劉賢響,徐 瓊,蘇勝培,尹篤林
(湖南師范大學(xué) 化學(xué)化工學(xué)院 石化新材料與資源精細(xì)利用國(guó)家地方聯(lián)合工程實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410081)
生物質(zhì)碳水化合物催化轉(zhuǎn)化制2,5-呋喃二甲酸的研究進(jìn)展
劉賢響,徐 瓊,蘇勝培,尹篤林
(湖南師范大學(xué) 化學(xué)化工學(xué)院 石化新材料與資源精細(xì)利用國(guó)家地方聯(lián)合工程實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410081)
2,5-呋喃二甲酸(FDCA)是有望替代石化資源合成可降解高分子及助劑材料等的重要生物質(zhì)基平臺(tái)化合物。介紹了FDCA的用途,綜述了以生物質(zhì)碳水化合物為原料制備FDCA的方法,包括傳統(tǒng)的合成方法、5-羥甲基糠醛催化氧化法以及以生物質(zhì)糖類為原料制備的方法。開發(fā)高效催化反應(yīng)體系是該領(lǐng)域亟待突破的重要瓶頸。對(duì)進(jìn)一步開發(fā)從生物質(zhì)碳水化合物催化轉(zhuǎn)化成FDCA提出了一些建議和展望,為生物質(zhì)催化精細(xì)轉(zhuǎn)化領(lǐng)域創(chuàng)新提供參考。
生物質(zhì)碳水化合物;5-羥甲基糠醛;2,5-呋喃二甲酸;塑化劑
化石資源巨量消耗所造成的環(huán)境污染、氣候變暖和資源能源危機(jī)已日益成為各國(guó)學(xué)術(shù)界和產(chǎn)業(yè)界關(guān)注的焦點(diǎn),尋找可持續(xù)發(fā)展的綠色能源成為全球的共同選擇。將各種秸稈和果殼等在內(nèi)的生物質(zhì)資源轉(zhuǎn)化為高附加值的燃料和精細(xì)化工原料是解決未來(lái)能源與環(huán)境問(wèn)題的重要途徑之一[1-3]。從生物質(zhì)碳水化合物出發(fā),采用化學(xué)或生物的方法可得到多種基礎(chǔ)平臺(tái)化學(xué)品如5-羥甲基糠醛(HMF)、2,5-呋喃二甲酸(FDCA)、2,5-二甲基呋喃、糠醛、1,3-丙二醇、乙醇、乙酰丙酸等。這些產(chǎn)品具有非常好的反應(yīng)特性,可以衍生出數(shù)量眾多的下游產(chǎn)品,有利于緩解化石資源短缺的危機(jī)。
聚酯工業(yè)是關(guān)系國(guó)計(jì)民生的重要產(chǎn)業(yè),聚對(duì)苯二甲酸酯類(PET)是開發(fā)最早且量大面廣的聚酯產(chǎn)品,但其主要原料對(duì)苯二甲酸(PTA)需先從化石資源獲得對(duì)二甲苯,再催化氧化而成。FDCA作為生物質(zhì)碳水化合物衍生物HMF的氧化產(chǎn)物,已被美國(guó)能源部推薦為具有重要價(jià)值的12個(gè)生物質(zhì)基平臺(tái)化合物之一。FDCA具有與PTA類似的芳環(huán)體系及合成聚酯所需的二酸結(jié)構(gòu),有望成為合成綠色可降解塑料及無(wú)毒塑化劑等重要生物基聚酯原料[4],由于其芳香性較苯環(huán)弱,還有望拓展合成易于降解的新材料體系。以FDCA為原料制成的新型聚2,5-呋喃二甲酸乙二醇酯類塑料的氧氣隔絕率優(yōu)于PET六倍以上,CO2和水的隔絕率均優(yōu)于PET兩倍以上,玻璃化溫度比PET高11 ℃,熔融溫度比PET 低40 ℃[5]。但傳統(tǒng)的鄰苯二甲酸二酯類塑化劑會(huì)干擾人體內(nèi)分泌,危害人類生殖健康,在未來(lái)可能會(huì)被禁用。而以FDCA為原料生產(chǎn)的呋喃二甲酸二酯類塑化劑不僅無(wú)生殖毒性,而且塑化性能也優(yōu)于鄰苯二甲酸酯類。本課題組多年來(lái)一直從事生物質(zhì)炭磺酸及生物質(zhì)催化轉(zhuǎn)化利用方面的研究[6-11]。國(guó)內(nèi)目前對(duì)于FDCA的重要性的研究相對(duì)較少[12-14]。
