3.4.Then it is obvious to obtain the corollary as follow.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    Remark 3.1We see that Theorem 2.1 is the special case of Theorem 3.3 if X=Cn, B=Un,and Theorem 3.1 is the special case of Theorem 3.3 if m1=n,ml=0,l=2,···,n or ml=1,l=1,2,···,n as well.

    Remark 3.2It is not difcult to verify that F(z)=zf(z)in general does not satisfy

    In view of Theorems 2.1,3.1 and 3.3,we accordingly pose the open problem as follow.

    Open problem 3.1Suppose that F∈QαB(Un),and F is a k(k∈N?)-fold symmetric mapping on Un.Then

    and the above estimates are sharp.

    [1]Gong S.The Bieberbach Conjecture.International Press.Providence RI:Amer Math Soc,1999

    [2]Gong S.Convex and Starlike Mappings in Several Complex Variables(in Chinese).2nd ed.Beijing:Science Press,2003

    [3]Graham I,Kohr G.Geometric Function Theory in One and Higher Dimensions.New York:Marcel Dekker, 2003

    [4]H¨ormander L.On a theorem of Graced.Math Scand,1954,2:55–64

    [5]Honda T.The growth theorem for k-fold symmetric convex mappings.Bull London Math Soc,2002,34: 717–724

    [6]Lin Y Y,Hong Y.Some properties of holomorphic maps in Banach spaces.Acta Math Sinica,1995,38(2): 234–241(in Chinese)

    [7]Liu X S.On the quasi-convex mappings on the unit polydisk in Cn.J Math Anal Appl,2007,335:43–55

    [8]Liu X S,Liu M S.Quasi-convex mappings of order α on the unit polydisk in Cn.Rocky Mountain J Math, 2010,40:1619–1644

    [9]Liu X S,Liu T S.The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn.Chin Ann Math,2011,32B:241–252

    [10]Liu X S,Liu T S.The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in Cn.Acta Math Sci,2012,32B:752–764

    [11]Liu X S,Liu T S,Xu Q H.A proof of a weak version of the Bieberbach conjecture in several complex variables.Sci China Math,2015,58:2531–2540

    [12]Robertson M S.On the theory of univalent functions.Ann Math,1936,37:374–408

    [13]Roper K A,Sufridge T J.Convexity properties of holomorphic mappings in Cn.Trans Amer Math Soc, 1999,351:1803–1833

    [14]Zhang W J,Liu T S.The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space.Sci China Ser A-Math,2002,45:1538–1547

    ?Received March 24,2015;revised December 23,2015.Supported by National Natural Science Foundation of China(11471111)and Guangdong Natural Science Foundation(2014A030307016).

