• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genotoxicity of Three Avermectins on Polypedates megacephalus Tadpoles Using the Comet Assay

    2017-01-20 11:06:26BaorongGENGLinglingZHANGYunJIANGXiupingHUANGandJinmeiDAI
    Asian Herpetological Research 2016年4期

    Baorong GENG, Lingling ZHANG, Yun JIANG, Xiuping HUANG and Jinmei DAI

    College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China

    Genotoxicity of Three Avermectins on Polypedates megacephalus Tadpoles Using the Comet Assay

    Baorong GENG*, Lingling ZHANG, Yun JIANG, Xiuping HUANG and Jinmei DAI

    College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China

    Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, and are used as effective agricultural pesticides and antiparasitic agents. However, run-off from crops treated with avermectins may contaminate various bodies of water, and accumulated to certain concentrations to impact the development of aquatic animals. Here, we tested the genotoxicity of three avermectins (abamectin, ABM; ivermectin, IVM; and emamectin benzoate, EMB) on Polypedates megacephalus tadpoles by the alkaline single-cell gel electrophoresis assay. Tadpoles were treated for 48 h in the laboratory with different concentrations of these three agents, 0.006, 0.012, 0.018, 0.024, 0.030 mg/L for ABM, 0.003, 0.006, 0.009, 0.012, 0.015 mg/L for IVM and 0.04, 0.06, 0.08, 0.10, 0.12 mg/L for EMB, and then measured their DNA damage by the Comet assay tail factor %. The concentrations of resulted in highly signifcant increases in DNA damage of the tadpoles were found above the concentration threshold of 0.012 mg/ L ABM, 0.003 mg/L IVM and 0.06 mg/L EMB and linear correlations between the intensity of DNA damage and the concentrations of these three avermectins. Our results showed clearly that avermectins caused dose dependent DNA damage on amphibian tadpoles, and there might be a control on the misuse of avermectins.

    Polypedates megacephalus, tadpole, avermectins, abamectin, ivermectin, emamectin benzoate, DNA damage, comet assay

    1. Introduction

    Amphibian decline in almost all over the world (Stuart et al., 2004; Xie et al., 2007), with diverse speculations regarding the causes (Ankley et al., 1998; Davidson, 2004; Wang and Jia, 2009). Chemical contamination in aquatic environment as a consequence of pesticide application continues to be postulated as a contributing factor for the decline (Berrill et al., 1997; Mann and Bidwell, 2001). Indeed, amphibians may be at greater risk of the toxic effects of pollutants than other aquatic vertebrates due to their special physiological and life history characteristics. Amphibian skins are highly absorptive, contaminants have the potential to easily permeate the epidermis (Tyler, 1994), and some amphibians often prefer to breed in shallow, lentic, or ephemeral water bodies, where contaminants may accumulate without dilution (Duellman and Trueb, 1994). Avermectins and their derivatives are very effective agricultural pesticides and antiparasitic agents, and nowadays are used widely in veterinary, and agricultural fields. About 2500 tons of avermectins is produced annually in China, with production expected to increase in the future (Sun and Meng, 2009). Avermectins are a new class of macrocyclic lactones derived from mycelia of the soil actinomycete, Streptomyces avermitilis, with four closely related major components, A1a, A2a, B1a and B2a, and four minor components, A1b, A2b, B1b and B2b, which are lower homologs of the corresponding major components (Danishefsky et al., 1989). These compounds were reported to be possessing insecticidal, acaricidal and nematicidal properties and the mechanism of toxicity is fundamentally different from those associated with current natural and synthetic pesticides (Putter et al., 1981). Among these components, the B1 fractions (ABM, abamectin, a blend of B1a and B1b avermectins) display the most effective antiparasitic activities (Egerton et al., 1979) and was selected fordevelopment to control phytophagous mites and insect pests on a variety of agricultural and horticultural crops worldwide (Reddy, 2013). Ivermectin (IVM, 22, 23-dihydroavermectins B1) is semisynthetic derivatives of avermectins B1 with the same effective antiparasitic activity and registered and widely used in veterinary medicine against scab mites (Currie and McCarthy, 2010). Emamectin benzoate (EMB), 4'-deoxy-4'-epi-methyl amino benzoate salt of avermectins B1, is structurally similar to natural fermentation products. It is a mixture of two avermectin homologues: a major constituent (≥90%) MAB1a and a minor constituent (≤ 10%) MAB1b. It has unprecedented potency against a broad spectrum of lepidopteron pests and is used for controlling lepidopteron pests in agricultural felds (Singh et al., 2013).