本文介紹了FDCA的用途,綜述了以生物質(zhì)碳水化合物為原料制備FDCA的方法,對(duì)以HMF及葡萄糖和果糖等生物質(zhì)碳水化合物為原料催化轉(zhuǎn)化制FDCA的化學(xué)途徑、方法和催化技術(shù)進(jìn)行了重點(diǎn)歸納和總結(jié),分析了不同催化體系的優(yōu)缺點(diǎn)。
1.1 己糖衍生物脫水法
己糖衍生物脫水法主要是利用酸促進(jìn)醛糖二酸進(jìn)行三重脫水。1876年,專利[15]以粘酸為原料,氫溴酸為催化劑和溶劑首次合成了FDCA(見(jiàn)式(1))。該方法的反應(yīng)條件較苛刻,如需要高濃度液體酸、反應(yīng)溫度必須超過(guò)120 ℃、反應(yīng)時(shí)間超過(guò)20 h等,而且存在反應(yīng)選擇性非常低、副產(chǎn)物多和FDCA收率不到50%等缺點(diǎn)[16]。許多研究試圖通過(guò)改變脫水劑性質(zhì)和底物種類以改進(jìn)該方法。
1951年,Kuhn等[17]將己糖衍生物(2Z,4Z)-2,5-二羥基-2,4-己二烯-1,6-二酸二乙酯在酸性條件下脫水得到2,5-呋喃二甲酸二乙酯,再將2,5-呋喃二甲酸二乙酯水解可得到FDCA(見(jiàn)式(2)),產(chǎn)物收率為95%。該方法首次實(shí)現(xiàn)了FDCA的高效制備。
1.2 呋喃衍生物氧化法
呋喃衍生物氧化法是利用各種無(wú)機(jī)氧化劑將2,5-二取代呋喃氧化的反應(yīng),大多報(bào)道均以糠醛為起始原料合成FDCA[18],原理見(jiàn)式(3)。該方法為:先用硝酸將糠醛氧化成2-糠酸,然后進(jìn)行甲酯化反應(yīng),接著在第5位上發(fā)生氯甲基化反應(yīng)得到 5-氯甲基-2-糠酸甲酯,再用硝酸氧化得到 2,5-呋喃二甲酸二甲酯,經(jīng)堿性水解得到FDCA。該方法的缺點(diǎn)是步驟繁多,產(chǎn)物選擇性較差,產(chǎn)物收率不到50%。
Lewkowski[19]以5-甲基糠醛為原料在1~5 MPa和110~150 ℃的條件下催化氧化得到了FDCA。使用的催化劑包括Ag2O,CuO,Al2O3,Cr2O3等,當(dāng)以鈷、錳和醋酸銨鹽的混合物為催化劑時(shí)效果最好,反應(yīng)原理見(jiàn)式(4)。其中,以Ag2O或Ag2O/Al2O3混合物為催化劑時(shí),反應(yīng)通過(guò)路徑 a進(jìn)行;以CuO-Ag2O-Cr2O3/Al2O3或 CuO-Ag2O/Al2O3為催化劑時(shí),反應(yīng)更傾向于路徑b;以醋酸鹽混合物為催化劑時(shí),反應(yīng)也傾向于路徑b。
近年來(lái)的研究主要集中于由果糖衍生物HMF催化氧化制備FDCA。催化劑主要包括貴金屬Au、Pt、Pd及負(fù)載型催化劑[20],所用載體主要包括活性炭、水滑石、金屬氧化物和碳納米管(CNT)等。其他一些如Ru,Mn,Co等金屬或金屬氧化物也有報(bào)道。除此以外,還有電催化法和生物催化法等。
2.1 貴金屬催化劑
納米Au在碳?xì)浠衔镞x擇性氧化反應(yīng)中表現(xiàn)出較好的催化性能,是一類極具潛力的“綠色”選擇性氧化催化劑,Au催化劑能高效催化HMF氧化成FDCA。Casanova等[21]研究發(fā)現(xiàn),載體對(duì)Au催化劑活性有很大影響。采用Au/CeO2和Au/TiO2催化劑時(shí),在O2壓力1 MPa、n(HMF):n(Au)=150、NaOH濃度4 mol/L、反應(yīng)時(shí)間8 h的條件下,F(xiàn)DCA收率大于99%;而采用Au/C和Au/Fe2O3催化劑時(shí),相同反應(yīng)條件下FDCA收率分別為44%和15%。Albonetti等[22]進(jìn)一步研究發(fā)現(xiàn),在優(yōu)化的反應(yīng)條件下,Au/CeO2催化劑的活性和產(chǎn)物選擇性優(yōu)于Au/ TiO2催化劑。Cai等[23]也證實(shí)了載體對(duì)Au催化劑的活性有很大影響,通過(guò)比較HY,CeO2,TiO2,Mg(OH)2,ZSM-5等不同載體時(shí)發(fā)現(xiàn),HY載體性能最優(yōu),F(xiàn)DCA收率可達(dá)99%以上。