    国产午夜精品论理片| 最近2019中文字幕mv第一页| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜爱| 欧美在线一区亚洲| 欧美成人一区二区免费高清观看| 亚洲av成人av| 国产精品久久久久久精品电影| 亚洲av.av天堂| 国产亚洲91精品色在线| 免费电影在线观看免费观看| 亚洲精品色激情综合| 欧美一区二区国产精品久久精品| 国产黄a三级三级三级人| 精品久久国产蜜桃| 日韩强制内射视频| 精品免费久久久久久久清纯| 欧美极品一区二区三区四区| 搡老妇女老女人老熟妇| 夜夜爽天天搞| 在现免费观看毛片| 国产精品一二三区在线看| 午夜精品国产一区二区电影 | 亚洲精品成人久久久久久| 免费av毛片视频| 精品久久国产蜜桃| 91在线精品国自产拍蜜月| av在线播放精品| 国产亚洲av嫩草精品影院| 精品一区二区三区视频在线| a级毛色黄片| 高清毛片免费看| 国内精品久久久久精免费| 免费av观看视频| 大香蕉久久网| 不卡一级毛片| 村上凉子中文字幕在线| 色噜噜av男人的天堂激情| 亚洲18禁久久av| 成人漫画全彩无遮挡| 国产精品久久久久久av不卡| 亚洲欧美日韩高清专用| 成人鲁丝片一二三区免费| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 免费看光身美女| 亚洲电影在线观看av| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 亚洲国产精品sss在线观看| 草草在线视频免费看| 天堂动漫精品| 免费观看人在逋| 一本久久中文字幕| 麻豆精品久久久久久蜜桃| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久久久毛片| 久久久久久九九精品二区国产| 色噜噜av男人的天堂激情| 变态另类丝袜制服| 日韩av在线大香蕉| 久久午夜亚洲精品久久| 成人鲁丝片一二三区免费| 久久久久久久亚洲中文字幕| 搞女人的毛片| 不卡一级毛片| 不卡一级毛片| 成年av动漫网址| 久99久视频精品免费| 超碰av人人做人人爽久久| 一a级毛片在线观看| 最好的美女福利视频网| 大型黄色视频在线免费观看| 成人毛片a级毛片在线播放| 久久久久免费精品人妻一区二区| 久久久久久久亚洲中文字幕| 国产av麻豆久久久久久久| 成年版毛片免费区| 三级国产精品欧美在线观看| 国产av不卡久久| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 日韩人妻高清精品专区| 亚洲国产欧美人成| 噜噜噜噜噜久久久久久91| 久久精品综合一区二区三区| 久久久午夜欧美精品| 在线看三级毛片| 亚洲欧美中文字幕日韩二区| av在线播放精品| 九九久久精品国产亚洲av麻豆| 欧美日韩在线观看h| 日韩三级伦理在线观看| 国产精品国产三级国产av玫瑰| 插逼视频在线观看| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| av在线亚洲专区| 国产 一区精品| 国产精品精品国产色婷婷| 99久久无色码亚洲精品果冻| 两个人视频免费观看高清| 在线a可以看的网站| 日韩 亚洲 欧美在线| 久久国内精品自在自线图片| 18禁在线无遮挡免费观看视频 | 国产av不卡久久| 欧美精品国产亚洲| 日韩精品有码人妻一区| 精华霜和精华液先用哪个| 波多野结衣高清作品| 欧美性感艳星| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩国产亚洲二区| 国产精品乱码一区二三区的特点| 成人一区二区视频在线观看| 老司机午夜福利在线观看视频| 一级毛片我不卡| 国产精品伦人一区二区| 在线看三级毛片| 欧美3d第一页| 亚洲久久久久久中文字幕| 亚洲av成人精品一区久久| 免费看光身美女| 身体一侧抽搐| 一区二区三区高清视频在线| avwww免费| 最后的刺客免费高清国语| 欧美极品一区二区三区四区| 欧美日韩国产亚洲二区| 波多野结衣巨乳人妻| 晚上一个人看的免费电影| 男人狂女人下面高潮的视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产在线观看| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 国产精品av视频在线免费观看| 久久精品国产清高在天天线| av免费在线看不卡| 长腿黑丝高跟| 天堂动漫精品| av视频在线观看入口| 亚洲精品久久国产高清桃花| 美女高潮的动态| 黄色一级大片看看| 少妇的逼好多水| 热99re8久久精品国产| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久 | 亚洲美女视频黄频| 