• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    植物對(duì)不同形態(tài)磷響應(yīng)特征研究進(jìn)展

    2017-01-21 21:23:35李廷軒葉代樺張錫洲郭靜怡
    關(guān)鍵詞:植酸酶磷酸酶無(wú)機(jī)

    李廷軒,葉代樺,張錫洲,郭靜怡

    (四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川成都 611130)

    植物對(duì)不同形態(tài)磷響應(yīng)特征研究進(jìn)展

    李廷軒,葉代樺,張錫洲,郭靜怡

    (四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川成都 611130)

    磷是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素之一,參與植物體內(nèi)許多重要化合物的合成與代謝。土壤中磷素具有多種形態(tài),且不同形態(tài)磷的植物有效性差異較大;植物在不同形態(tài)磷環(huán)境下,體內(nèi)會(huì)形成相應(yīng)的適應(yīng)性機(jī)制。植物吸收積累磷通常與根形態(tài)、根系分泌物、體內(nèi)磷轉(zhuǎn)運(yùn)等因素有關(guān),受到特異基因表達(dá)的調(diào)控。了解植物對(duì)磷的吸收積累特性是篩選磷高效植物或磷富集植物的前提,也是充分利用土壤磷素資源、修復(fù)磷過(guò)剩環(huán)境的關(guān)鍵。根據(jù)國(guó)內(nèi)外研究現(xiàn)狀,本文從磷素吸收積累、根系形態(tài)特征、磷酸酶與植酸酶的變化以及磷營(yíng)養(yǎng)高效的分子機(jī)制,綜述了植物對(duì)不同形態(tài)磷的響應(yīng)特征,并對(duì)未來(lái)該領(lǐng)域的研究進(jìn)行了展望。

    磷形態(tài);磷高效;磷富集;植物響應(yīng)機(jī)制

    土壤中絕大部分磷以難溶性的無(wú)機(jī)態(tài)和有機(jī)態(tài)形式存在,其中僅有1%左右的磷可被植物直接吸收利用[1]。與植物其他必需礦質(zhì)元素相比,土壤中磷的有效性低、遷移性差,導(dǎo)致部分土壤有效磷供應(yīng)不足。全國(guó)農(nóng)田土壤從南到北全磷含量變幅為0.31~1.72 g/kg,有效磷的平均含量?jī)H為12.89 mg/kg[2]。研究表明,25 mg/kg左右的土壤有效磷是保障作物高產(chǎn)的前提[3]。農(nóng)田土壤磷的有效性過(guò)低已成為作物生產(chǎn)的主要限制因素之一,施用磷肥可有效緩解這種現(xiàn)狀。然而,大量施用磷肥不僅直接造成磷礦資源的逐漸耗竭,而且導(dǎo)致大量農(nóng)田土壤中磷素過(guò)剩,進(jìn)而引發(fā)一系列高風(fēng)險(xiǎn)的環(huán)境問(wèn)題。中國(guó)與許多畜牧業(yè)發(fā)達(dá)國(guó)家常將土壤作為畜禽糞便的負(fù)載場(chǎng)所[4]。營(yíng)養(yǎng)成分豐富的有機(jī)肥 (雞糞、豬糞、山羊糞等) 施入土壤后,使得土壤中的磷含量超過(guò)了作物所需[5],造成土壤可溶性磷含量增加,地表徑流中的磷流失量也增加[6]。當(dāng)土壤有效磷含量超過(guò)60 mg/kg時(shí),磷素易通過(guò)淋溶損失[7]。據(jù)統(tǒng)計(jì),我國(guó)的磷肥施用量已占全球施用總量的52%,集約化耕作土壤的磷累積現(xiàn)象嚴(yán)重,平均磷素累積量高達(dá)242 kg/hm2[8–9],磷引起的面源污染對(duì)我國(guó)水體總污染的貢獻(xiàn)高達(dá)93%[10]。因此,如何提高磷肥利用率、降低磷肥投入、減少土壤磷的流失以及提取環(huán)境中過(guò)剩的磷已成為資源環(huán)境領(lǐng)域研究的熱點(diǎn)問(wèn)題。

    篩選干物質(zhì)量大、磷含量低的磷高效植物 (牧草或谷物) 是降低磷肥施用量、緩解農(nóng)田土壤有效磷含量過(guò)低的有效途徑之一[11–12];利用磷高效植物作為動(dòng)物飼料能從源頭上防控大量磷隨畜禽糞便排出帶來(lái)的環(huán)境污染風(fēng)險(xiǎn)。此外,利用磷富集植物從磷豐富土壤中提取過(guò)剩的磷是一種有效的治理方法[13]。植物修復(fù)具有成本低、不破壞土壤和水體生態(tài)環(huán)境、不引起二次污染等優(yōu)點(diǎn)。磷富集植物收獲后又可作為綠肥資源,從而降低化肥施用量,減緩施用化肥對(duì)資源環(huán)境的污染與破壞。土壤中不同形態(tài)磷的有效性差異較大[14–17],不同植物對(duì)各形態(tài)磷的吸收利用各異[18],從而直接影響植物吸收積累磷素的能力。了解土壤中不同形態(tài)磷的有效性并從生理生化特征和分子水平變化角度闡明磷高效作物和磷富集植物對(duì)不同形態(tài)磷的吸收積累機(jī)制,可為充分利用磷資源,降低磷肥施用量,亦或有效提取土壤過(guò)剩磷提供依據(jù)。近年來(lái),國(guó)內(nèi)外關(guān)于植物對(duì)不同形態(tài)磷的吸收積累機(jī)制研究取得了較多進(jìn)展。因此,本文總結(jié)了不同形態(tài)磷環(huán)境下,磷高效作物和磷富集植物對(duì)磷的吸收積累特征及其根系形態(tài)、磷酸酶、植酸酶和磷營(yíng)養(yǎng)高效相關(guān)的特異基因在該過(guò)程中的作用。

    1 土壤中磷的形態(tài)

    磷分為無(wú)機(jī)態(tài)和有機(jī)態(tài)。無(wú)機(jī)態(tài)磷主要包括原生礦物和次生礦物中的無(wú)機(jī)磷酸鹽[19]。土壤無(wú)機(jī)態(tài)磷除少量的水溶態(tài)外,大部分以吸附態(tài)和礦物態(tài)存在于土壤中。有機(jī)態(tài)磷分為小分子有機(jī)態(tài)磷和大分子有機(jī)態(tài)磷,許多小分子有機(jī)態(tài)磷易溶于水、含量較低,但容量大、持續(xù)供應(yīng)能力強(qiáng),因此其對(duì)植物磷營(yíng)養(yǎng)的貢獻(xiàn)不容低估。

    1.1 無(wú)機(jī)態(tài)磷

    土壤無(wú)機(jī)態(tài)磷約有99%以礦物態(tài)存在,根據(jù)其在不同化學(xué)提取劑中的選擇溶解性差異可分為磷酸鋁類 (Al-P)、磷酸鐵類 (Fe-P)、磷酸鈣 (鎂) 類 (Ca-P)和閉蓄態(tài)磷 (O-P)。蔣柏藩和顧益初將石灰性土壤的Ca-P分為磷酸二鈣型 (Ca2-P)、磷酸八鈣型 (Ca8-P) 和磷灰石型 (Ca10-P)[14–15]。各形態(tài)磷有效性差異較大,具體表現(xiàn)為Ca2-P有效性較高、持續(xù)性好,Ca8-P為緩效性磷源,Ca10-P是一種潛在性磷源。閉蓄態(tài)磷溶解度小,難以被植物利用。

    土壤中的水溶態(tài)磷是植物吸收利用的最有效形態(tài),但其含量極低,變化范圍在0.003~0.3 mg/L之間[22]。土壤水溶性磷含量主要受土壤pH、施肥方式及土壤固相磷的濃度和結(jié)合狀態(tài)影響,其補(bǔ)給主要源于磷酸鹽礦物的溶解和吸附固定態(tài)磷的釋放。

    1.2 有機(jī)態(tài)磷

    有機(jī)態(tài)磷在土壤磷庫(kù)中占較大的比例,為土壤全磷的20%~50%[23–24],包括植素類 (如肌醇磷酸鹽),核酸類 (如核酸、核苷酸),磷脂類 (如磷脂) 和其他有機(jī)磷化合物 (如微生物磷)。植素類的肌醇磷酸鹽占比最大,約為有機(jī)態(tài)磷總量的一半[25]。肌醇磷酸鹽包括一磷酸鹽到六磷酸鹽的系列磷酸鹽,并以肌醇六磷酸鹽 (植酸) 為主[24]。磷脂、核酸、核苷酸和磷酸糖類約占5%。土壤微生物磷含量?jī)H占微生物干物質(zhì)量的1.4%~4.7%[23],其周轉(zhuǎn)速率快,能釋放出活性較高的磷,被視為植物有效磷供應(yīng)的重要來(lái)源。研究表明,已鑒別出來(lái)的土壤有機(jī)態(tài)磷含量大小為肌醇磷酸鹽>多聚糖磷酸鹽>核酸>磷脂>磷糖[19]。除上述有機(jī)態(tài)磷外,至今仍有近一半的成分沒有鑒別出來(lái)。有機(jī)態(tài)磷需在酶的作用下分解成無(wú)機(jī)態(tài)磷后才能發(fā)揮其植物有效性[17]。有研究認(rèn)為,小分子有機(jī)態(tài)磷能被某些植物直接吸收利用[26–28]。土壤有機(jī)態(tài)磷的年礦化率較小 (2%~4%),但可逐漸礦化,從而增加土壤有效態(tài)磷含量,滿足植物對(duì)磷的吸收需求[24]。