Miao等[24]研究發(fā)現(xiàn),在CeO2上摻雜Bi3+可提高活性并促進(jìn)氫化物在載體表面轉(zhuǎn)移,在相同反應(yīng)條件下,使FDCA收率從39%提高至75%。除載體外,Gorbanev等[25]研究發(fā)現(xiàn),堿的用量也影響Au的催化性能,如堿濃度太低(小于5 mol/L)會(huì)產(chǎn)生更多的中間產(chǎn)物5-羥甲基糠酸(HFCA)。Davis等[26]利用同位素跟蹤技術(shù)研究了堿存在下Au催化HMF制FDCA的反應(yīng)機(jī)理,他們認(rèn)為HFCA為主要的中間產(chǎn)物。Gupta等[27]研究發(fā)現(xiàn),使用水滑石負(fù)載Au催化劑時(shí),不需加堿FDCA收率也可達(dá)到99%以上,但反應(yīng)機(jī)理不同。在無(wú)堿或在酸性條件下,HMF氧化反應(yīng)的中間產(chǎn)物主要為2,5-呋喃二甲醛(DFF)和5-甲?;?2-呋喃甲酸(FFCA)。
Pt是最早用于催化氧化HMF制FDCA的貴金屬。1983年,Verdeguer等[28]首次使用Pt/C催化劑,并發(fā)現(xiàn)添加Pb可使FDCA收率從81%提高至99%。Ait等[29-30]也證實(shí)添加Bi不但可提高Pt/C和Pt/ TiO2催化劑的活性,還可防止Pt浸出,從而提高催化劑的穩(wěn)定性。Sahu等[31]研究發(fā)現(xiàn),在相同條件下,Pt/γ-A12O3,Pt/ZrO2,Pt/C催化劑的FDCA的收率分別為96%,94%,89%;Pt/TiO2和Pt/CeO2催化劑的FDCA收率僅為2%和8%。當(dāng)O2用量太少時(shí),催化劑活性位點(diǎn)易被副產(chǎn)物覆蓋;但O2用量過(guò)大又會(huì)使催化劑中毒。Siankevich等[32]在無(wú)堿條件下使用納米Pt/聚維酮(PVP)催化劑,原料轉(zhuǎn)化率為100%,F(xiàn)DCA選擇性為94%,中間產(chǎn)物主要為DFF和FFCA,該結(jié)論與Ebitani等的研究結(jié)果一致。Zhou等[33]在無(wú)堿條件下用CNT負(fù)載納米Pt催化劑催化氧化HMF也證明了該結(jié)論。Niu等[34]利用還原態(tài)石墨烯氧化物負(fù)載納米Pt催化劑催化氧化HMF,F(xiàn)DCA收率僅為41%。Han等[35]用C包覆MgO,然后除去部分MgO,再負(fù)載Pt,得到一種新型催化劑Pt/C-O-Mg,該催化劑的HMF氧化反應(yīng)的選擇性和穩(wěn)定性非常好,F(xiàn)DCA收率為97%,催化劑重復(fù)使用10次以上仍保持活性。
本課題組首次利用葡萄糖為穩(wěn)定劑制備的一種納米膠體Pd和Pd/C催化劑[36-37]的活性較高。Davis等[20]研究了Pd/C催化劑的性能。實(shí)驗(yàn)結(jié)果表明,在O2壓力690 kPa、NaOH濃度2 mol/L、反應(yīng)溫度23 ℃、反應(yīng)時(shí)間6 h的條件下,原料可完全轉(zhuǎn)化,F(xiàn)DCA收率為71%。Siyo等[38]利用PVP負(fù)載的納米Pd催化劑催化HMF氧化時(shí)發(fā)現(xiàn),Pd的粒徑影響催化活性,當(dāng)粒徑由1.8 nm增至2.0 nm時(shí),F(xiàn)DCA收率從90%降至81%。Siyo等[39]研究不同載體的性能時(shí)發(fā)現(xiàn),Pd/ZrO2/La2O3催化劑的性能最佳,F(xiàn)DCA收率為90%,且催化劑性能穩(wěn)定。Zhang等[40-42]首次制備了系列新型磁性Pd催化劑(γ- Fe2O3@HAP-Pd,C-Fe3O4-Pd,Pd/C@ Fe3O4),F(xiàn)DCA的最高收率為93%,該類催化劑的優(yōu)點(diǎn)是活性高且容易磁性分離,可回收利用。負(fù)載型貴金屬催化劑催化HMF氧化制FDCA的性能比較見(jiàn)表1。
表1 負(fù)載型貴金屬催化HMF氧化制FDCA的性能比較Table 1 Oxidation of HMF into FDCA over supported noble metal catalysts
