• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    2017-01-21 05:31:22XiaosongLIU劉小松

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    SHARP ESTIMATES OF ALL HOMOGENEOUS EXPANSIONS FOR A SUBCLASS OF QUASI-CONVEX MAPPINGS OF TYPE B AND ORDER α IN SEVERAL COMPLEX VARIABLES?

    Xiaosong LIU(劉小松)

    School of Mathematics and Computational Science,Lingnan Normal University, Zhanjiang 524048,China

    E-mail:lxszhjnc@163.com

    Taishun LIU(劉太順)

    Department of Mathematics,Huzhou University,Huzhou 313000,China

    E-mail:tsliu@hutc.zj.cn

    In this article,frst,the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α on the unit ball in complex Banach spaces are given.Second,the sharp estimates of all homogeneous expansions for the above generalized mappings on the unit polydisk in Cnare also established.In particular, the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings (include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables are get accordingly.Our results state that a weak version of the Bieberbach conjecture for quasi-convex mappings of type B and order α in several complex variables is proved,and the derived conclusions are the generalization of the classical results in one complex variable.

    homogeneous expansion;quasi-convex mapping of type B and order α;quasiconvex mapping;quasi-convex mapping of type A;quasi-convex mapping of type B

    2010 MR Subject Classifcation32A30;32H02

    1 Introduction

    In geometric function theorey of one complex variable,people show great interest in the following classical theorem.

    We are naturally to ask whether the corresponding result in several complex variables holds or not?In this article,we shall in part provide an afrmative answer.

    Concerning the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings(include quasi-convex mappings of type A and quasi-convex mappings of type B)in several complex variables,it was shown that the above result in general is invalid(see[13]). However,on a special domain,such as the unit polydisk in Cn,Liu[7],Liu and Liu[9]obtained the sharp estimates of all homogeneous expansions for quasi-convex mappings(include quasiconvex mappings of type A and quasi-convex mappings of type B)under diferent restricted conditions respectively.On the other hand,Liu and Liu[8]derived the sharp estimates of all homogeneous expansions for a subclass of quasi-convex mappings of type B and order α (include quasi-convex mappings,quasi-convex mappings of type A and quasi-convex mappings of type B).We mention that the family of quasi-convex mappings of type B and order α is a signifcant family of holomorphic mappings in several complex variables,and the Bieberbach conjecture in several complex variables(i.e.,the sharp estimates of all homogeneous expansions for biholomorphic starlike mappings on the unit polydisk in Cnhold)(see[1,3,10])is a very signifcant and extremal difcult problem.Owing to this reason,the sharp estimates of all homogeneous expansions for quasi-convex mappings of type B and order α seem to be a meaningful problem as well.

    Let X denote a complex Banach space with the norm k.k,let X?denote the dual space of X,let B be the open unit ball in X,and let U be the Euclidean open unit disk in C.We also denote by Unthe open unit polydisk in Cn,Bnthe Euclidean unit ball in Cnand N?the set of all positive integers.Let?Undenote the boundary of Un,(?U)nbe the distinguished boundary of Un.Let the symbol′mean transpose.For each x∈X{0},we defne

    By the Hahn-Banach theorem,T(x)is nonempty.

    Let H(B)be the set of all holomorphic mappings from B into X.We know that if f∈H(B), then

    for all y in some neighborhood of x∈B,where Dnf(x)is the nth-Fr′echet derivative of f at x, and for n≥1,

    We say that a holomorphic mapping f:B → X is biholomorphic if the inverse f?1exists and is holomorphic on the open set f(B).A mapping f∈H(B)is said to be locally biholomorphic if the Fr′echet derivative Df(x)has a bounded inverse for each x∈B.If f:B→ X is a holomorphic mapping,then we say that f is normalized if f(0)=0 and Df(0)=I,where I represents the identity operator from X into X.

    We say that a normalized biholomorphic mapping f:B→X is a starlike mapping if f(B) is a starlike domain with respect to the origin.

    Suppose that ?∈Cnis a bounded circular domain.The frst Fr′echet derivative and the m(m>2)-th Fr′echet derivative of a mapping f∈H(?)at point z∈? are written by Df(z),Dmf(z),respectively.

    Now we recall some defnitions below.

    Defnition 1.1(see[8]) Suppose that α∈[0,1)and f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be quasi-convex of type B and order α.

    Let QαB(B)be the set of all quasi-convex mapping of type B and order α on B.