    2 植物對(duì)不同形態(tài)磷的吸收積累

    植物根系從土壤中吸收的磷主要為通過(guò)擴(kuò)散形式到達(dá)根系表面的磷常與土壤中的陽(yáng)離子和有機(jī)物緊密結(jié)合,形成不同形態(tài)的磷,影響著植物對(duì)磷的吸收積累。不同磷效率植物對(duì)各形態(tài)磷的吸收利用差異較大,磷高效基因型植物對(duì)環(huán)境中有機(jī)態(tài)磷的吸收利用能力強(qiáng)于磷低效基因型。在Al-P條件下,大豆生物量及磷含量均高于Fe-P和Ca-P處理,且高效基因型對(duì)Al-P和Fe-P的吸收利用能力更強(qiáng)[29]。在控釋肥和KH2PO4條件下,磷高效基因型白羽扇豆生物量和體內(nèi)磷含量無(wú)明顯差異,均顯著高于Al-P和Ca-P處理[30];磷高效基因型小麥的吸磷量和磷吸收效率也顯著高于磷低效基因型[31]。水稻在Ca-P處理下能正常生長(zhǎng),且磷高效基因型Pembe對(duì)根際碳酸氫鈉提取態(tài)和氫氧化鈉提取態(tài)有機(jī)磷的吸收利用能力強(qiáng)于磷低效基因型Zhongbu51[32]。牧草 (Trifolium subterraneum L.) 能高效吸收利用有機(jī)態(tài)磷α-D-葡萄糖-1-磷酸二鈉鹽(G1P) 和Na2HPO4,但對(duì)于植酸態(tài)磷 (IHP) 的吸收利用能力卻較弱[33],在G1P和Na2HPO4條件下植株體內(nèi)磷含量是IHP處理下的4~7倍。小麥 (Triticum aestivum L.) 對(duì)不同形態(tài)磷的響應(yīng)各異,與IHP處理相比,在 G1P、腺苷-5′-三磷酸二鈉 (ATP) 和Na2HPO4條件下磷積累量更高,地上部生物量更大[34]。IHP處理對(duì)植物生長(zhǎng)具有明顯的抑制作用,與無(wú)機(jī)態(tài)磷處理相比,兩種基因型水稻“中部51”、“Azucena”和野生型煙草的生物量和磷含量均降低[35–36]。對(duì)磷富集植物水蓼 (Polygonum hydropiper) 的研究發(fā)現(xiàn),礦山生態(tài)型在不同形態(tài)磷條件下吸收積累磷的能力均強(qiáng)于非礦山生態(tài)型,其對(duì)KH2PO4和IHP中磷的吸收積累能力顯著高于AMP、ATP和G1P處理[37–39]。礦山生態(tài)型粗齒冷水花 (Pilea sinofasciata) 對(duì)KH2PO4的吸收積累能力強(qiáng)于非礦山生態(tài)型,體內(nèi)磷含量可達(dá)16.23 g/kg DW[37,40]。在高磷條件下,磷富集植物Duo festulolium體內(nèi)磷含量高達(dá)12 g/kg DW,具有較強(qiáng)的磷積累特性,能吸收利用不同形態(tài)的磷,在ATP條件下地上部磷含量最高[16]。Sharma等[17]發(fā)現(xiàn)Gulf和Marshall黑麥草 (Lolium multiflorum L.)對(duì)IHP的吸收積累能力與對(duì)磷酸鹽的吸收積累能力相當(dāng),且遠(yuǎn)高于對(duì)其他有機(jī)態(tài)磷的吸收積累。底物有效性較低可能是限制植物利用IHP能力的因素之一,高濃度IHP處理下植株地上部干物質(zhì)量、磷含量等均顯著高于低濃度IHP處理[17,36,41]。浮游植物可以利用溶解態(tài)磷,包括正磷酸鹽無(wú)機(jī)縮聚磷酸鹽 (焦磷酸鹽、偏磷酸鹽和多聚磷酸鹽) 和有機(jī)結(jié)合磷 (氨基磷酸、磷核苷酸類化合物、磷蛋白、核蛋白、磷脂和糖類磷酸酯等)。正磷酸鹽是最有效的磷形態(tài),能被浮游植物直接吸收利用。亞磷酸鹽[42]和多磷酸鹽[43]等溶解態(tài)無(wú)機(jī)磷也能被某些浮游植物直接吸收。溶解態(tài)有機(jī)磷(磷酸酯和膦酸酯) 也是浮游植物極其重要的磷源[44],但不同種類的浮游植物會(huì)選擇性吸收磷酸酯和膦酸酯,如聚球藻、原綠球藻[45]、束毛藻[46]等固氮藍(lán)藻可以利用膦酸酯。浮游植物能否高效利用大分子有機(jī)態(tài)磷 (如卵磷脂) 因物種不同存在明顯差異[47–48]。個(gè)別浮游植物在有機(jī)態(tài)磷條件下的生長(zhǎng)情況好于正磷酸鹽[47, 49]。

    3 植物根系形態(tài)對(duì)不同形態(tài)磷的響應(yīng)

    土壤中磷素的擴(kuò)散速率低且易被固定,導(dǎo)致其有效性較低,植物獲取磷素有賴于根系生長(zhǎng)和根系形態(tài)的改變。根系的發(fā)育狀況直接決定根土界面的大小,影響根系可接觸的土壤體積和植物有效吸收礦質(zhì)養(yǎng)分的面積[50–51]。植物根系形態(tài)不僅受到供磷水平的影響,也受到供磷形態(tài)的影響。關(guān)于植物根系形態(tài)對(duì)供磷水平的響應(yīng),尤其是以增大根長(zhǎng)、根表面積、側(cè)根數(shù)目等的研究報(bào)道較多[52–56];關(guān)于其對(duì)供磷形態(tài)的響應(yīng)還鮮見報(bào)道。Shu等[57]研究發(fā)現(xiàn)難溶性磷可刺激根系的生長(zhǎng),植物通過(guò)改變根系形態(tài)以增大根系與環(huán)境接觸的機(jī)會(huì),從而提高根系對(duì)不同形態(tài)難溶性磷的適應(yīng)能力。與Ca-P和KH2PO4處理相比,在Fe-P和IHP處理下白羽扇豆的排根形成比例更大,促進(jìn)了白羽扇豆對(duì)低有效性磷源的吸收利用,緩解低有效性磷源對(duì)其生長(zhǎng)的限制,其吸磷量可達(dá)4 mg/plant以上。施用Fe-P時(shí)小麥 (小偃54) 僅出現(xiàn)根系伸長(zhǎng)的適應(yīng)性反應(yīng),而施用IHP時(shí)小偃54則表現(xiàn)為根系伸長(zhǎng)、根尖數(shù)增加、酸性磷酸酶分泌量增加的適應(yīng)性反應(yīng),導(dǎo)致其磷吸收量由0.14 mg/pot增加至0.52 mg/pot[58]。大豆通過(guò)改變根系形態(tài)來(lái)提高對(duì)各形態(tài)磷濃度變化的適應(yīng)能力,其根長(zhǎng)和根表面積在Al-P處理下最高,而Ca-P和Fe-P次之,KH2PO4處理下最低[59]。油茶幼苗的根系生長(zhǎng)受供磷形態(tài)的影響較為顯著,Ca-P、Al-P和Fe-P處理均顯著促進(jìn)了油茶主根生長(zhǎng),減小了側(cè)根數(shù)和根冠比,且Ca-P的影響作用最大[60]。磷富集植物礦山生態(tài)型水蓼豐富的細(xì)根為其吸收利用不同形態(tài)磷源提供了優(yōu)越的條件,其總根長(zhǎng)、根表面積、根體積均在IHP和KH2PO4處理下顯著高于其他有機(jī)態(tài)磷處理,在IHP和KH2PO4處理下的吸磷量分別達(dá)到32.85和40.02 mg/plant[61]。IHP處理下,磷高效野生大麥磷含量急劇下降,刺激其通過(guò)增加根長(zhǎng)、根系吸收面積等擴(kuò)大對(duì)水分和養(yǎng)分的接觸空間,以保證正常生長(zhǎng)[62]??梢?,磷高效植物根系形態(tài)對(duì)不同形態(tài)磷的適應(yīng)性變化能提高其對(duì)磷素的獲取。

    4 植物酶活性對(duì)不同形態(tài)磷的響應(yīng)

    4.1 磷酸酶活性對(duì)不同形態(tài)磷的響應(yīng)