也有研究者利用貴金屬合金類催化劑催化HMF氧化制備FDCA并取得較好效果。Villa等[43]制備了活性炭(AC)負(fù)載的催化劑Au8-Pd2/AC,在3 MPa O2、2 mol/L NaOH的條件下,60 ℃反應(yīng)2 h,原料轉(zhuǎn)化率及FDCA收率均在99%以上,相比單一金屬催化劑的效率更高,反應(yīng)時(shí)間大幅縮短,反應(yīng)溫度也下降較多。Wan等[44]研發(fā)了一種CNT負(fù)載的Au-Pd納米催化劑,在不加NaOH、空氣壓力1 MPa的條件下,100 ℃反應(yīng)12 h,HMF可完全轉(zhuǎn)化,F(xiàn)DCA收率為96%。這可能是因?yàn)椋珻NT表面的羰基和酚羥基促進(jìn)了原料及中間產(chǎn)物吸附在催化劑表面發(fā)生催化氧化。
2.2 非貴金屬催化劑
貴金屬的催化活性雖然較高,但制備成本相對(duì)也較高,故考慮利用非貴金屬催化劑。Gorbanev等[45-46]以TiO2,Al2O3,F(xiàn)e3O4,CeO2,ZrO2,MgO,HT,MgAl2O4等為載體研究了Ru(OH)x負(fù)載型催化劑在水相中催化HMF轉(zhuǎn)化為FDCA。研究結(jié)果表明,以堿性氧化物為載體時(shí)催化活性更高,固體堿能有效促進(jìn)氧化反應(yīng)進(jìn)行。St?hlberg等[47]研究發(fā)現(xiàn),HMF在離子液體介質(zhì)中催化氧化HMF為FDCA的收率僅為48%,且離子液體成本高,與產(chǎn)物分離困難。Yi等[48]研究發(fā)現(xiàn),在無(wú)堿條件下,Ru/C催化劑的FDCA的收率為88%。專利[49-50]在Co和Mn類金屬催化劑中引入Br,在有機(jī)酸為溶劑的條件下,F(xiàn)DCA收率最高為73%。Hansen等[51]利用CuCl/t-BuOOH催化體系催化氧化HMF,F(xiàn)DCA收率為50%。Saha等[52]研究了多孔聚合物負(fù)載的FeCl3催化劑,F(xiàn)DCA選擇性為85%。Wang等[53-54]開發(fā)了磁性納米催化劑Fe3O4-CoOx和Merrifield樹脂負(fù)載的鈷卟啉催化劑,實(shí)現(xiàn)了HMF的完全轉(zhuǎn)化,F(xiàn)DCA選擇性及收率最高可達(dá) 90%。非貴金屬類催化劑雖成本較低,但催化活性還有待提高。
2.3 電催化法
1991年,Grabowski等[55]利用堿式氧化鎳為正極材料首次研究了HMF的電催化氧化,F(xiàn)DCA收率為71%。此后有關(guān)HMF電催化氧化制FDCA的報(bào)道很少。直到2012年,Vuyyuru等[56]在pH=10的條件下使用Pt電極電催化氧化HMF,只發(fā)現(xiàn)了少量DFF,幾乎未得到FDCA(收率不到1%)。他們認(rèn)為,水的電解是主要競(jìng)爭(zhēng)反應(yīng),限制了HMF氧化的法拉第效率。Chadderdon等[57]研究了堿性溶液下炭黑負(fù)載的貴金屬催化劑的電催化氧化反應(yīng)。他們發(fā)現(xiàn),反應(yīng)受電極電位和電催化劑影響,HMF上的醛基比羥基更易被氧化,中間產(chǎn)物主要為HFCA,如要進(jìn)一步氧化羥基則需更高的電極電位。最近Cha等[58]利用四甲基哌啶氮氧化物為電催化劑通過(guò)抑制水電解,大幅提高了HMF的氧化效率,F(xiàn)DCA收率大于99%,反應(yīng)機(jī)理見(jiàn)式(5)。
2.4 生物催化法
化學(xué)氧化反應(yīng)通常在高溫和高壓下進(jìn)行,而生物催化法通常可在相對(duì)溫和的條件下進(jìn)行。1997年,van Deurzen等[59]利用氯過(guò)氧化物酶(CPO)催化HMF氧化,H2O2為氧化劑,產(chǎn)物以DFF為主,選擇性為60%~74%,主要副產(chǎn)物為5-羥基甲基-2-呋喃甲酸,也檢測(cè)到少量FFCA,但未發(fā)現(xiàn)FDCA。Archer Daniels Midland公司[60]研究CPO對(duì)HMF的生物催化氧化作用時(shí)發(fā)現(xiàn),F(xiàn)DCA收率為60%~75%,HFCA收率25%~40%。Koopman等[61]使用氧化還原酶將HMF氧化成FDCA的收率為97%。Dijkman等[62-63]研究了一個(gè)源于葡萄糖-甲醇-膽堿氧化還原酶家族的HMF氧化酶,該氧化酶有較高的催化活性。McKenna等[64]研究了合成FDCA的酶級(jí)聯(lián)反應(yīng),利用半乳糖氧化酶和醛氧化酶通過(guò)一鍋串聯(lián)酶反應(yīng)催化HMF氧化制FDCA,收率為74%,在溫和條件下實(shí)現(xiàn)了HMF上羥基高轉(zhuǎn)化率轉(zhuǎn)化為羧酸。