    Defnition 1.2(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping,and denote

    If

    then f is said to be a quasi-convex mapping of type A on B.

    We denote by QA(B)the set of all quasi-convex mapping of type A on B.

    Defnition 1.3(see[2]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping of type B on B.

    We refer to the set QB(B)as the set of all quasi-convex mapping of type B on B.

    When X=Cn,Defnitions 1.1 and 1.2 are the same defnitions which were introduced by Roper and Sufridge[13].

    Defnition 1.4(see[14]) Suppose that f:B→X is a normalized locally biholomorphic mapping.If

    then f is said to be a quasi-convex mapping on B.

    Let Q(B)be the set of all quasi-convex mapping of type B on B.Gong[2]proved the inclusion relation

    Indeed,Defnitions 1.2,1.3 and 1.4 reduce to the criteria of biholomorphic convex functions in one complex variable.

    Defnition 1.5(see[5]) Let f∈H(B).It is said that f is k-fold symmetric if

    Defnition 1.6(see[6]) Suppose that ? is a domain(connected open set)in X which contains 0.It is said that x=0 is a zero of order k of f(x)if f(0)=0,···,Dk?1f(0)=0,but Dkf(0)6=0,where k∈N?.

    According to Defnitions 1.4 and 1.5,it is easily shown that x=0 is a zero of order k+1 (k∈N)of f(x)?x if f is a k-fold symmetric normalized holomorphic mapping f(x)(f(x)6≡x) defned on B.However,the converse is fail.

    Let QA,k+1(B)(resp.QB,k+1(B),Qk+1(B))be the subset of QA(B)(resp.QB(B),Q(B)) of mappings f such that z=0 is a zero of order k+1 of f(z)?z.

    2 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Ball of Complex Banach Spaces

    In order to prove the desired results in this section,we need to provide some lemmas as follows.

    Lemma 2.1Let α∈[0,1),f,p:B→ C∈H(B),f(0)=p(0)=1,f(e2πikx)=f(x), p(e2πikx)=p(x)(k∈N?),and f(x)+3Df(x)x+D2f(x)(x2)=(f(x)+Df(x)x)(α+(1?α)p(x)). Then

    ProofIn view of the hypothesis of Lemma 2.1,we have

    A simple calculation shows that

    Compare the homogeneous expansions of the two sides in the above equality.We derived the desired result.

    Lemma 2.2Let α∈[0,1),f,p:B→C∈H(B),f(0)=p(0)=1.If x=0 is a zero of order k+1(k∈N?)of xf(x)?x(resp.xp(x)?(x)),and f(x)+3Df(x)x+D2f(x)(x2)= (f(x)+Df(x)x)(α+(1?α)p(x)),then for any x∈B,

    ProofAccording to the conditions of Lemma 2.2,we obtain

    A direct computation shows that

    Compare the homogeneous expansions of the two sides in the above equality.It follows the desired result.

    We now begin to establish the desired results in this section.

    Theorem 2.1Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    ProofLet W(x)=(DF(x))?1D(DF(x)x)x.A straightforward computation shows that

    Since F(x)=xf(x)∈QαB(B),then according to Defnition 1.1,we see that

    Letting

    then p:B→C∈H(B),p(0)=f(0)=1,

    Also since F(x)=xf(x)is a k(k∈N?)-fold symmetric mapping,then f(e2πikx)=f(x)and p(e2πi

    kx)=p(x).We now deduce that

    hold by inductive method.When s=1,(2.3)holds from Lemma 2.1 and[11,Lemma 2.2](the case m=k+1).We assume that

    It sufces to prove that(2.3)holds for s=q+1.For this purpose,by applying Lemma 2.1, (2.4)and[11,Lemma 2.2],we know that

    That is

    Note that

    when F(x)=xf(x).Therefore in view of(2.3)and(2.5),it follows the result,as desired.

    It is easy to check that

    satisfes the condition of Theorem 2.1,where kuk=1.Taking x=ru(0≤r<1),it yields that

    We see that the estimates of Theorem 2.1 are sharp. ?

    Put α=0 in Theorem 2.1.Then we obtain the following corollary immediately.

    Corollary 2.1Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    Note that f(x)+Df(x)x 6=0,x∈B due to the growth theorem of F(x)=xf(x)∈QA(B) (or Q(B))and

    from S?(B)?QA(B)=Q(B)and Q(B)=QA(B)?QB(B)(see[2]).We readily get the following corollary from Corollary 2.1.