    磷酸酶的水解能促進(jìn)植物吸收利用有機(jī)態(tài)磷,但其活性在不同形態(tài)磷條件下表現(xiàn)出較大的差異。對(duì)磷富集植物L(fēng)olium multiflorum的研究表明,IHP和KH2PO4促進(jìn)其根系磷酸酶活性升高,且顯著高于腺苷-3′,5′-環(huán)狀單磷酸鈉 (AMP) 和 ATP 處理,而與G1P和無(wú)磷 (對(duì)照) 間差異不顯著[17]。在IHP和Na2HPO4處理下,擬南芥根系酸性磷酸酶活性高于G1P處理[34]。磷酸酶根據(jù)其催化反應(yīng)的最適pH不同分為堿性磷酸酶、中性磷酸酶和酸性磷酸酶。堿性磷酸酶和酸性磷酸酶活性對(duì)不同形態(tài)磷的響應(yīng)研究報(bào)道較為集中。

    4.1.1 堿性磷酸酶 堿性磷酸酶是一種正磷酸單酯水解酶,主要參與浮游植物細(xì)胞磷代謝和信號(hào)肽傳導(dǎo),催化水解磷酸單酯化合物以釋放正磷酸根,對(duì)磷酸單酯鍵具有高度專一性。目前,堿性磷酸酶的研究主要集中于藍(lán)藻、甲藻、金藻等浮游植物。堿性磷酸酶在水體中主要以溶解態(tài)和細(xì)胞結(jié)合態(tài)存在,能指示磷缺乏,補(bǔ)充磷營(yíng)養(yǎng)和影響磷循環(huán)[63]。當(dāng)水體中無(wú)機(jī)磷酸鹽濃度很低時(shí),堿性磷酸酶能水解水體中的溶解態(tài)有機(jī)磷,釋放無(wú)機(jī)磷酸鹽供藻類利用[64]。不同形態(tài)磷條件下,浮游植物體內(nèi)堿性磷酸酶活性差異較大。環(huán)境中無(wú)機(jī)態(tài)磷的濃度影響著浮游植物體內(nèi)的堿性磷酸酶活性,溶解態(tài)無(wú)機(jī)磷充足條件下浮游植物堿性磷酸酶活性通常較低。無(wú)機(jī)態(tài)磷條件下,中肋骨條藻和東海原甲藻的堿性磷酸酶活性在培養(yǎng)4天內(nèi)不斷下降[28],球形棕囊藻[65]和米氏凱倫藻[48]的堿性磷酸酶活性變化不明顯。在低濃度無(wú)機(jī)態(tài)磷處理下,藻類的堿性磷酸酶活性通常較高。然而,一些藻類生長(zhǎng)所需的無(wú)機(jī)態(tài)磷濃度較低,且其細(xì)胞內(nèi)磷濃度較高,導(dǎo)致其即使在磷脅迫條件下也不產(chǎn)生堿性磷酸酶[65,67]。不同種類及同一種類的不同個(gè)體存在磷生理狀態(tài)差異,即使在相同的環(huán)境條件下,并非每一種浮游植物都會(huì)誘導(dǎo)產(chǎn)生堿性磷酸酶[68–69]。藻類對(duì)溶解態(tài)有機(jī)磷的吸收利用途徑存在差異,導(dǎo)致體內(nèi)堿性磷酸酶的響應(yīng)不同。中肋骨條藻和東海原甲藻在小分子溶解態(tài)有機(jī)磷β甘油磷酸鈉(G-P) 處理下其堿性磷酸酶活性最高,在6-磷酸葡萄糖 (G-6-P) 和ATP處理下次之,三種藻類對(duì)G-P、G-6-P和ATP具有相似的吸收利用機(jī)制[27–28]。然而,龐勇等[48]發(fā)現(xiàn)G-P、ATP和卵磷脂 (LEC) 處理均抑制了米氏凱倫藻堿性磷酸酶的表達(dá)。在G-P處理下,球形棕囊藻堿性磷酸酶活性變化不明顯,而在LEC作為磷源時(shí),其堿性磷酸酶活性迅速提高[65]。因此,浮游植物對(duì)溶解態(tài)有機(jī)磷的利用主要包括兩種途徑:1) 細(xì)胞直接吸收;2) 通過(guò)相關(guān)酶 (如堿性磷酸酶) 降解后再吸收利用。浮游植物 (如藻類) 產(chǎn)生的堿性磷酸酶可礦化有機(jī)態(tài)磷,是促進(jìn)其對(duì)磷吸收積累的一種重要機(jī)制。有機(jī)態(tài)磷種類繁多、結(jié)構(gòu)復(fù)雜,浮游植物對(duì)不同形態(tài)有機(jī)磷的吸收利用機(jī)理有待進(jìn)一步深入研究。

    4.1.2 酸性磷酸酶 酸性磷酸酶是存在于土壤和植物體中的一種誘導(dǎo)酶,在植物碳水化合物轉(zhuǎn)化和蛋白質(zhì)合成中起著重要作用,能促使有機(jī)磷的磷酯鍵水解,釋放相應(yīng)的醇和無(wú)機(jī)態(tài)磷,從而提高土壤磷的有效性。植物根系分泌的磷酸酶在調(diào)控植物磷營(yíng)養(yǎng)、有機(jī)磷代謝及再利用方面有著非常重要的作用,其活性影響有機(jī)態(tài)磷有效性的高低。目前,根系酸性磷酸酶活性對(duì)不同形態(tài)磷響應(yīng)機(jī)理的研究集中于磷高效作物 (如小麥等) 和磷富集植物 (如黑麥草等)。低磷條件可誘導(dǎo)磷高效植物分泌酸性磷酸酶[70]。低濃度無(wú)機(jī)態(tài)磷處理和正常濃度植酸態(tài)磷處理可誘導(dǎo)磷高效基因型小麥 (3-2917) 根系產(chǎn)生酸性磷酸酶,酶活性顯著高于正常濃度無(wú)機(jī)態(tài)磷處理[71]。在植酸和核糖核酸作磷源時(shí),不同基因型白羽扇豆 (Lupinus angustifolius L.和L. albus L.) 根系分泌的酸性磷酸酶活性表現(xiàn)為核糖核酸>植酸>無(wú)機(jī)磷[72]。與無(wú)機(jī)態(tài)磷處理相比,植酸態(tài)磷促進(jìn)了豆科植物根系分泌酸性磷酸酶,使其能有效利用植酸[73]。小麥 (T. aestivum L.) 根系酸性磷酸酶活性在IHP處理下顯著高于Na2HPO4和G1P處理[74];在以無(wú)機(jī)態(tài)磷和有機(jī)態(tài)磷為混合磷源的處理下,種植9天的小麥體內(nèi)酸性磷酸酶活性顯著高于Ca-P處理[75]。Yadav和Tarafdar[76]認(rèn)為酸性磷酸酶活性的高低與有機(jī)態(tài)磷的水解難易有關(guān),植酸鈣鎂處理下植物酶活性大于卵磷脂和甘油磷酸處理。因此,磷高效植物根系酸性磷酸酶活性的增加能促進(jìn)有機(jī)態(tài)磷礦化為無(wú)機(jī)態(tài)磷,增強(qiáng)體內(nèi)磷素再利用,是植株響應(yīng)低磷脅迫的重要機(jī)制之一。具有磷富集能力的黃南瓜 (Cucurbita pepo var.melopepo)、黃瓜 (Cucumis sativus) 在高濃度KH2PO4條件下根系能產(chǎn)生更多的酸性磷酸酶[77]。在高濃度無(wú)機(jī)態(tài)磷條件下,一年生黑麥草Gulf和Marshall體內(nèi)磷酸酶活性高于不施磷處理,且不同形態(tài)磷培養(yǎng)下植物體內(nèi)酸性磷酸酶活性差異極大[78]。在不同形態(tài)磷培養(yǎng)下,牧草 (D. festulolium) 根系酸性磷酸酶活性表現(xiàn)為 G1P > IHP > AMP > ATP >KH2PO4處理[16]。磷富集植物礦山生態(tài)型水蓼根系在高濃度KH2PO4、畜禽廢水 (無(wú)機(jī)態(tài)磷和有機(jī)態(tài)磷)、豬糞 (無(wú)機(jī)態(tài)磷和有機(jī)態(tài)磷) 或IHP培養(yǎng)下酸性磷酸酶活性較高,均顯著高于對(duì)照[38–39,79–81];在不同形態(tài)有機(jī)磷處理下,IHP處理的水蓼根系酸性磷酸酶活性顯著高于AMP、ATP和G1P處理[39]??梢?,植物酸性磷酸酶不僅能被低磷脅迫誘導(dǎo),在不同形態(tài)的高磷環(huán)境下也可誘導(dǎo)產(chǎn)生 (如磷富集植物)。植物體通過(guò)其酶合成機(jī)制,對(duì)不同形態(tài)磷作出相應(yīng)的響應(yīng),以促進(jìn)其對(duì)磷的吸收積累。此外,植物對(duì)各形態(tài)磷的吸收積累能力大小不僅與根系酸性磷酸酶活性的高低相關(guān),也取決于植物本身的遺傳特性。