51国产日韩欧美| 亚洲国产日韩欧美精品在线观看| 国产午夜福利久久久久久| 日产精品乱码卡一卡2卡三| 日本成人三级电影网站| 国产在线男女| 18+在线观看网站| 12—13女人毛片做爰片一| 国产成人91sexporn| 99在线视频只有这里精品首页| 日韩欧美在线乱码| 99久久精品热视频| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 国产国拍精品亚洲av在线观看| 免费在线观看成人毛片| 欧美日韩综合久久久久久| 亚洲熟妇中文字幕五十中出| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱 | 日韩av在线大香蕉| 久久久欧美国产精品| eeuss影院久久| 插阴视频在线观看视频| 久久久欧美国产精品| 18禁黄网站禁片免费观看直播| 日本爱情动作片www.在线观看 | 国产高潮美女av| 最新中文字幕久久久久| 国产三级在线视频| 成人高潮视频无遮挡免费网站| av在线观看视频网站免费| 久久久精品94久久精品| 国产中年淑女户外野战色| 欧美不卡视频在线免费观看| 久久久久久大精品| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩| 国产成人aa在线观看| 伊人久久精品亚洲午夜| 免费电影在线观看免费观看| 亚洲四区av| 久久久久久久久久久丰满| 老熟妇乱子伦视频在线观看| 亚洲av二区三区四区| 国产午夜福利久久久久久| 精华霜和精华液先用哪个| 午夜影院日韩av| 国内揄拍国产精品人妻在线| 高清日韩中文字幕在线| 免费高清视频大片| 波多野结衣高清作品| 99久久无色码亚洲精品果冻| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品日韩在线中文字幕 | 少妇人妻精品综合一区二区 | 精品一区二区三区人妻视频| 天美传媒精品一区二区| 国产精品亚洲一级av第二区| 久久久国产成人精品二区| 性欧美人与动物交配| 国产aⅴ精品一区二区三区波| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 亚洲美女视频黄频| 日本撒尿小便嘘嘘汇集6| 成人亚洲欧美一区二区av| АⅤ资源中文在线天堂| 亚洲国产精品国产精品| 麻豆久久精品国产亚洲av| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 听说在线观看完整版免费高清| 乱人视频在线观看| 岛国在线免费视频观看| 欧美日本亚洲视频在线播放| 最新中文字幕久久久久| 久久综合国产亚洲精品| 秋霞在线观看毛片| 国产亚洲精品综合一区在线观看| 你懂的网址亚洲精品在线观看 | 免费观看精品视频网站| 亚洲国产高清在线一区二区三| 亚洲自拍偷在线| 99热网站在线观看| 日本 av在线| 波多野结衣高清作品| 午夜精品在线福利| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 国产精品99久久久久久久久| 国产精品一区二区三区四区免费观看 | 99热全是精品| 欧美最黄视频在线播放免费| 99久久九九国产精品国产免费| 国产午夜精品久久久久久一区二区三区 | 亚洲三级黄色毛片| 中文资源天堂在线| 老熟妇仑乱视频hdxx| 91在线精品国自产拍蜜月| 国产av麻豆久久久久久久| 日韩制服骚丝袜av| 麻豆乱淫一区二区| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 日韩成人伦理影院| av国产免费在线观看| 亚洲av一区综合| 国产v大片淫在线免费观看| 国产欧美日韩精品一区二区| 少妇的逼水好多| 国产视频一区二区在线看| 亚洲一级一片aⅴ在线观看| 国产精品三级大全| 久久6这里有精品| 国产成人aa在线观看| 人妻丰满熟妇av一区二区三区| 亚洲欧美精品自产自拍| 超碰av人人做人人爽久久| 联通29元200g的流量卡| 亚州av有码| 成年av动漫网址| 国产三级在线视频| aaaaa片日本免费| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 91狼人影院| 欧美一区二区精品小视频在线| 男人舔女人下体高潮全视频| 国产私拍福利视频在线观看| 欧美zozozo另类| 狠狠狠狠99中文字幕| 97超级碰碰碰精品色视频在线观看| 亚洲在线自拍视频| 人妻夜夜爽99麻豆av| a级毛片a级免费在线| 中文字幕免费在线视频6| 人人妻,人人澡人人爽秒播| 最后的刺客免费高清国语| 久久久久国产网址| 一夜夜www| 18+在线观看网站| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧美人成| av专区在线播放| 亚洲av美国av| 