目前,由生物質(zhì)碳水化合物直接轉(zhuǎn)化制備HMF已有較多研究,但直接制備FDCA的研究尚在起步階段。采用單糖類(葡萄糖或果糖)為原料兩步法制備FDCA的制備原理見(jiàn)式(6)。
單糖先脫水生成HMF,然后經(jīng)氧化反應(yīng)得到FDCA;二糖和多糖一般是先水解為單糖,然后再經(jīng)異構(gòu)化、酸催化脫水和氧化等反應(yīng)生成FDCA。無(wú)論單糖還是多糖,想得到最終產(chǎn)物均需經(jīng)歷很多基元反應(yīng),而且在反應(yīng)過(guò)程中還有許多副反應(yīng),因此由糖類制備FDCA的過(guò)程很復(fù)雜。Kroger等[65]首次以果糖為原料,在水和甲基異丁基酮的雙相體系中實(shí)現(xiàn)了一步轉(zhuǎn)化為FDCA,但反應(yīng)7 d的收率僅為25%。Ribeiro等[66]使用鹽酸酸化的SiO2氣凝膠包覆乙酰丙酮鈷為催化劑催化果糖一步轉(zhuǎn)化為FDCA,果糖轉(zhuǎn)化率為72%,F(xiàn)DCA選擇性可達(dá)99%,但反應(yīng)條件十分苛刻,需高溫高壓,且催化劑制備復(fù)雜。最近Wang等[53]也利用果糖制備了FDCA,首先用Fe3O4@SiO2-SO3H固體酸催化劑催化果糖脫水生成HMF,然后用納米Fe3O4-CoOx催化劑催化氧化HMF為FDCA,最終收率為60%。上述兩個(gè)反應(yīng)為連續(xù)操作,兩種催化劑均具有磁性,在反應(yīng)過(guò)程中易于分離。如在反應(yīng)中同時(shí)加入上述兩種催化劑時(shí),果糖轉(zhuǎn)化率非常低,幾乎得不到FDCA。Yi等[67-69]研究發(fā)現(xiàn),采用三相體系時(shí),果糖制備FDCA的收率為78%,葡萄糖制備FDCA的收率僅為50%。
由同樣是生物質(zhì)衍生而來(lái)的平臺(tái)化合物HMF催化氧化制FDCA的實(shí)驗(yàn)室研究已經(jīng)相當(dāng)成熟,使用的催化劑主要是貴金屬、金屬氧化物、金屬鹽或生物催化。但到目前為止,F(xiàn)DCA還未實(shí)現(xiàn)工業(yè)化生產(chǎn)。在氧化工藝及其機(jī)理、高效催化劑的開發(fā)與篩選、進(jìn)一步提高FDCA的選擇性和收率等方面仍需進(jìn)行較深入研究。開發(fā)效果好、價(jià)格低廉的催化劑是人們關(guān)注的焦點(diǎn)。
由生物質(zhì)碳水化合物出發(fā)直接制備FDCA是一個(gè)富有挑戰(zhàn)性的課題,但具有十分重要的研究?jī)r(jià)值,已逐漸受到研究者的關(guān)注,對(duì)葡萄糖和果糖等單糖原料轉(zhuǎn)化的研究也已獲得了一些初步的成果。但對(duì)于多糖如纖維素等直接轉(zhuǎn)化為FDCA的研究幾乎沒(méi)有。纖維素作為以葡萄糖為單元的非糧碳水化合物,如能一步轉(zhuǎn)化為FDCA,在生物質(zhì)能源和材料產(chǎn)業(yè)上必將產(chǎn)生巨大的價(jià)值。
[1]Bruijnincx P C A,Weckhuysen B M. Biomass conversion lignin up for break-down[J]. Nat Chem,2014,6(12):1035 -1036.
[2]Julis J,Leitner W. Synthesis of 1-octanol and 1,1-dioctyl ether from biomass-derived platform chemicals[J]. Angew Chem,Int Ed,2012,51(34):8615 - 8619.