    4.2 植酸酶活性對(duì)不同形態(tài)磷的響應(yīng)

    土壤全磷的20%~50%以有機(jī)態(tài)存在[23–24],植酸及其鹽類約占有機(jī)態(tài)磷的50%[25],是植物生長(zhǎng)重要的磷源。植酸酶可將植酸及其鹽類催化水解為肌醇與磷酸 (鹽),屬磷酸單酯水解酶[16,78],對(duì)植酸態(tài)磷具有高度的專一性。植酸酶通常分為3-植酸酶和6-植酸酶,來(lái)源于植物的植酸酶多屬于6-植酸酶,植物體內(nèi)含量低。多數(shù)植物不能直接吸收利用植酸態(tài)磷,植酸酶水解礦化后方能被植物利用。野生型煙草不能吸收利用植酸磷的根本原因在于根部不能分泌植酸酶[36],野生型擬南芥也缺乏直接利用植酸磷的能力[34]。磷富集植物Gulf和Marshall根系植酸酶活性在高濃度KH2PO4處理下顯著增加,且顯著高于畜禽糞便處理 (無(wú)機(jī)態(tài)磷和有機(jī)態(tài)磷)[78];不同形態(tài)磷條件下,牧草根系植酸酶活性、生物量和磷含量在IHP條件下均顯著高于其他有機(jī)態(tài)磷處理,且隨著IHP處理濃度的提高而增加[17]。Priya等[16]認(rèn)為AMP促進(jìn)了一年生牧草 (D. festulolium) 根系植酸酶活性的增強(qiáng),且在IHP處理下根系植酸酶活性較高。因此,IHP能提高一年生根系分泌植酸酶以促進(jìn)其吸收利用植酸鹽類有機(jī)磷,相對(duì)于許多野生型植物而言,牧草利用植酸磷的能力較強(qiáng)。酶活性和底物有效性是影響環(huán)境中有機(jī)態(tài)磷水解釋放無(wú)機(jī)態(tài)磷速率的因素。Richardson等[34]將曲霉中的植酸酶基因轉(zhuǎn)入擬南芥,轉(zhuǎn)基因株系在IHP處理下植酸酶活性高于其他形態(tài)磷處理。以IHP為唯一磷源時(shí),牧草 (T. subterraneum) 較低的根系植酸酶活性是限制其利用IHP的重要原因之一,當(dāng)添加外源植酸酶 (源于Aspergillus niger) 后,牧草的長(zhǎng)勢(shì)與無(wú)機(jī)態(tài)磷處理相當(dāng)[32]。此外,植物根系植酸酶對(duì)不同形態(tài)磷的響應(yīng)受磷濃度、各形態(tài)磷比例及生長(zhǎng)期等因素的影響。具有磷富集能力的水蓼在KH2PO4處理下生長(zhǎng)良好,根系植酸酶活性隨著處理濃度的增加而顯著提高,且隨生長(zhǎng)期的增加兩種生態(tài)型間差異較大[38,79]。Ye等[81]研究表明,在不同濃度畜禽廢水條件下,兩種生態(tài)型水蓼根系植酸酶活性隨生長(zhǎng)期的延長(zhǎng)不斷降低,且在高濃度畜禽廢水處理下的酶活性高于低濃度處理,但均低于無(wú)機(jī)態(tài)磷處理。在以豬糞作為磷源的土培試驗(yàn)中發(fā)現(xiàn),水蓼根系植酸酶活性隨著豬糞處理濃度的增加而增加[80]。

    5 不同形態(tài)磷條件下植物磷營(yíng)養(yǎng)高效的分子機(jī)制

    植物對(duì)磷吸收積累的高效機(jī)制主要涉及根形態(tài)、根分泌、膜轉(zhuǎn)運(yùn)、體內(nèi)轉(zhuǎn)運(yùn)等的適應(yīng)性變化,有的在植物生長(zhǎng)發(fā)育中必然產(chǎn)生 (結(jié)構(gòu)性的),有的需要經(jīng)過(guò)低磷條件誘導(dǎo)才能產(chǎn)生 (誘導(dǎo)性的),但都受遺傳控制[82]。植物磷高效基因的識(shí)別與克隆,尤其是基因表達(dá)及其調(diào)控機(jī)制的逐步清楚,使通過(guò)基因工程技術(shù)培育磷營(yíng)養(yǎng)高效型作物新品種和高效提取過(guò)剩磷的修復(fù)植物成為可能。植物在不同磷營(yíng)養(yǎng)條件下會(huì)發(fā)生形態(tài)、生理、生化等方面的變化,這一系列適應(yīng)性變化是相關(guān)響應(yīng)基因協(xié)調(diào)表達(dá)的結(jié)果。磷脅迫下,在植物根和莖中發(fā)現(xiàn)了許多特異性表達(dá)的基因,包括高親和力磷轉(zhuǎn)運(yùn)子、分泌有機(jī)酸的相關(guān)基因、植酸酶相關(guān)基因、酸性磷酸酶相關(guān)基因、TPSI1/Mt4基因家族等[83],磷脅迫特異性基因的表達(dá)對(duì)植物吸收利用磷起到重要作用。Mitsukawa等[84]研究報(bào)道,擬南芥的高親和磷轉(zhuǎn)運(yùn)蛋白基因AtPT1在煙草的懸浮細(xì)胞中高效表達(dá),轉(zhuǎn)基因細(xì)胞生物量增加,對(duì)磷 (KH2PO4) 的吸收能力也明顯提高。與對(duì)照相比,超表達(dá)水稻高親和磷轉(zhuǎn)運(yùn)蛋白基因OsPT1的轉(zhuǎn)基因植株其磷素吸收能力更強(qiáng),低濃度KH2PO4條件下植株的長(zhǎng)勢(shì)明顯得到改善[85]。在低濃度無(wú)機(jī)態(tài)磷脅迫下,與磷轉(zhuǎn)運(yùn)蛋白PHT3和PT2高度同源的兩個(gè)基因 (ULF14和ULF15) 在小麥 (石新828) 體內(nèi)特異增強(qiáng)表達(dá),其在應(yīng)答低磷脅迫和改善植株對(duì)低磷脅迫的適應(yīng)能力中具有重要作用[86]。轉(zhuǎn)基因擬南芥中檸檬酸合成酶基因的表達(dá)水平和活性均顯著高于野生型植株[87]。Tesfaye等[88]發(fā)現(xiàn),與對(duì)照相比,超量表達(dá)根瘤增強(qiáng)型蘋果酸脫氫酶 (neMDH) 基因的苜蓿根尖蘋果酸脫氫酶的活性增強(qiáng)了1.6倍,根部有機(jī)酸含量增加了4.2倍,同時(shí)根系分泌的蘋果酸、檸檬酸、草酸、琥珀酸和乙酸的量也增加,其對(duì)磷的吸收能力也相應(yīng)提高。當(dāng)前,對(duì)植酸酶基因工程的研究主要集中于降低種子中的植酸含量,提高單胃動(dòng)物對(duì)植酸的吸收積累和根系植酸酶的分泌量,從而促進(jìn)根際有機(jī)態(tài)磷的活化和對(duì)土壤有機(jī)態(tài)磷的吸收利用。在玉米胚中特異表達(dá)A.niger phyA2基因,測(cè)得轉(zhuǎn)基因種子中植酸酶活性顯著提高,植酸含量與對(duì)照相比明顯降低,并且轉(zhuǎn)基因株系的種子萌發(fā)率和產(chǎn)量并沒有受到影響[89]。轉(zhuǎn)酸性磷酸酶和植酸酶基因可以提高植物吸收利用植酸鹽或其他有機(jī)態(tài)磷的能力。在以IHP為唯一磷源的條件下,與對(duì)照相比,超量表達(dá)MtPAP1的轉(zhuǎn)基因擬南芥中,根系細(xì)胞間隙中的酸性磷酸酶活性明顯提高。液體培養(yǎng)基中的有機(jī)態(tài)磷可被轉(zhuǎn)基因擬南芥分泌的酸性磷酸酶快速降解,且擬南芥轉(zhuǎn)基因植株的生物學(xué)產(chǎn)量、植株無(wú)機(jī)磷含量和全磷含量明顯高于野生物種[90]。植酸態(tài)磷處理下,轉(zhuǎn)紫色酸性磷酸酶基因擬南芥根系GUS表達(dá)和GUS活性分別比KH2PO4處理提高了1.3倍和1.9倍[91];轉(zhuǎn)M. truncatula紫色酸性磷酸酶基因的表達(dá)提高了擬南芥獲取磷的能力,使得其生物量也顯著增加[92]。在以植酸為磷源的條件下,轉(zhuǎn)紫色酸性磷酸酶 (MtPAP1) 基因的表達(dá),使得轉(zhuǎn)基因苜蓿(Medicago sativa L.) 生物量和磷獲取量均顯著高于對(duì)照植株[93]。菜豆 (Phaseolus vulgaris) 葉片和根系紫色酸性磷酸酶 (PvPAP3) 受低磷誘導(dǎo),參與利用外源ATP,以維系植物以ATP為唯一磷源時(shí)正常生長(zhǎng)[94]。在充足的K2HPO4處理下,Gulf黑麥草長(zhǎng)勢(shì)明顯優(yōu)于磷缺乏處理,其體內(nèi)超量表達(dá)紫色酸性磷酸酶基因LmPAP1是磷積累量增加的根本原因之一[95]。表達(dá)了轉(zhuǎn)胞外植酸酶基因的小麥、擬南芥等從IHP中獲取的磷是在磷酸鹽培養(yǎng)下的7倍左右[73,96]。在植酸態(tài)磷培養(yǎng)下,轉(zhuǎn)M. truncatula植酸酶基因的擬南芥生物量及體內(nèi)磷含量均顯著高于對(duì)照[97],在擬南芥體內(nèi)表達(dá)轉(zhuǎn)曲霉植酸酶基因的研究中也有類似發(fā)現(xiàn)[34]。利用根癌農(nóng)桿菌菌株LBA4404,通過(guò)兩步再生方法將植物表達(dá)載體pBINPR-phyI中含有的帶胞外分泌信號(hào)肽序列的植酸酶基因轉(zhuǎn)入油菜 (中雙6號(hào)),轉(zhuǎn)基因油菜能以植酸為唯一磷源正常生長(zhǎng),根系分泌大量高活性植酸酶有助于土壤有機(jī)態(tài)磷轉(zhuǎn)化為有效態(tài)磷供植物利用,非轉(zhuǎn)基因植株則不能[98];在轉(zhuǎn)枯草芽孢桿菌植酸酶基因煙草的研究中也有類似現(xiàn)象[36]。而TPSI1/Mt4基因家族則被認(rèn)為是新的磷缺乏誘導(dǎo)基因家族,其在低磷條件的早期上調(diào),在植物適應(yīng)低磷脅迫的初期具有十分重要的作用。與低濃度Ca-P處理相比,當(dāng)Ca-P供給充足時(shí),番茄葉片和根系中磷饑餓誘導(dǎo)表達(dá)基因TPSI1的轉(zhuǎn)錄顯著降低,表明TPSI1基因可能是番茄磷饑餓的早期反應(yīng)之一[99]。在未受VAM侵染且處于磷饑餓狀態(tài)時(shí),Mt4在根系中正常表達(dá),自侵染早期開始,Mt4的表達(dá)明顯減弱,環(huán)境中高濃度的KH2PO4抑制Mt4的表達(dá)[100]。Burleigh和Harrison[101]發(fā)現(xiàn)Mt4基因在紫花苜蓿中的表達(dá)并非受根內(nèi)磷含量的影響,而是受莖中磷狀態(tài)的調(diào)節(jié)。Martín等[102]在擬南芥突變體中發(fā)現(xiàn)了TPSI1/Mt4的同源基因At4,At4在莖內(nèi)組成型表達(dá),無(wú)論無(wú)機(jī)態(tài)磷供應(yīng)充足與否,擬南芥pho1突變體均不能將磷轉(zhuǎn)移至木質(zhì)部,說(shuō)明早期反應(yīng)相關(guān)基因TPSI1/Mt4家族可能是受莖內(nèi)磷狀態(tài)的調(diào)節(jié)。水稻體內(nèi)發(fā)現(xiàn)了TPSI1/Mt4的同源基因OsPI1,它受低濃度的NaH2PO4快速誘導(dǎo),能對(duì)低磷環(huán)境產(chǎn)生特異性響應(yīng)[103]。小麥 (小偃54) 的IPS基因?qū)儆诘湫偷氖苋绷讞l件特異誘導(dǎo)的TPSI1/MT4小基因家族,該基因家族在正常營(yíng)養(yǎng)條件下表達(dá)量很低,而缺磷顯著增加了根系中TaIPS1.1、TaIPS1.2和TaIPS1.3基因與地上部TaIPS2.1和TaIPS2.2基因的表達(dá),通過(guò)比較其對(duì)缺磷的響應(yīng),認(rèn)為TaIPS1.1是相對(duì)理想的用于診斷小麥植株磷素豐缺的基因[104]。