最近最新中文字幕大全电影3| 欧美bdsm另类| 色av中文字幕| 亚洲成人中文字幕在线播放| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 桃色一区二区三区在线观看| 亚洲激情五月婷婷啪啪| 69av精品久久久久久| 亚洲在线观看片| 搡女人真爽免费视频火全软件 | 午夜福利在线观看免费完整高清在 | 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 不卡一级毛片| 精品免费久久久久久久清纯| 日韩成人伦理影院| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 色哟哟·www| 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 国产成人a区在线观看| 一进一出好大好爽视频| 国产在视频线在精品| 少妇丰满av| 性欧美人与动物交配| 久久精品91蜜桃| 成人特级av手机在线观看| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 在线天堂最新版资源| 五月伊人婷婷丁香| 久久久精品94久久精品| 在现免费观看毛片| 99热这里只有是精品50| 亚洲成人久久性| 深夜精品福利| 午夜a级毛片| 欧美zozozo另类| 中文字幕人妻熟人妻熟丝袜美| 欧美一区二区精品小视频在线| 俄罗斯特黄特色一大片| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 麻豆av噜噜一区二区三区| 亚洲最大成人中文| 人人妻人人澡欧美一区二区| 搞女人的毛片| 欧美bdsm另类| 99久国产av精品国产电影| 免费看光身美女| 一区二区三区高清视频在线| 男女之事视频高清在线观看| 最近在线观看免费完整版| 少妇人妻精品综合一区二区 | av在线观看视频网站免费| 国产精品日韩av在线免费观看| 男女之事视频高清在线观看| 亚洲18禁久久av| 美女cb高潮喷水在线观看| 精品一区二区三区av网在线观看| 免费看a级黄色片| 美女内射精品一级片tv| 成人美女网站在线观看视频| 日韩欧美精品v在线| 少妇猛男粗大的猛烈进出视频 | 日本三级黄在线观看| 亚洲成人av在线免费| 欧美性猛交╳xxx乱大交人| 99久国产av精品国产电影| 欧美绝顶高潮抽搐喷水| 国产男人的电影天堂91| 国产精品久久久久久久久免| 麻豆久久精品国产亚洲av| 久久6这里有精品| 真人做人爱边吃奶动态| 免费av毛片视频| 成人鲁丝片一二三区免费| 色哟哟哟哟哟哟| 久久韩国三级中文字幕| 国产亚洲精品综合一区在线观看| 高清日韩中文字幕在线| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 少妇猛男粗大的猛烈进出视频 | 如何舔出高潮| 22中文网久久字幕| 国模一区二区三区四区视频| 成人永久免费在线观看视频| 日韩欧美三级三区| 欧美极品一区二区三区四区| 成人永久免费在线观看视频| 久久亚洲国产成人精品v| 色噜噜av男人的天堂激情| 一区二区三区免费毛片| 亚洲在线自拍视频| 色在线成人网| 国产精品久久久久久av不卡| 国产大屁股一区二区在线视频| 桃色一区二区三区在线观看| 国语自产精品视频在线第100页| 在线免费观看的www视频| 亚洲四区av| 搡老熟女国产l中国老女人| 国产伦精品一区二区三区视频9| 一本一本综合久久| 国产精品人妻久久久久久| 久久人人精品亚洲av| 久久久久国内视频| 亚洲性久久影院| 久久精品久久久久久噜噜老黄 | 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 日韩av在线大香蕉| 亚洲性久久影院| 欧美一区二区国产精品久久精品| av在线老鸭窝| 婷婷六月久久综合丁香| 久久久国产成人精品二区| 日韩一本色道免费dvd| 久久九九热精品免费| 免费av不卡在线播放| 综合色丁香网| 国产精品人妻久久久久久| 亚洲av美国av| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 欧美激情在线99| 一本精品99久久精品77| 久久久午夜欧美精品| 日韩av在线大香蕉| 精品少妇黑人巨大在线播放 | 天堂av国产一区二区熟女人妻| 不卡视频在线观看欧美| 午夜精品一区二区三区免费看| av在线蜜桃| 天美传媒精品一区二区| 成人精品一区二区免费| 少妇丰满av| 99热全是精品| 午夜福利在线观看免费完整高清在 | 看黄色毛片网站| 国产精品人妻久久久影院| 亚洲国产精品久久男人天堂| 啦啦啦啦在线视频资源| 国产免费男女视频| 97超视频在线观看视频| 欧美色视频一区免费| 免费av观看视频| 国产男人的电影天堂91| 成年女人毛片免费观看观看9| 