[3]Luterbacher J S,Rand J M,Alonso D M,et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone[J]. Science,2014,343(6168):277 - 280.
[4]Wu Binshuang,Xu Yutao,Bu Zhiyang,et al. Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene 2,5-furandicarboxylate)s:From synthesis using highly purifed 2,5-furandicarboxylic acid to thermo-mechanical properties[J]. Polymer,2014,55(16):3648 -3655.
[5]Zhu Jianhui,Cai Jiali,Xie Wenchun,et al. Poly (butylene 2,5-furan dicarboxylate),a biobased alternative to PBT:Synthesis,physical properties,and crystal structure[J]. Macromolecules,2013,46(3):796 - 804.
[6]劉賢響,丁慧,匡湘銘,等. 生物質(zhì)炭磺酸催化異丁醛環(huán)化反應(yīng)[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào),2015,38(2):35 -39.
[7]Wu Youyu,F(xiàn)u Zaihui,Yin Dulin,et al. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chem,2010,12(4):696 - 700.
[8]Zhang Chao,F(xiàn)u Zaihui,Liu Yachun,et al. Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Green Chem,2012,14(7):1928 - 1934.
[9]Zhang Chao,F(xiàn)u Zaihui,Dai Baohua,et al. Chlorocuprate ionic liquid functionalized biochar sulfonic acid as an efciently biomimetic catalyst for direct hydrolysis of bamboo under microwave irradiation[J]. Ind Eng Chem Res,2013,52(33):11537 - 11543.
[10]Zhang Chao,F(xiàn)u Zaihui,Dai Baohua,et al. Biochar sulfonic acid immobilized chlorozincate ionic liquid: An efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under microwave irradiation[J]. Cellulose,2014,21(3):1227 - 1237.
[11]歐陽(yáng)四余,徐瓊,伏再輝,等. 生物質(zhì)轉(zhuǎn)化制5-羥甲基糠醛的酸催化研究新進(jìn)展[J]. 化工進(jìn)展,2014,33(5):1077 -1085,1107.
[12]Liu Xianxiang,Xiao Jiafu,Ding Hui,et al. Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+and Cu2+immobilized on amino functionalized SBA-15[J]. Chem Eng J,2016,283:1315 - 1321.
[13]Liu Xianxiang,Xu Qiong,Liu Junyi,et al. Hydrolysis of cellulose into reducing sugars in ionic liquids[J]. Fuel,2016,164:46 - 50.
[14]Liu Xianxiang,Ding Hui,Xu Qiong,et al. Selective oxidation of biomass derived 5-hydroxymethylfurfural to 2,5-diformylfuran using sodium nitrite[J]. J Energy Chem,2016,25(1):117 - 121.
[15]Furanix Technologies B V. Method for the preparation of 2,5-furandicarboxylic acid and for the preparation of the dialkyl ester of 2,5-furandicarboxylic acid:US8865921[P]. 2014-10-21.
[16]Cope A,Keller R. Notes-benzofuran from saccharic acid[J]. J Org Chem,1956,21(1):141.
[17]Kuhn R,Dury K. Ringschlüsse mitα,α′-dioxymucons?ure-estern[J]. Justus Liebigs Annalen der Chemie,1951,571(1):44 - 68.
[18]Gonis G,Amstutz E D. The preparation of furan-2,5-dicarboxylic acid1[J]. J Org Chem,1962,27(8):2946 - 2947.
[19]Lewkowski J. Synthesis,chemistry and applications of 5-hydroxymethyl-furfural and its derivatives[J]. Arkivoc,2001,2(1):17 - 54.
[20]Davis S E,Houk L R,Tamargo E C,et al. Oxidation of5-hydroxymethylfurfural over supported Pt,Pd and Au catalysts[J]. Catal Today,2011,160(1):55 - 60.
[21]Casanova O,Iborra S,Corma A. Biomass into chemicals:Aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts[J]. ChemSusChem,2009,2(12):1138 - 1144.
[22]Albonetti S,Lolli A,Morandi V,et al. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Aubased catalysts:Optimization of active phase and metal-support interaction[J]. Appl Catal B,2015,163:520 - 530.
[23]Cai Jiaying,Ma Hong,Zhang Junjie,et al. Gold nanoclusters confned in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions[J]. Chem Eur J,2013,19(42):14215 - 14223.
[24]Miao Zhenzhen,Zhang Yibo,Pan Xiqiang,et al. Superior catalytic performance of Ce1-xBixO2-δsolid solution and Au/ Ce1-xBixO2-δfor 5-hydroxymethylfurfural conversion in alkaline aqueous solution[J]. Catal Sci Technol,2015,5(2):1314 -1322.