    Corollary 2.2Let f:B→C∈H(B),F(x)=xf(x)∈QA(B)(resp.Q(B)),and F is a k(k∈N?)-fold symmetric mapping on B.Then

    and the above estimates are sharp.

    By making use of Theorem 2.1,the Taylor expansion of F(x)=xf(x)and the triangle inequality of the norm in complex Banach spaces,we deduce the following two corollaries immediately(the details of the proof are omitted here).

    Corollary 2.3Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    The example of the sharpness of Corollary 2.1 is similar to that in Theorem 2.1,we need only to mention that

    holds for x=ru(0≤r<1).

    Corollary 2.4Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    ProofAccording to Corollary 2.1,triangle inequalities with respect to the norm in complex Banach spaces and the fact

    (see[4]),then it follows the result,as desired.Considering

    where kek=1,then F satisfes the conditions of Corollary 2.4.It is shown that

    by a direct calculation.We set x=re,ξ=Re(0≤r<1,R≥0).Then

    We see that the estimate of Corollary 2.4 is sharp. ?

    Taking α=0 in Corollaries 2.3 and 2.4,we directly obtain the corollaries as follows.

    Corollary 2.5Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimate is sharp.

    Corollary 2.6Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB(B),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X.Then

    and the above estimate is sharp.

    With the analogous explanation of Corollary 2.4,we get the following corollary from Corollary 2.6.

    Corollary 2.7Let f:B→C∈H(B),F(x)=xf(x)∈Q(B)(or QA(B)),and F(x)is a k(k∈N?)-fold symmetric mapping,where B is the unit ball of a complex Hilbert space X. Then

    and the above estimate is sharp.

    Remark 2.1The sharp growth and covering theorem for QA(B)(resp.Q(B))was given by Roper and Sufridge[13](the case of fnite dimension)(resp.Zhang and Liu[14](the case of infnite dimension)).However,up to now,the sharp growth and covering theorem for QB(Un), and the sharp distortion theorem for QA(Un)(Q(Un)and QB(Un)are still open problems in several complex variables.

    Theorem 2.2Let α∈[0,1),f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)= xf(x)∈QαB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofIn view of the hypothesis of Theorem 2.2,Lemma 2.2 and[11,Lemma 2.2],it yields that

    and

    Noticing that

    if F(x)=xf(x).Then we derive the desired result.The example which shows the sharpness of Theorem 2.2 is similar to that in Theorem 2.1.

    Letting α=0,it is easy to obtain the corollary as follow.

    Corollary 2.8Let f:B→C∈H(B),f(x)+Df(x)x 6=0,x∈B,F(x)=xf(x)∈QB,k+1(B).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the explanation of Corollary 2.4,we drive the following corollary from Corollary 2.8.

    Corollary 2.9Let f:B→C∈H(B),F(x)=xf(x)∈Qk+1(B)(or QA,k+1(B)).Then

    for x∈B.The above estimates are sharp for m=k+1 and m=2k+1.

    3 Sharp Estimates of All Homogeneous Expansions for a Subclass of Quasi-convex Mappings of Type B and Order α on the Unit Polydisk in Cn

    In this section,let each mjbe a non-negative integer,N=m1+m2+···+mn∈N?,and mj=0 implies that the corresponding components in Z and F(Z)are omitted.Uml(resp. UN)is denoted by the unit polydisk of Cml(l=1,2,···,n)(resp.CN).

    It is necessary to establish the following lemmas in order to get the desired results in this section.

    Lemma 3.1(see[8]) Suppose that α∈[0,1),and f is a normalized locally biholomorphic mapping on Un.Then f∈QKαB(Un)if and only if

    Theorem 3.1Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    ProofIn view of the condition of Theorem 3.1,for any Z=(Z1,Z2,···,Zn)′∈UN,it is shown that

    by a direct calculation.We pay attention to that

    Then we know that

    from Lemma 3.1.Noticing that

    here kZlkml(resp.kZkN)is briefy denoted by kZlk(resp.kZk),it follows the desired result.

    For any Z=(Z1,Z2,···,Zn)′∈UN,it is not difcult to check that

    satisfes the condition of Theorem 3.1,where Zl=(Zl1,Zl2,···,Zlml)′∈Uml,l=1,2,···,n. We set Zl=(R,0,···,0)′(0≤R<1),l=1,2,···,n.It is easy to obtain

    Hence the estimates of Theorem 3.1 are sharp.

    We set α=0 in Theorem 3.1.Then we easily get the following corollary.