    6 展望

    近年來(lái),為挖掘磷高效植物充分利用土壤磷素的能力,探討磷富集植物對(duì)磷過(guò)剩土壤的修復(fù)潛力,展開了植物對(duì)不同形態(tài)磷吸收積累及生理生化特征的研究,但其內(nèi)在機(jī)制不夠深入,缺乏系統(tǒng)性研究。為了深入揭示和弄清植物對(duì)不同形態(tài)磷的響應(yīng)機(jī)理,尚有以下方面需要進(jìn)一步深入研究。

    6.1 磷高效植物和磷富集植物的篩選

    篩選能吸收利用土壤中大量的潛在磷源以提高干物量與籽粒產(chǎn)量的磷高效植物,充分利用土壤儲(chǔ)備態(tài)磷以緩解土壤有效態(tài)磷不足的問(wèn)題;篩選用于修復(fù)磷過(guò)剩土壤及富營(yíng)養(yǎng)化水體的理想磷富集植物,其應(yīng)具備地上部生物量大、磷積累量高和生物安全等特點(diǎn)。其次,建立一套磷高效植物和磷富集植物篩選的評(píng)價(jià)指標(biāo)也十分必要。

    6.2 根土界面的研究

    為何植物能適應(yīng)多種形態(tài)磷環(huán)境,是否與根系構(gòu)型、根系分泌物、根系次生代謝物以及細(xì)胞組分有一定關(guān)系,這一理論尚不清楚,應(yīng)加強(qiáng)根系對(duì)不同形態(tài)磷的形態(tài)學(xué)及生理生化響應(yīng)特征研究。其次,根際特殊的物理、化學(xué)及生物學(xué)特性決定磷的植物有效性,從而影響植物的生長(zhǎng)及對(duì)磷的吸收積累。土壤化學(xué)成分的組成及根際特性的變化將改變磷素形態(tài)及其生物有效性,微生物活動(dòng)及其產(chǎn)酶、產(chǎn)酸特性在這一過(guò)程中起著重要作用,應(yīng)深入研究植物的磷高效吸收積累與根際磷組分、微生物特性的關(guān)系。

    6.3 特異基因的分離與表達(dá)

    雖然轉(zhuǎn)基因植株在適應(yīng)不同形態(tài)磷和吸收積累磷方面有明顯的優(yōu)勢(shì),但特異基因所調(diào)控的生理生化特性及相關(guān)基因在不同植物中的作用仍需深入探究。因此,深入研究基因的分離克隆,將不同形態(tài)磷下特異性表達(dá)的基因分離出來(lái),使其在生物量大的植株體內(nèi)表達(dá),并將其與根吸收利用磷的研究相結(jié)合,為更深入地探討植物吸收利用不同形態(tài)磷的內(nèi)在機(jī)理,為充分利用土壤中大量的磷,防治土壤磷素過(guò)?;蛩w富營(yíng)養(yǎng)化等問(wèn)題作出更大的貢獻(xiàn)。

    [1]Raghothama K G. Phosphorus and plant nutrition: an overview [A].Sims J T, Sharpley A N. Phosphorus: Agriculture and the environment [C]. Madison: American Society of Agronomy, 2005,355–378.

    [2]王永壯, 陳欣, 史奕. 農(nóng)田土壤中磷素有效性及影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(1): 260–268.Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260–268.

    [3]Higgs B, Johnston A E, Salter J L, et al. Some aspects of achieving sustainable phosphorus use in agriculture[J]. Journal of Environmental Quality, 2000, 29(1): 80–87.

    [4]王方浩, 馬文奇, 竇爭(zhēng)霞, 等. 中國(guó)畜禽糞便產(chǎn)生量估算及環(huán)境效應(yīng)[J]. 中國(guó)環(huán)境科學(xué), 2006, 26(5): 614–617.Wang F H, Ma W Q, Dou Z X, et al. The estimation of the production amount of animal manure and its environmental effect in China[J]. China Environmental Science, 2006, 26(5): 614–617.

    [5]Guo Y, Li G. Nitrogen leaching and phosphorus accumulation in a perennial pasture after composted goat manure was top dressed and incorporated in the Three Gorges region[J]. Journal of Soils and Sediments, 2012, 12(5): 674–682.

    [6]Wang W, Liang T, Wang L, et al. The effects of fertilizer applications on runoff loss of phosphorus[J]. Environmental Earth Sciences, 2013, 68(5): 1313–1319.

    [7]Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the broad balk experiment[J]. Journal of Environmental Quality, 1995,24(5): 904–910.

    [8]FAO. Fertilizer consumption in nutrients per ha of arable land (2002 and 2009)[EB/OL]. http://faostat.fao.org/site/405/default.aspx,2009.

    [9]Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China: a review[J]. Plant and Soil, 2011, 349(1–2): 157–167.