[25]Gorbanev Y Y,Klitgaard S K,Woodley J M,et al. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature[J]. ChemSusChem,2009,2(7):672 - 675.
[26]Davis S E,Zope B N,Davis R J. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts[J]. Green Chem,2012,14(1):143 - 147.
[27]Gupta N K,Nishimura S,Takagaki A,et al. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chem,2011,13(4):824 - 827.
[28]Verdeguer P,Merat N,Gaset A. Oxydation catalytique of(hydroxymethyl)furan to 2,5-furandicarboxylic acid[J]. J Mol Catal,1993,85(3):327 - 344.
[29]Ait R H,Essayem N,Besson M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts:Influence of the base and effect of bismuth promotion[J]. Green Chem,2013,15(8):2240 -2251.
[30]Ait R H,Essayem N,Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2-and ZrO2-based supports[J]. ChemSus-Chem,2015,8(7):1206 - 1217.
[31]Sahu R,Dhepe P L. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts[J]. React Kinet Mechnism Catal,2014,112(1):173 - 187.
[32]Siankevich S,Savoglidis G,F(xiàn)ei Zhaofu,et al. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315:67 - 74.
[33]Zhou Chunmei,Deng Weiping,Wan Xiaoyue,et al. Functionalized carbon nanotubes for biomass conversion:The base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst[J]. ChemCatChem,2015,7(18):2853 -2863.
[34]Niu Wenqi,Wang Ding,Yang Guohui,et al. Pt nanoparticles loaded on reduced graphene oxide as an efective catalyst for the direct oxidation of 5-hydroxymethylfurfural(HMF)to produce 2,5-furandicarboxylic acid(FDCA) under mild conditions[J]. Bull Chem Soc Jpn,2014,87(10):1124 -1129.
[35]Han Xuewang,Geng Liang,Guo Yong,et al. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chem,2016,18(6):1597 - 1604.
[36]Liu Xianxiang,Zhang Zehui,Yang Yongjun,et al. Selective hydrogenation of citral to 3,7-dimethyloctanal over activated carbon-supported nano-palladium under atmospheric pressure[J]. Chem Eng J,2015,263:290 - 298.
[37]Yang Yongjun,Liu Xianxiang,Yin Dulin,et al. A recyclable Pd colloidal catalyst for liquid phase hydrogenation ofα-pinene[J]. J Ind Eng Chem,2015,26:333 - 334.
[38]Siyo B,Schneider M,Pohl M M,et al. Synthesis,characterization,and application of PVP-Pd NP in the aerobic oxidation of 5-hydroxymethylfurfural(HMF)[J]. Catal Lett,2014,144(3):498 - 506.
[39]Siyo B,Schneider M,Radnik J,et al. Infuence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials[J]. Appl Catal,A,2014,478:107 - 116.
[40]Zhang Zehui,Zhen Judun,Liu Bing,et al. Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst[J]. Green Chem,2015,17(2):1308 - 1317.
[41]Liu Bing,Ren Yongsheng,Zhang Zehui. Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions[J]. Green Chem,2015,17(3):1610 - 1617.
[42]Mei Nan,Liu Bing,Zheng Judun,et al. A novel magnetic palladium catalyst for the mild aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water[J]. Catal Sci Technol,2015,5(6):3194 - 3202.
[43]Villa A,Schiavoni M,Campisi S,et al. Pd-modifed Au on carbon as an efective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid[J]. ChemSus-Chem,2013,6(4):609 - 612.
[44]Wan Xiaoyue,Zhou Chunmei,Chen Jiashu,et al. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles[J]. Acs Catal,2014,4(7):2175 - 2185.
[45]Gorbanev Y Y,Kegnaes S,Riisager A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports[J]. Catal lett,2011,141(12):1752 - 1760.
[46]Gorbanev Y Y,Kegnaes S,Riisager A. Efect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water[J]. Top Catal,2011,54(16/18):1318 - 1324.
[47]St?hlberg T,Eyjólfsdóttir E,Gorbanev Y Y,et al. Aerobic oxidation of 5-(hydroxymethyl) furfural in ionic liquids with solid ruthenium hydroxide catalysts[J]. Catal lett,2012,142(9):1089 - 1097.
[48]Yi Guangshun,Teong Siewping,Zhang Yugen. Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chem,2016,18(4):979 - 983.
[49]Canon Kabushiki Kaisha. Method of producing 2,5-furandicarboxylic acid:US20110092720[P]. 2011-04-21.
[50]Furanix Technologies B V. Method for the preparation of 2,5-furandicarboxylic acid and esters thereof:US8519167[P]. 2013-04-27.
[51]Hansen T S,Sádaba I,García-Suárez E J,et al. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions[J]. Appl Catal,A,2013,456:44 - 50.