    Corollary 3.1Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···,Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB(UN),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    With the similar interpretation of Corollary 2.4,it is apparent to obtain the corollary as follow.

    Corollary 3.2Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(F1(Z1),F2(Z2),···, Fn(Zn))′=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈Q(UN)(QA(UN)),and F is a k(k∈N?)-fold symmetric mapping.Then

    and the above estimates are sharp.

    Theorem 3.2Let α∈[0,1),fl:Uml→C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml, l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QαB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    ProofWith the analogous arguments as in the proof of Theorem 2.2,it follows the desired result. ?

    Put α=0 in Theorem 3.2.Then we readily obtain the following corollary.

    Corollary 3.3Let fl:Uml→ C∈H(Uml),fl(Zl)+Dfl(Zl)Zl6=0,Zl∈Uml,l= 1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2),···,Znfn(Zn))′∈QB,k+1(UN).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    Similar to that in the interpretation of Corollary 2.2,we easily obtain the corollary as follow.

    Corollary 3.4Let fl:Uml→C∈H(Uml),l=1,2,···,n,F(Z)=(Z1f1(Z1),Z2f2(Z2), ···,Znfn(Zn))′∈Qk+1(UN)(QA,k+1(UN)).Then

    for Z=(Z1,Z2,···,Zn)′∈UN.The above estimates are sharp for m=k+1 and m=2k+1.

    and the above estimates are sharp.

    ProofFixWe writeLet

    by a simple calculation.Therefore,we have

    It is also easy to know that

    from(3.1).Comparing the coefcients of the two sides in the above equality,it is shown that

    Hence,by Theorem 2.1(the case X=C,B=U),we conclude that

    When z0∈(?U)n,it yields that

    Also in view of Dsk+1Fl(0)(zsk+1)is a holomorphic function on Un,we have

    by the maximum modulus theorem of holomorphic functions on the unit polydisk.This implies that

    Therefore,

    It is not difcult to verify that

    satisfes the condition of Theorem 3.3.Put z=(r,0,···,0)′(0≤r<1),we see that

    by a direct computation.Then we know that the sharpness for the estimates of Theorem 3.3.

    Taking α=0 in Theorem 3.3,we get the following corollary immedately.

    and the above estimates are sharp.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    We set α=0 in Theorem 3.4.Then it is obvious to obtain the corollary as follow.

    for z=(z1,z2,···,zn)′∈Un.The above estimates are sharp for m=k+1 and m=2k+1.

    Remark 3.1We see that Theorem 2.1 is the special case of Theorem 3.3 if X=Cn, B=Un,and Theorem 3.1 is the special case of Theorem 3.3 if m1=n,ml=0,l=2,···,n or ml=1,l=1,2,···,n as well.

    Remark 3.2It is not difcult to verify that F(z)=zf(z)in general does not satisfy

    In view of Theorems 2.1,3.1 and 3.3,we accordingly pose the open problem as follow.

    Open problem 3.1Suppose that F∈QαB(Un),and F is a k(k∈N?)-fold symmetric mapping on Un.Then

    and the above estimates are sharp.

    [1]Gong S.The Bieberbach Conjecture.International Press.Providence RI:Amer Math Soc,1999

    [2]Gong S.Convex and Starlike Mappings in Several Complex Variables(in Chinese).2nd ed.Beijing:Science Press,2003

    [3]Graham I,Kohr G.Geometric Function Theory in One and Higher Dimensions.New York:Marcel Dekker, 2003

    [4]H¨ormander L.On a theorem of Graced.Math Scand,1954,2:55–64

    [5]Honda T.The growth theorem for k-fold symmetric convex mappings.Bull London Math Soc,2002,34: 717–724

    [6]Lin Y Y,Hong Y.Some properties of holomorphic maps in Banach spaces.Acta Math Sinica,1995,38(2): 234–241(in Chinese)

    [7]Liu X S.On the quasi-convex mappings on the unit polydisk in Cn.J Math Anal Appl,2007,335:43–55

    [8]Liu X S,Liu M S.Quasi-convex mappings of order α on the unit polydisk in Cn.Rocky Mountain J Math, 2010,40:1619–1644

    [9]Liu X S,Liu T S.The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in Cn.Chin Ann Math,2011,32B:241–252

    [10]Liu X S,Liu T S.The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in Cn.Acta Math Sci,2012,32B:752–764

    [11]Liu X S,Liu T S,Xu Q H.A proof of a weak version of the Bieberbach conjecture in several complex variables.Sci China Math,2015,58:2531–2540

    [12]Robertson M S.On the theory of univalent functions.Ann Math,1936,37:374–408

    [13]Roper K A,Sufridge T J.Convexity properties of holomorphic mappings in Cn.Trans Amer Math Soc, 1999,351:1803–1833

    [14]Zhang W J,Liu T S.The growth and covering theorems for quasi-convex mappings in the unit ball of a complex Banach space.Sci China Ser A-Math,2002,45:1538–1547

    ?Received March 24,2015;revised December 23,2015.Supported by National Natural Science Foundation of China(11471111)and Guangdong Natural Science Foundation(2014A030307016).