    [ 10 ]Ongley E D, Zhang X L, Yu T. Current status of agricultural and rural non-point source pollution assessment in China[J].Environmental Pollution, 2010, 158(5): 1159–1168.

    [ 11 ]James R A, Weligama C, Verbyla K, et al. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control[J]. Journal of Experimental Botany, 2016, 67(12):3709–3718.

    [ 12 ]Wang X, Shen J, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?[J].Plant Science, 2010, 179(4): 302–306.

    [ 13 ]Pant H K, Mislevy P, Rechcigl J E. Effects of phosphorus and potassium on forage nutritive value and quantity: environmental implications[J]. Agronomy Journal, 2004, 96(5): 1299–1305.

    [ 14 ]蔣柏藩, 顧益初. 石灰性土壤無(wú)機(jī)磷分級(jí)體系的研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 1989, 22(3): 58–66.Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989,22(3): 58–66.

    [ 15 ]顧益初, 蔣柏藩. 石灰性土壤無(wú)機(jī)磷分級(jí)的測(cè)定方法[J]. 土壤,1990, 22(2): 101–102.Gu Y C, Jiang B F. Methods of determination of inorganic phosphorus fractionation in calcareous soil[J]. Soils, 1990, 22(2):101–102.

    [ 16 ]Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium)[J]. Plant Physiology and Biochemistry, 2009, 47(1): 31–36.

    [ 17 ]Sharma N C, Sahi S V. Enhanced organic phosphorus assimilation promoting biomass and shoot P hyperaccumulations in Lolium multiflorum grown under sterile conditions[J]. Environmental Science Technology, 2011, 45(24): 10531–10537.

    [ 18 ]Xue A O, Guo X, Qian Z H U, et al. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies[J]. Journal of Integrative Agriculture,2014, 13(2): 326–334.

    [ 19 ]孫桂芳, 金繼運(yùn), 石元亮. 土壤磷素形態(tài)及其生物有效性研究進(jìn)展[J]. 中國(guó)土壤與肥料, 2011, (2): 1–9.Sun G F, Jin J Y, Shi Y L, et al. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil and Fertilizer Sciences in China, 2011, (2): 1–9.

    [ 20 ]尹遜霄, 華珞, 張振賢, 等. 土壤中磷素的有效性及其循環(huán)轉(zhuǎn)化機(jī)制研究[J]. 首都師范大學(xué)學(xué)報(bào) (自然科學(xué)版), 2005, 26(3): 95–101.Yin X X, Hua L, Zhang Z X, et al. Study on the effectiveness of phosphorus and mechanism of its circle in soil[J]. Journal of Capital Normal University (Natural Science Edition), 2005, 26(3): 95–101.

    [ 21 ]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review[J]. Plant and Soil, 2001, 237(2): 173–195.

    [ 22 ]黃昌勇. 土壤學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.Huang C Y. Soil science [M]. Beijing: China Agriculture Press,2000.

    [ 23 ]魯如坤. 土壤-植物營(yíng)養(yǎng)學(xué)原理和施肥[M]. 北京: 化學(xué)工業(yè)出版社, 1998.Lu R K. Theory of soil-plant nutrition and fertilization [M]. Beijing:Chemical Industry Press, 1998.

    [ 24 ]趙少華, 宇萬(wàn)太, 張璐, 等. 土壤有機(jī)磷研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(11): 2189–2194.Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2189–2194.

    [ 25 ]Hayes J E, Richardson A E, Simpson R J. Components of organic phosphorus in soil extracts that are hydrolyzed by phytase and acid phosphates[J]. Biology and Fertility of Soils, 2000, 32(4): 279–286.

    [ 26 ]來(lái)璐, 郝明德, 彭令發(fā). 黃土旱塬長(zhǎng)期施肥條件下土壤磷素變化及管理[J]. 水土保持研究, 2003, 10(1): 68–70.Lai L, Hao M D, Peng L F. The variation of soil phosphorus of long–term continuous cropping and management in the Loess Plateau [J]. Research of Soil and Water Conservation, 2003, 10(1):68–70.

    [ 27 ]李英, 呂頌輝, 徐寧, 等. 東海原甲藻對(duì)不同磷源的利用特征[J].生態(tài)科學(xué), 2005, 24(4): 314–317.Li Y, Lü S H, Xu N, et al. The utilization of Prorocentrum donghaiense to four different types of phosphorus[J]. Ecologic Science, 2005, 24(4): 314–317.

    [ 28 ]趙艷芳, 俞志明, 宋秀賢, 等. 不同磷源形態(tài)對(duì)中肋骨條藻和東海原甲藻生長(zhǎng)及磷酸酶活性的影響[J]. 環(huán)境科學(xué), 2009, 30(3):693–699.Zhao Y F, Yu Z M, Song X X, et al. Effects of different phosphorus substrates on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense[J]. Environmental Science, 2009, 30(3): 693–699.

    [ 29 ]喬云發(fā), 韓曉增, 苗淑杰. 大豆利用難溶磷源基因型差異[J]. 大豆科學(xué), 2007, 26(4): 571–277.Qiao Y F, Han X Z, Miao S J. Genotypic variation in P utilization of soybean (Glycine max L.) grown in various insoluble P sources[J].Soybean Science, 2007, 26(4): 571–277.

    [ 30 ]Erro J, Zamarre?o A M, García-Mina J M. Ability of various waterinsoluble fertilizers to supply available phosphorus in hydroponics to plant species with diverse phosphorus-acquisition efficiency:Involvement of organic acid accumulation in plant tissues and root exudates[J]. Journal of Plant Nutrition and Soil Science, 2010,173(5): 772–777.

    [ 31 ]侯焱焱, 展曉瑩, 劉璇, 等. 不同形態(tài)無(wú)機(jī)磷對(duì)兩種磷效率小麥根際特征的影響[J]. 中國(guó)土壤與肥料, 2011, (1): 30–43.Hou Y Y, Zhan X Y, Liu X, et al. Effects of different forms of inorganic P on rhizosphere in different P–efficiency wheat[J]. Soil and Fertilizer Sciences in China, 2011, (1): 30–43.

    [ 32 ]Li Y F, Luo A C, Wei X H, et al. Changes in phosphorus fractions,pH, and phosphatase activity in rhizosphere of two rice genotypes[J]. Pedosphere, 2008, 18(6): 785–794.

    [ 33 ]Hayes J E, Simpson R J, Richardson A E. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate[J]. Plant and Soil, 2000, 220(1–2): 165–174.

    [ 34 ]Richardson A E, Hadobas P A, Hayes J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. Plant Journal, 2001, 25(6): 641–649.

    [ 35 ]孔凡利, 林文量, 嚴(yán)小龍, 等. 轉(zhuǎn)枯草芽孢桿菌植酸酶基因煙草對(duì)不同介質(zhì)中植酸磷的吸收利用[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(12):2389–2393.Kong F L, Lin W L, Yan X L, et al. Phytate-phosphorus uptake and utilization by transgenic tobacco carrying Bacillus subtilis phytase gene[J]. Chinese Journal of Applied Ecology, 2005, 16(12):2389–2393.

    [ 36 ]李永夫, 羅安程, 吳良?xì)g, 等. 兩個(gè)基因型水稻利用有機(jī)磷的差異及其與根系分泌酸性磷酸酶活性的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2009,20(5): 1072–1078.Li Y F, Luo A C, Wu L H, et al. Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity[J]. Chinese Journal of Applied Ecology, 2009, 20(5): 1072–1078.

    [ 37 ]Xiao G L, Li T X, Zhang X Z, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(1–3):542–550.

    [ 38 ]Huang X, Li T X, Zhang X Z, et al. Growth, P accumulation, and physiological characteristics of two ecotypes of Polygonum hydropiper as affected by excess P supply[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(2): 290–302.

    [ 39 ]Ye D H, Li T X, Liu D, et al. P accumulation and physiological responses to different high P regimes in Polygonum hydropiper for understanding a P-phytoremediation strategy[J]. Scientific Reports,2015, 5: 17835.

    [ 40 ]Zheng Z C, Li T X, Zhang X Z, et al. Phosphorous accumulation and distribution of two ecotypes of Pilea sinofasciata grown in phosphorous-enriched soils[J]. Applied Soil Ecology, 2014, 84:54–61.

    [ 41 ]蔡秋燕, 張錫洲, 李廷軒, 等. 磷高效野生大麥拔節(jié)期對(duì)植酸態(tài)有機(jī)磷的利用[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(16): 3146–3155.Cai Q Y, Zhang X Z, Li T X, et al. Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency[J]. Scientia Agricultura Sinica, 2015, 48(16): 3146–3155.

    [ 42 ]Martínez A, Osburne M S, Sharma A K, et al. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301[J].Environmental Microbiology, 2012, 14(6): 1363–1377.

    [ 43 ]Oh S J, Yamamoto T, Kataoka Y, et al. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae)[J].Fisheries Science, 2002, 68(2): 416–424.

    [ 44 ]金杰, 劉素梅. 海洋浮游植物對(duì)磷的響應(yīng)研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 2013, 28(2): 253–261.Jin J, Liu S M. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2):253–261.