我的女老师完整版在线观看| 精品日产1卡2卡| 精品日产1卡2卡| 无遮挡黄片免费观看| 久久久久性生活片| 成年女人看的毛片在线观看| 日韩高清综合在线| 黄色日韩在线| 男女视频在线观看网站免费| 一级毛片我不卡| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 身体一侧抽搐| 一边摸一边抽搐一进一小说| 搞女人的毛片| 亚洲内射少妇av| 国内精品久久久久精免费| 国内精品久久久久精免费| 免费看a级黄色片| 最近2019中文字幕mv第一页| 欧美一区二区精品小视频在线| 亚洲欧美日韩高清专用| 永久网站在线| 最近手机中文字幕大全| 国产老妇女一区| 一级毛片我不卡| 精品不卡国产一区二区三区| 国产精品久久视频播放| .国产精品久久| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 亚洲无线观看免费| 国产精品精品国产色婷婷| 国产精品人妻久久久久久| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 亚洲不卡免费看| 久久精品国产亚洲av香蕉五月| 别揉我奶头 嗯啊视频| 亚洲欧美成人综合另类久久久 | av国产免费在线观看| 精品日产1卡2卡| 在线观看一区二区三区| 欧美高清性xxxxhd video| 国产精品av视频在线免费观看| 日本三级黄在线观看| 国产蜜桃级精品一区二区三区| 在线播放国产精品三级| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 久久久久久伊人网av| 丝袜喷水一区| 波多野结衣高清作品| 免费人成在线观看视频色| 国产一区二区激情短视频| 少妇的逼水好多| 最近视频中文字幕2019在线8| 91狼人影院| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 久久6这里有精品| 欧美另类亚洲清纯唯美| 欧美绝顶高潮抽搐喷水| 校园人妻丝袜中文字幕| 在线播放无遮挡| 丰满人妻一区二区三区视频av| 日韩欧美国产在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 免费一级毛片在线播放高清视频| 国产欧美日韩精品亚洲av| 国产色婷婷99| 国产亚洲91精品色在线| 欧洲精品卡2卡3卡4卡5卡区| avwww免费| 亚洲美女搞黄在线观看 | 亚洲成人久久性| 国产精华一区二区三区| h日本视频在线播放| а√天堂www在线а√下载| 91狼人影院| 我要搜黄色片| 亚洲,欧美,日韩| 日本免费a在线| 亚洲,欧美,日韩| 国产精品精品国产色婷婷| 18+在线观看网站| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 中国美白少妇内射xxxbb| 97在线视频观看| 在线播放无遮挡| 国产欧美日韩精品亚洲av| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 午夜激情福利司机影院| 午夜福利高清视频| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 91av网一区二区| 国产精品久久电影中文字幕| 亚洲欧美成人综合另类久久久 | 精品午夜福利视频在线观看一区| 成人av一区二区三区在线看| 日本一二三区视频观看| 三级国产精品欧美在线观看| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 免费看日本二区| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 美女黄网站色视频| 麻豆一二三区av精品| 国产男人的电影天堂91| 丝袜美腿在线中文| 日韩精品中文字幕看吧| 99riav亚洲国产免费| 小说图片视频综合网站| 日本免费a在线| 少妇高潮的动态图| videossex国产| 黄色日韩在线| 99久久精品国产国产毛片| 1000部很黄的大片| 国产精品美女特级片免费视频播放器| 精品一区二区三区人妻视频| 久久精品国产亚洲网站| 无遮挡黄片免费观看| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 天堂网av新在线| 久久精品综合一区二区三区| 亚洲性久久影院| 国产成人a∨麻豆精品| 日本三级黄在线观看| 嫩草影视91久久| 久久久久性生活片| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 99久久中文字幕三级久久日本| 成人综合一区亚洲| 亚洲无线在线观看| 特级一级黄色大片| 卡戴珊不雅视频在线播放| 日韩精品中文字幕看吧| 最后的刺客免费高清国语| 精品一区二区三区人妻视频|