    色综合色国产| 亚洲成人免费电影在线观看| 国产伦在线观看视频一区| 美女cb高潮喷水在线观看| 亚洲美女视频黄频| 国产熟女欧美一区二区| 色5月婷婷丁香| 久久久精品大字幕| 一本精品99久久精品77| 国内精品宾馆在线| 有码 亚洲区| 88av欧美| 美女高潮喷水抽搐中文字幕| 国产男靠女视频免费网站| 搞女人的毛片| 91在线观看av| 欧美极品一区二区三区四区| 我要看日韩黄色一级片| 身体一侧抽搐| 午夜视频国产福利| 成人一区二区视频在线观看| 国产激情偷乱视频一区二区| 在线国产一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 给我免费播放毛片高清在线观看| 两个人视频免费观看高清| 日本与韩国留学比较| 男女那种视频在线观看| 久久人妻av系列| 一本精品99久久精品77| 校园春色视频在线观看| 午夜爱爱视频在线播放| 综合色av麻豆| 长腿黑丝高跟| 日韩欧美三级三区| 国产成年人精品一区二区| 少妇人妻一区二区三区视频| 亚洲国产高清在线一区二区三| 中文字幕高清在线视频| 精品人妻一区二区三区麻豆 | 亚洲中文字幕日韩| 看黄色毛片网站| 日韩欧美在线二视频| 中出人妻视频一区二区| 中文字幕免费在线视频6| 一级黄片播放器| 一个人免费在线观看电影| 国产蜜桃级精品一区二区三区| 色哟哟哟哟哟哟| 在线播放无遮挡| 亚洲国产精品久久男人天堂| 国产精品一区www在线观看 | 黄色欧美视频在线观看| 国产日本99.免费观看| 天天躁日日操中文字幕| 床上黄色一级片| 日韩中字成人| 麻豆久久精品国产亚洲av| 欧美人与善性xxx| 亚洲av成人精品一区久久| 精品日产1卡2卡| 久久久久性生活片| 午夜精品久久久久久毛片777| 日本免费a在线| 亚洲中文字幕日韩| 日本一本二区三区精品| 麻豆av噜噜一区二区三区| 国产单亲对白刺激| 亚洲av不卡在线观看| 精品午夜福利视频在线观看一区| 99精品久久久久人妻精品| 嫁个100分男人电影在线观看| 午夜老司机福利剧场| 亚洲四区av| 国内精品宾馆在线| 欧美在线一区亚洲| 2021天堂中文幕一二区在线观| 国产视频一区二区在线看| 免费看光身美女| 国产精品亚洲美女久久久| 欧美日韩瑟瑟在线播放| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成av人片在线播放无| 看十八女毛片水多多多| 成人av一区二区三区在线看| 美女大奶头视频| ponron亚洲| 亚洲人成网站在线播放欧美日韩| 22中文网久久字幕| 久久亚洲精品不卡| 深夜精品福利| 国产伦人伦偷精品视频| 最后的刺客免费高清国语| 欧美丝袜亚洲另类 | 成人永久免费在线观看视频| 午夜福利成人在线免费观看| 少妇人妻精品综合一区二区 | 亚洲在线观看片| 国产精品久久久久久久久免| 亚洲欧美精品综合久久99| 一个人观看的视频www高清免费观看| 99九九线精品视频在线观看视频| 亚洲一级一片aⅴ在线观看| 男人舔女人下体高潮全视频| 神马国产精品三级电影在线观看| 三级国产精品欧美在线观看| 一个人看的www免费观看视频| 色综合色国产| 欧美绝顶高潮抽搐喷水| 黄色配什么色好看| 国产精品电影一区二区三区| 一级av片app| 国产美女午夜福利| 一边摸一边抽搐一进一小说| 久久久久久久久久黄片| 成人特级黄色片久久久久久久| 日本熟妇午夜| 国产在线男女| 观看免费一级毛片| 婷婷丁香在线五月| 久久精品国产亚洲网站| 很黄的视频免费| 午夜福利视频1000在线观看| 亚洲aⅴ乱码一区二区在线播放| 我要看日韩黄色一级片| 欧美成人性av电影在线观看| 偷拍熟女少妇极品色| 亚洲精品粉嫩美女一区| 亚洲一级一片aⅴ在线观看| 国产高清激情床上av| 亚洲av美国av| 国内毛片毛片毛片毛片毛片| 欧美成人一区二区免费高清观看| 成人午夜高清在线视频| 69av精品久久久久久| 午夜精品久久久久久毛片777| 国产69精品久久久久777片| 亚洲久久久久久中文字幕| 日本一本二区三区精品| 一本精品99久久精品77| 午夜激情福利司机影院| 国产精品嫩草影院av在线观看 | 夜夜夜夜夜久久久久| 欧美国产日韩亚洲一区| 成人精品一区二区免费| 午夜日韩欧美国产| 尤物成人国产欧美一区二区三区| 国产av麻豆久久久久久久| 一级黄色大片毛片| 日韩人妻高清精品专区| 22中文网久久字幕| 亚洲一区二区三区色噜噜| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 欧美一区二区国产精品久久精品| 天天躁日日操中文字幕| 午夜爱爱视频在线播放| 国产精品嫩草影院av在线观看 | a在线观看视频网站| 国产美女午夜福利| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 国产精品国产三级国产av玫瑰| 久久久久久大精品| 久久久久久久久久黄片| 91麻豆精品激情在线观看国产| 国产私拍福利视频在线观看| 精品午夜福利在线看| 国产av不卡久久| 亚洲精品国产成人久久av| 亚洲精品国产成人久久av| 国内毛片毛片毛片毛片毛片| 亚洲无线在线观看| 午夜免费激情av| 成年人黄色毛片网站| 午夜免费激情av| 高清毛片免费观看视频网站| 国产成人影院久久av| 国产成人影院久久av| 一本久久中文字幕| 一边摸一边抽搐一进一小说| 中亚洲国语对白在线视频| 天天躁日日操中文字幕| 嫩草影院入口| 中亚洲国语对白在线视频| 性插视频无遮挡在线免费观看| 国产精品久久久久久av不卡| 国产精品久久久久久av不卡| 男女视频在线观看网站免费| 天天躁日日操中文字幕| 一区二区三区免费毛片| 午夜福利在线观看吧| 中国美女看黄片| 桃红色精品国产亚洲av| 嫁个100分男人电影在线观看| 男人的好看免费观看在线视频| 非洲黑人性xxxx精品又粗又长| 国产大屁股一区二区在线视频| 成人欧美大片| 午夜日韩欧美国产| 久久久久免费精品人妻一区二区| 久久香蕉精品热| 神马国产精品三级电影在线观看| 色吧在线观看| 一级毛片久久久久久久久女| 免费观看人在逋| 丝袜美腿在线中文| 日韩高清综合在线| 色视频www国产| 国产伦精品一区二区三区四那| 在线天堂最新版资源| 少妇被粗大猛烈的视频| 少妇的逼好多水| 校园人妻丝袜中文字幕| 美女cb高潮喷水在线观看| 亚洲中文日韩欧美视频| 成年女人看的毛片在线观看| 一区福利在线观看| 亚洲国产精品成人综合色| 午夜精品在线福利| 午夜爱爱视频在线播放| a在线观看视频网站| 国产成人aa在线观看| 极品教师在线视频| 免费一级毛片在线播放高清视频| av天堂中文字幕网| 黄片wwwwww| 制服丝袜大香蕉在线| 免费搜索国产男女视频| 亚洲最大成人手机在线| 校园春色视频在线观看| 午夜日韩欧美国产| 窝窝影院91人妻| 可以在线观看毛片的网站| 亚洲色图av天堂| 久久国产乱子免费精品| 国产精品无大码| 免费不卡的大黄色大毛片视频在线观看 | 女人十人毛片免费观看3o分钟| 可以在线观看的亚洲视频| 精品久久久噜噜| 色5月婷婷丁香| 亚洲国产精品合色在线| 亚洲成人免费电影在线观看| 男女啪啪激烈高潮av片| 又粗又爽又猛毛片免费看| 男女啪啪激烈高潮av片| 午夜福利欧美成人| 免费不卡的大黄色大毛片视频在线观看 | 免费观看人在逋| 欧美xxxx性猛交bbbb| 人妻久久中文字幕网| 亚洲图色成人| 免费人成在线观看视频色| 国产午夜精品论理片| 亚洲专区国产一区二区| 色哟哟哟哟哟哟| 国产精品福利在线免费观看| 黄色女人牲交| 亚洲国产欧美人成| а√天堂www在线а√下载| 欧美成人一区二区免费高清观看| 最近在线观看免费完整版| 欧美3d第一页| 国产又黄又爽又无遮挡在线| 成人欧美大片| 伊人久久精品亚洲午夜| 亚洲第一区二区三区不卡| 免费看a级黄色片| 日韩欧美一区二区三区在线观看| 十八禁网站免费在线| 日韩av在线大香蕉| 能在线免费观看的黄片| 又爽又黄a免费视频| 日韩精品中文字幕看吧| 国产精品无大码| 国产精品自产拍在线观看55亚洲| 97热精品久久久久久| 在线免费观看不下载黄p国产 | 精品一区二区三区视频在线观看免费| 91av网一区二区| 中文字幕熟女人妻在线| 熟女人妻精品中文字幕| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区免费观看 | 乱码一卡2卡4卡精品| 国产白丝娇喘喷水9色精品| 日本五十路高清| 久久久久久国产a免费观看| 久久久久国内视频| 久久午夜亚洲精品久久| 国产日本99.免费观看| 亚洲第一电影网av| 又黄又爽又刺激的免费视频.