    [ 45 ]Ilikchyan I N, McKay R M L, Kutovaya O A, et al. Seasonal expression of the picocyanobacterial phosphonate transporter gene phnD in the Sargasso Sea[J]. Frontiers in Microbiology, 2010, 1(1):135.

    [ 46 ]Beversdorf L J, White A E, Bj?rkman K M, et al. Phosphonate metabolism of Trichodesmium IMS101 and the production of greenhouse gases[J]. Limnology and Oceanography, 2010, 55(4):1755–1767.

    [ 47 ]岳濤, 張德祿, 胡春香. 太湖3種優(yōu)勢(shì)微囊藻對(duì)不同形態(tài)磷的吸收利用[J]. 湖泊科學(xué), 2014, 26(3): 379–384.Yue T, Zhang D L, Hu C X. Utilization of phosphorus in four forms of the three dominant Microcystis morphospecies in Lake Taihu[J].Journal of Lake Sciences, 2014, 26(3): 379–384.

    [ 48 ]龐勇, 聶瑞, 呂頌輝. 不同磷源對(duì)米氏凱倫藻生長(zhǎng)和堿性磷酸酶活性的影響[J]. 海洋科學(xué), 2016, 40(4): 59–64.Pang Y, Nie R, Lü S H. Effects of the different kinds of phosphorus sources on growth and alkaline phosphatase activity (APA) of Karenia mikimotoi Hansen[J]. Marine Sciences, 2016, 40(4): 59–64.

    [ 49 ]Wang Z H, Liang Y, Kang W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa[J]. Harmful Algae, 2011, 12(4): 113–118.

    [ 50 ]Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology and Evolution,2008, 23(2): 95–103.

    [ 51 ]Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops[J]. Plant Physiology,2011, 156(3): 1041–1049.

    [ 52 ]林雅茹, 唐宏亮, 申建波. 野生大豆根系形態(tài)對(duì)局部磷供應(yīng)的響應(yīng)及其對(duì)磷吸收的貢獻(xiàn)[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(1):162–169.Lin Y R, Tang H L, Shen J B. Effect of localized phosphorus supply on root morphological traits and their contribution to phosphorus uptake in wild soybean[J]. Journal of Plant Nutrition and Fertilizer,2013, 19(1): 162–169.

    [ 53 ]Shah S R U, Agback P, Lundquist P O. Root morphology and cluster root formation by seabuckthorn (Hippopha? rhamnoides L.)in response to nitrogen, phosphorus and iron deficiency[J]. Plant and Soil, 2015, 397(1–2): 1–17.

    [ 54 ]Jeffery R P, Simpson R J, Lambers H, et al. Root morphology acclimation to phosphorus supply by six cultivars of Trifolium subterraneum L[J]. Plant and Soil, 2017, 412(1–2): 21–34.

    [ 55 ]Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass)[J]. Plant and Soil, 2017,412(1–2): 7–19.

    [ 56 ]Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997–1005.

    [ 57 ]Shu L, Shen J, Rengel Z, et al. Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources[J]. Plant Science, 2007, 172(5):1017–1024.

    [ 58 ]展曉瑩, 候焱焱, 張淑香. 不同磷形態(tài)對(duì)兩種磷效率小麥根系指標(biāo)與根際特征差異的影響[J]. 核農(nóng)學(xué)報(bào), 2013, 27(7): 1012–1019.Zhan X Y, Hou Y Y, Zhang S X. Response of rhizosphere characteristics of two different P-efficiency wheat genotypes(Tritium aestivum L.) to the inorganic and organic phosphorus sources[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7):1012–1019.

    [ 59 ]谷思玉, 閆琰, 張彥麗. 難溶性無(wú)機(jī)磷酸鹽對(duì)大豆苗期根系生長(zhǎng)的影響[J]. 大豆科學(xué), 2012, 31(1): 92–95.Gu S Y, Yan Y, Zhang Y L. Effect of insoluble inorganic phosphate on root growth of soybean seedlings[J]. Soybean Science, 2012,31(1): 92–95.

    [ 60 ]王金路, 陳永忠, 張黨權(quán), 等. 不同磷源對(duì)油茶幼苗生長(zhǎng)的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2014, 34(5): 47–50.Wang J L, Chen Y Z, Zhang D Q, et al. Effects of different phosphates on growth of Camellia olerifera seedling[J]. Journal of Central South University of Forestry Technology, 2014, 34(5):47–50.

    [ 61 ]葉代樺. 有機(jī)磷源對(duì)水蓼磷吸收積累特性的影響[D]. 四川農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2015.Ye D H. Effect of organic P sources on characteristics of P assimilation and accumulation in Polygonum hydropiper [D]. MS Thesis of Sichuan Agricultural University, 2015.

    [ 62 ]劉濤, 蔡秋燕, 張錫洲, 等. 磷高效型野生大麥根系形態(tài)和根系分泌物對(duì)低水平植酸態(tài)有機(jī)磷的響應(yīng)特征[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22(6): 1538–1547.Liu T, Cai Q Y, Zhang X Z, et al. Response characteristics in root morphology and root excretion of P-efficient wild barley exposured to low level of phytate-phosphorus[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1538–1547.

    [ 63 ]張勝花, 常軍軍, 孫珮石. 水體藻類磷代謝及藻體磷礦化研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2013, 22(7): 1250–1254.Zhang S H, Chang J J, Sun P S. Phosphorus cycle of algae during its growth and death process: phosphorus uptake and release[J].Ecology and Environmental Sciences, 2013, 22(7): 1250–1254.

    [ 64 ]Huang B, Ou L, Hong H, et al. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Marine Pollution Bulletin, 2005,51(8–12): 838–844.

    [ 65 ]王艷, 唐海溶. 不同形態(tài)的磷源對(duì)球形棕囊藻生長(zhǎng)及堿性磷酸酶的影響[J]. 生態(tài)科學(xué), 2006, 25(1): 38–40.Wang Y, Tang H R. Effects of different phosphorus on the growth and alkaline phospohatase activity in Phaeocystis Globosa[J].Ecologic Science, 2006, 25(1): 38–40.

    [ 66 ]Hernández I, Niell F X, Whitton B A. Phosphatase activity of benthic marine algae. An overview[J]. Journal of Applied Phycology, 2002, 14(6): 475–487.

    [ 67 ]Wu Z, Zeng B, Li R, et al. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation[J]. Harmful Algae,2012, 15: 53–58.

    [ 68 ]Rengefors K, Pettersson K, Blenckner T, et al. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton:application of a novel method[J]. Journal of Plankton Research,2001, 23(4): 435–443.

    [ 69 ]Rengefors K, Ruttenberg K C, Haupert C L, et al. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton[J]. Limnology and Oceanography, 2003, 48(3): 1167–1175.

    [ 70 ]孫海國(guó), 張福鎖. 缺磷條件下的小麥根系酸性磷酸酶活性研究[J].應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(3): 379–381.Sun H G, Zhang F S. Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots[J]. Chinese Journal of Applied Ecology, 2002, 13(3): 379–381.

    [ 71 ]吳沂珀, 張錫洲, 李廷軒, 等. 小麥不同磷效率品種對(duì)不同磷源的利用差異及酸性磷酸酶的作用[J]. 核農(nóng)學(xué)報(bào), 2013, 27(3):351–357.Wu Y P, Zhang X Z, Li T X, et al. Difference in P utilization from organic phosphate between two wheat varieties and its relations with acid phosphatase activity[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 351–357.

    [ 72 ]Adams M A, Pate J S. Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.)[J]. Plant and Soil, 1992,145(1): 107–113.

    [ 73 ]Rao I M, Borrero V, Ricaurte J, et al. Adaptive attributes of tropical forage species to acid soils. V. Differences in phosphorus acquisition from less available inorganic and organic sources of phosphate[J]. Journal of Plant Nutrition, 1999, 22(7): 1175–1196.

    [ 74 ]Richardson A E, Hadobas P A, Hayes J E. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture[J]. Plant Cell and Environment,2000, 23(4): 397–405.

    [ 75 ]Tarafdar J C, Claassen N. Organic phosphorus utilization by wheat plants under sterile conditions[J]. Biology and Fertility of Soils,2003, 39(1): 25–29.

    [ 76 ]Yadav R S, Tarafdar J C. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants[J]. Biology and Fertility of Soils, 2001, 34(3): 140–143.

    [ 77 ]Sharma N C, Starnes D L, Sahi S V. Phytoextraction of excess soil phosphorus[J]. Environmental Pollution, 2007, 146(1): 120–127.

    [ 78 ]Starnes D L, Padmanabhan P, Sahi S V. Effect of P sources on growth, P accumulation and activities of phytase and acid phosphatases in two cultivars of annual ryegrass (Lolium multiflorum L.)[J]. Plant Physiology and Biochemistry, 2008,46(5–6): 580–589.