[52]Saha B,Gupta D,Abu-Omar M M,et al. Porphyrin-based porous organic polymer-supported iron(Ⅲ) catalyst for efcient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid[J]. J Catal,2013,299:316 - 320.
[53]Wang Shuguo,Zhang Zehui,Liu Bing. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOxmagnetite nanocatalyst[J]. ACS Sustain Chem Eng,2015,3(3):406 - 412.
[54]Gao Langchang,Deng Kejian,Zheng Judun,et al. Efcient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by merrifeld resin supported cobalt porphyrin[J]. Chem Eng J,2015,270:444 - 449.
[55]Grabowski G,Lewkowski J,Skowroński R. The electrochemical oxidation of 5-hydroxymethylfurfural with the nickel oxide/hydroxide electrode[J]. Electrochim Acta,1991,36(13):1995.
[56]Vuyyuru K R,Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today,2012,195(1):144 - 154.
[57]Chadderdon D J,Xin Le,Qi Ji,et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported au and pd bimetallic nanoparticles[J]. Green Chem,2014,16(8):3778 - 3786.
[58]Cha H G,Choi K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell[J]. Nat Chem,2015,7(4):328 - 333.
[59]van Deurzen M P J,van Rantwijk F,Sheldon R A. Chloroperoxidase-catalyzed oxidation of 5-(hydroxymethyl)furfural[J]. J Carbohydr Chem,1997,16(3):299 - 309.
[60]Archer Daniels Midland Company. Enzymatic oxidation of hydroxymethylfurfural:US8183020[P]. 2012-05-22.
[61]Koopman F,Wierckx N,de Winde J H,et al. Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA,2,5-furandicarboxylic acid[J]. Bioresour Technol,2010,101(16):6291 - 6296.
[62]Dijkman W P,Groothuis D E,F(xiàn)raaije M W. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid[J]. Angew Chem,Int Ed,2014,53(25):6515 - 6518.
[63]Dijkman W P,Binda C,F(xiàn)raaije M W,et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase[J]. ACS Catal,2015,5(3):1833 - 1839.
[64]McKenna S M,Leimkühler S,Herter S,et al. Enzyme cascade reactions:Synthesis of furandicarboxylic acid(FDCA)and carboxylic acids using oxidases in tandem[J]. Green Chem,2015,17(6):3271 - 3275.
[65]Kroger M,Prusse U,Vorlop K D. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Top Catal,2000,13(3):237 - 242.
[66]Ribeiro M L,Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catal Commun,2003,4(2):83 - 86.
[67]Yi Guangshun,Teong Siewping,Zhang Yugen. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system[J]. ChemSusChem,2015,8(7):1151 -1155.
[68]Yi Guangshun,Teong Siewping,Li Xiukai,et al. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid[J]. Chem-SusChem,2014,7(8):2131 - 2135.
[69]Teong Siewping,Yi Guangshun,Cao Xueqin,et al. Polybenzylic ammonium chloride resins as solid catalysts for fructose dehydration[J]. ChemSusChem,2014,7(8):2120 - 2124.
(編輯 鄧曉音)
Advances in catalytic conversion of biomass carbohydrates into 2,5-furandicarboxylic acid
Liu Xianxiang,Xu Qiong,Su Shengpei,Yin Dulin
(National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources,College of Chemistry and Chemical Engineering,Hunan Normal University,Changsha Hunan 410081,China)
2,5-Furandicarboxylic acid(FDCA),an important biomass-based platform compound,may be used as an alternative of petrochemical resources for the synthesis of biodegradable polymers and other additives. Its applications were introduced and the recent advances in the catalytic conversion of biomass carbohydrates to FDCA,including convention al synthetic methods,catalytic oxidation of 5-hydroxymethylfurfural and other methods using biomass sugars as starting materials,were summarized in this paper. An efficient catalytic system for the direct conversion of biomass carbohydrates to FDCA is an important basis for technological breakthroughs in the field. Some suggestions were proposed for further research and development of the catalytic conversion of biomass carbohydrates to FDCA.
biomass carbohydrates;5-hydroxymethylfurfural;2,5-furandicarboxylic acid;plasticizer
1000 - 8144(2016)07 - 0872 - 08
TQ 251.1
A
10.3969/j.issn.1000-8144.2016.07.018
2015 - 12 - 31;[修改稿日期]2016 - 03 - 22。
劉賢響(1985—),男,湖南省衡陽(yáng)市人,博士生,實(shí)驗(yàn)師,電郵 lxx@hunnu.edu.cn。聯(lián)系人:蘇勝培,電話 0731 -88872576,電郵 sushengpei@gmail.com。
湖南省教育廳資助科研項(xiàng)目(13C562,15B134);國(guó)家留學(xué)基金資助項(xiàng)目(201506720018)。