| 日本成人三级电影网站| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 中国美女看黄片| 久久久久九九精品影院| www.www免费av| 最近最新免费中文字幕在线| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱 | 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 亚洲图色成人| 在线a可以看的网站| 草草在线视频免费看| 精品久久久久久久末码| 别揉我奶头 嗯啊视频| 国产成人一区二区在线| 国产女主播在线喷水免费视频网站 | 一区福利在线观看| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 久久久久久久久久成人| 国产免费一级a男人的天堂| 久久精品久久久久久噜噜老黄 | 亚洲av成人av| 99国产精品一区二区蜜桃av| 久久久久性生活片| 欧美日本视频| 深夜a级毛片| 日韩强制内射视频| 国产精品嫩草影院av在线观看 | 免费人成在线观看视频色| 国产精品一区二区三区四区免费观看 | 很黄的视频免费| av黄色大香蕉| 亚洲,欧美,日韩| 国产高潮美女av| 他把我摸到了高潮在线观看| 国产精品女同一区二区软件 | 亚洲最大成人中文| 亚洲 国产 在线| 他把我摸到了高潮在线观看| 日本免费a在线| 国产成人av教育| 淫妇啪啪啪对白视频| 成年版毛片免费区| 午夜影院日韩av| 麻豆国产97在线/欧美| 日本 欧美在线| 男人狂女人下面高潮的视频| 欧美潮喷喷水| 亚洲无线观看免费| 国产精品综合久久久久久久免费| 国产精品人妻久久久影院| 亚洲欧美日韩高清专用| 淫妇啪啪啪对白视频| 国产高潮美女av| 九九久久精品国产亚洲av麻豆| 淫秽高清视频在线观看| 久久6这里有精品| 中文字幕精品亚洲无线码一区| 小蜜桃在线观看免费完整版高清| 波多野结衣高清无吗| 久久久久久国产a免费观看| 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 国产色爽女视频免费观看| 色综合婷婷激情| 亚洲av二区三区四区| 国产高清视频在线播放一区| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av香蕉五月| 18禁黄网站禁片免费观看直播| 国产午夜精品久久久久久一区二区三区 | 啦啦啦观看免费观看视频高清| 天天一区二区日本电影三级| 97碰自拍视频| 久久久久久伊人网av| 我要看日韩黄色一级片| 欧美日韩乱码在线| 免费人成视频x8x8入口观看| 蜜桃亚洲精品一区二区三区| 久久香蕉精品热| 91久久精品国产一区二区三区| 在线看三级毛片| 日韩欧美在线乱码| 欧美日本亚洲视频在线播放| av视频在线观看入口| 国产aⅴ精品一区二区三区波| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 午夜久久久久精精品| 国产老妇女一区| 久久精品国产亚洲av香蕉五月| 91在线精品国自产拍蜜月| 最新在线观看一区二区三区| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| www.www免费av| 国内精品久久久久精免费| 国产毛片a区久久久久| 久久国产乱子免费精品| 亚洲av熟女| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 国产亚洲91精品色在线| av女优亚洲男人天堂| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 夜夜爽天天搞| 直男gayav资源| 男人舔奶头视频| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 国产精品三级大全| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 免费不卡的大黄色大毛片视频在线观看 | 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 日韩中文字幕欧美一区二区| 制服丝袜大香蕉在线| 国产色婷婷99| 亚洲精品日韩av片在线观看| 久9热在线精品视频| 国产视频一区二区在线看| 舔av片在线| 男女那种视频在线观看| 日日啪夜夜撸| 午夜a级毛片| 嫩草影院精品99| 欧美极品一区二区三区四区| 不卡视频在线观看欧美| 久久久成人免费电影| 免费观看的影片在线观看| 国产在线男女| 少妇人妻一区二区三区视频| 久久午夜福利片| 日日夜夜操网爽| 精品国产三级普通话版| 男插女下体视频免费在线播放| 韩国av一区二区三区四区| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 亚洲专区国产一区二区| 超碰av人人做人人爽久久| 可以在线观看毛片的网站| 成人国产麻豆网| 日本撒尿小便嘘嘘汇集6| 在线a可以看的网站| 国产一区二区激情短视频| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看 | 国产视频一区二区在线看| 国产成人福利小说| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 亚洲av一区综合| av黄色大香蕉| 又粗又爽又猛毛片免费看| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 久久精品91蜜桃| 精品免费久久久久久久清纯| 欧美日本视频| 亚洲精品粉嫩美女一区| 又黄又爽又刺激的免费视频.