    [ 79 ]葉代樺, 李廷軒, 張錫洲, 等. 高磷對(duì)礦山生態(tài)型水蓼磷富集特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(1): 186–194.Ye D H, Li T X, Zhang X Z, et al. Effect of high phosphate supply on the P accumulation characteristics of the mining ecotype of Polygonum hydropiper[J]. Journal of Plant Nutrition and Fertilizer,2014, 20(1): 186–194.

    [ 80 ]Ye D H, Li T X, Chen G D, et al. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper[J]. Chemosphere, 2015, 105(3): 139–145.

    [ 81 ]Ye D, Li T, Huang X, et al. P accumulation potential of Polygonum hydropiper grown in high P media[J]. Clean–Soil Air Water, 2015,43(2): 279–286.

    [ 82 ]周志高, 汪金舫, 周健民. 植物磷營(yíng)養(yǎng)高效的分子生物學(xué)研究進(jìn)展[J]. 植物學(xué)通報(bào), 2005, 22(1): 82–91.Zhou Z G, Wang J F, Zhou J M. Current advances in the molecular biology of high efficient phosphorus nutrition in plants[J]. Chinese Bulletin of Botany, 2005, 22(1): 82–91.

    [ 83 ]黃沆, 付崇允, 周德貴, 等. 植物磷吸收的分子機(jī)理研究進(jìn)展[J].分子植物育種, 2008, 6(1): 117–122.Huang H, Fu C Y, Zhou D G, et al. Progress in research of molecular mechanism of phosphorus absorption in plants[J].Molecular Plant Breeding, 2008, 6(1): 117–122.

    [ 84 ]Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7098–7102.

    [ 85 ]Seo H M, Jung Y, Song S. Increased expression of OsPT1, a highaffinity phosphate transporter, enhances phosphate acquisition in rice[J]. Biotechnology Letters, 2008, 30(10): 1833–1838.

    [ 86 ]谷俊濤, 鮑金香, 王效穎, 等. 利用cDNA-AFLP技術(shù)分析小麥應(yīng)答低磷脅迫的特異表達(dá)基因[J]. 作物學(xué)報(bào), 2009, 35(9):1597–1605.Gu J T, Bao J X, Wang X Y, et al. Investigation based on cDNAAFLP approach for differential expressed genes responding to deficient-Pi in wheat[J]. Acta Agronomica Sinica, 2009, 35(9):1597–1605.

    [ 87 ]Anoop V M, Basu U, Mc Cammon M T, et al. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing amitochondrial citrate synthase[J]. Plant Physiology,2003, 132(4): 2205–2217.

    [ 88 ]Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiology, 2001,127(4): 1836–1844.

    [ 89 ]Chen R, Xue G, Chen P, et al. Transgenic maize plants expressing a fungal phytase gene[J]. Transgenic Research, 2008, 17(4): 633–643.

    [ 90 ]肖凱, 谷俊濤, Maria Harrison, 等. MtPAP1表達(dá)特性及異源表達(dá)對(duì)擬南芥有機(jī)態(tài)磷吸收的影響[J]. 植物生理與分子生物學(xué)學(xué)報(bào),2006, 32(1): 99–106.Xiao K, Gu J T, Maria H, et al. Expression characteristics of MtPAP1 and its exotic expression in Arabidopsis affecting organic phosphorus absorption of plants[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 99–106.

    [ 91 ]孔佑賓, 李喜煥, 張彩英. 大豆紫色酸性磷酸酶基因GmPAP4啟動(dòng)子結(jié)構(gòu)與活性分析[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(3): 582–590.Kong Y B, Li X H, Zhang C Y. Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean[J]. Scientia Agricultura Sinica, 2017, 50(3): 582–590.

    [ 92 ]Xiao K, Katagi H, Harrison M, et al. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatases gene from M.truncatula[J]. Plant Science, 2006, 170(2): 191–202.

    [ 93 ]Ma X F, Tudor S, Butler T, et al. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils[J]. Molecular Breeding,2012, 30(1): 377–391.

    [ 94 ]Liang C, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiology, 2010, 152(2): 854–865.

    [ 95 ]Venkatachalam P, Jain A, Sahi S, et al. Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass(Lolium multiflorum L.): a Pi hyperaccumulator[J]. Plant Molecular Biology, 2009, 69(1–2): 1–21.

    [ 96 ]Mudge S R, Smith F W, Richardson A E. Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source[J]. Plant Science, 2003, 165(4): 871–878.

    [ 97 ]Xiao K, Harrison M J, Wang Z. Transgenic expression of a novel M.truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis[J]. Planta, 2005, 222(1): 27–36.

    [ 98 ]方小平, 王轉(zhuǎn), 陳茹梅, 等. 能以植酸磷為唯一磷源生長(zhǎng)的轉(zhuǎn)基因甘藍(lán)型油菜[J]. 作物學(xué)報(bào), 2010, 36(2): 228–232.Fang X P, Wang Z, Chen R M, et al. Transgenic Brassica napus growing with phytate as a sole phosphorus source[J]. Acta Agronomica Sinica, 2010, 36(2): 228–232.

    [ 99 ]Liu C, Muchhal U S, Uthappa M, et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus[J]. Plant Physiology, 1998, 116(1): 91–99.

    [100]Burleigh S H, Harrison M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997, 34(2): 199–208.

    [101]Burleigh S H, Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots[J]. Plant Physiology, 1999,119(1): 241–248.

    [102]Martín A C, del Pozo J C, Iglesias J, et al. Infuence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. Plant Journal, 2000, 24(5): 559–567.

    [103]Wasaki J, Shinano T, Onishi K, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves[J]. Journal of Experimental Botany, 2006, 57(9): 2049–2059.

    [104]李彥龍, 童依平, 李濱, 等. 氮磷虧缺對(duì)小麥TaIPS基因表達(dá)的影響[J]. 西北植物學(xué)報(bào), 2008, 28(7): 1303–1307.Li Y L, Tong Y P, Li B, et al. Expression of TaIPS genes in wheat seedlings with nitrogen and phosphorus starvation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(7): 1303–1307.

    Research advances on response characteristics of plants to different forms of phosphorus

    LI Ting-xuan, YE Dai-hua, ZHANG Xi-zhou, GUO Jing-yi
    ( College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China )

    Phosphorus (P) is one of the essential macronutrients that participates in many important compound synthesis and metabolism of plants. P exists in many forms in soil and gives different phytoavailability. Plants have developed specific mechanisms to adapt the dominant P sources in soil. It has been proved that the efficient P uptake and accumulation of plants are closely related with root morphology, rhizosphere secretion and phosphate transporter. Comprehending P accumulation characteristics of plants is important for breeding high P efficient crops or P-accumulators, excavating the ability of high P efficiency crops in the utilization of the potential P sources, and the key of using plants to extract excess P from P-enriched environments. According to the research achievements at home and abroad, this paper summarized the characteristics of P uptake, root morphology, root activities of phosphatase and phytase of plants when grown in different forms of P, and reviewed the progress in the research of molecular mechanism of high P efficiency. Meanwhile, the future researches in this field were forecasted.

    phosphorus forms; phosphorus-efficient; phosphorus accumulation; plant response mechanisms

    2017–08–04 接受日期:2017–10–30

    國(guó)家自然科學(xué)基金(41671323);四川省科技支撐項(xiàng)目(2013NZ0044)資助。

    李廷軒(1966—),男,四川宣漢人,博士,教授,主要從事土壤環(huán)境質(zhì)量演變與養(yǎng)分資源管理研究。E-mail:litinx@263.net

    猜你喜歡
    植酸酶磷酸酶無(wú)機(jī)
    非反芻動(dòng)物營(yíng)養(yǎng)中的植酸酶:胃腸道植酸酶活性及其影響因素(續(xù)2)
    非反芻動(dòng)物營(yíng)養(yǎng)中的植酸酶:胃腸道植酸酶活性及其影響因素
    無(wú)機(jī)滲透和促凝劑在石材防水中的應(yīng)用
    石材(2020年9期)2021-01-07 09:30:04
    加快無(wú)機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
    植酸酶在蛋雞生產(chǎn)應(yīng)用
    堿性磷酸酶鈣-鈷法染色的不同包埋方法比較
    馬尾松果糖-1,6-二磷酸酶基因克隆及表達(dá)模式分析
    有機(jī)心不如無(wú)機(jī)心
    山東青年(2016年2期)2016-02-28 14:25:31
    磷酸酶基因PTEN對(duì)骨肉瘤細(xì)胞凋亡機(jī)制研究
    Fe2(SO4)3氧化脫除煤中無(wú)機(jī)硫的研究
    突泉县| 和顺县| 博白县| 观塘区| 即墨市| 寿光市| 上蔡县| 泽库县| 庆阳市| 依兰县| 双辽市| 绥芬河市| 平阳县| 阜宁县| 南京市| 固安县| 龙游县| 潮安县| 蒲城县| 喀喇沁旗| 曲水县| 绿春县| 东兰县| 稻城县| 东源县| 剑阁县| 三门县| 马边| 呈贡县| 金门县| 策勒县| 冀州市| 凤台县| 阿图什市| 安岳县| 扎鲁特旗| 罗定市| 大理市| 怀安县| 丰都县| 郓城县|