| 18禁黄网站禁片免费观看直播| 人妻少妇偷人精品九色| 小说图片视频综合网站| 精品免费久久久久久久清纯| 看片在线看免费视频| 日韩欧美三级三区| 黄色丝袜av网址大全| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 免费观看人在逋| 欧美潮喷喷水| 午夜a级毛片| 熟女人妻精品中文字幕| 国产精品国产高清国产av| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片 | 桃红色精品国产亚洲av| 黄色一级大片看看| 亚洲狠狠婷婷综合久久图片| 天堂网av新在线| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 色在线成人网| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 性插视频无遮挡在线免费观看| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 三级毛片av免费| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 99久久精品一区二区三区| 男女做爰动态图高潮gif福利片| 免费在线观看成人毛片| 不卡一级毛片| 一本久久中文字幕| .国产精品久久| 岛国在线免费视频观看| 欧美激情国产日韩精品一区| 成人特级av手机在线观看| 国产av麻豆久久久久久久| 99热只有精品国产| 一本精品99久久精品77| 国产 一区精品| 国产69精品久久久久777片| 国产三级在线视频| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 男女视频在线观看网站免费| 久久久久久久久久成人| or卡值多少钱| 亚洲中文日韩欧美视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 国产av不卡久久| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 尾随美女入室| 变态另类丝袜制服| 国产精品永久免费网站| 少妇丰满av| 中文字幕免费在线视频6| 少妇人妻一区二区三区视频| 在线看三级毛片| 97碰自拍视频| 日韩 亚洲 欧美在线| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 色综合站精品国产| 亚洲av中文字字幕乱码综合| 天堂动漫精品| 日韩一区二区视频免费看| 九九热线精品视视频播放| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 又爽又黄a免费视频| avwww免费| 亚洲avbb在线观看| 少妇被粗大猛烈的视频| 欧美中文日本在线观看视频| 午夜影院日韩av| 国产亚洲欧美98| 色在线成人网| 最新在线观看一区二区三区| 午夜影院日韩av| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 国模一区二区三区四区视频| 欧美+日韩+精品| 国产一区二区三区在线臀色熟女| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 啦啦啦观看免费观看视频高清| 免费高清视频大片| 国产精品美女特级片免费视频播放器| 熟女电影av网| 人妻夜夜爽99麻豆av| 国产精品久久视频播放| 一个人看的www免费观看视频| 亚洲av熟女| 成人国产综合亚洲| 亚洲av熟女| 伦理电影大哥的女人| 日韩av在线大香蕉| 伊人久久精品亚洲午夜| 日韩欧美免费精品| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6 | 国产大屁股一区二区在线视频| 亚洲av.av天堂| 99久久成人亚洲精品观看| 国产主播在线观看一区二区| 欧美极品一区二区三区四区| 亚洲精品成人久久久久久| 91精品国产九色| 美女大奶头视频| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| av天堂中文字幕网| 一区二区三区免费毛片|