    More and more frequent application and broad array of uses, the potential negatively impact of these three agents needs to be carefully considered. After the investigation of acute toxicities, the genotoxicity of these avermectins to Polypedates megacephalus tadpoles were evaluated in this study using the Alkaline Single-Cell Gel Electrophoresis Assay (SCGE) or Comet assay, an effective and sensitive assay for testing DNA damage caused by mutagens (Tice, 1995).

    2. Materials and Methods

    2.1 ChemicalsNormal-melting-point agarose (NMA), Low-melting-point agarose (LMA), Triton X-100, and Tris (Tris hydroxymethyl) aminonethane hydrochloride were obtained from BBI (Ontario, Canada). Dimethylsulfoxide (DMSO) and ethidium bromide (EtBr) were purchased from Amersco (UKAS), while methylmethane sulfonate (MMS) and Trypan-blue dye was obtained from Sigma (St. Louis, MO). Other general reagents and chemicals used for the comet assay were purchased from Sangon Biotech (Shanghai) Co., Ltd. ABM and IVM were provided by Chengdu Aikeda Chemical Product Co., Ltd. (Chengdu, China), and EMB was provided by Yinnong Biochemical Industry Co., Ltd. (Huizhou, China).

    2.2 AnimalsPolypedates megacephalus (Anura: Rhacophoridae) is a medium-sized treefrog, widely distributed in southeastern China. It was chosen as the test animal for this study due to its presence in many disturbed agricultural areas, and its reproductive period is relatively long (Cai, 1979). The chance for the tadpoles to contact these agents is very high. The tadpoles were collected from farm felds in Geling Town, about 50 km southwest from Fuzhou, Fujian Province, China, and reared to Gosner-stage 37–38 tadpoles in the laboratory (Gosner, 1960).

    2.3 TreatmentAll tadpoles were held in glass tanks in dechlorinated water and fed with eel fodder and yolk. After 5–7 days of acclimation, healthy tadpoles with the same stage were selected for the genotoxic tests.

    The maximum test concentrations used in the assay were based on approximate 60% of the 48 h LC50concentrations for ABM (0.030 mg/L), IVM (0.015 mg/ L) and EMB (0.120 mg/L), and then a series of dilutions were made from these concentrations (Table 1). These 48 h LC50concentrations were derived from a report on acute toxicity in P. megacephalus tadpoles that will be published separately (in preparation). 60% of the 48 h LC50concentrations for these agents were chosen as the maximum test concentrations since more than the concentrations could induce a part of tadpole death and disturbed experimentation. A 48-h exposure to all concentrations resulted in 100% tadpole survival.

    A total of 408 tadpoles were divided into three parts (i.e., replicated 3 times) with each part consisting of 136 individuals. There were 8 tadpoles per group including negative, positive controls and various treated groups were conducted in the dark in 2 L beakers containing 1500 mL of dechlorinated water, 1500 mL of 3.125 mg/L MMS, or 1500 mL of the various concentrations of these avermectins.

    2.4 Alkaline Comet AssayThe procedure described by Ralph et al. (1996) and Geng et al. (2010) was employed, with some modifications. All animals were processed individually. The animals were truncated tails and placed immediately into 1 mL of cold phosphate buffered saline (PBS, calcium- and magnesium- free) for 5 min. Each roughened microscope slide was coated with 200 μL of 0.7 % NMA at 37°C, and then covered with a coverslip and transferred to a humidified box at 4°C for 25 min to allow the solidification of agarose. The erythrocytes (30 μL) were then mixed with 0.7 % LMA (100 μL) and this suspension was pipetted onto fully frosted slides and covered with coverslips. The slides were stored in the dark at 4°C for 30 min to allow complete polymerization of the agarose. The coverslips then were removed and the slides were immersed into freshly made lysing solution (pH = 10) and incubated at 4°C in the dark for 2 h. After lysis, the slides were drained and placed in an alkaline electrophoresis buffer for 30 min. For the electrophoresis, the power supply was set at 20 V and the current adjusted to 200 mA by slowly changing the buffer level in the tray. Slides were electrophoresed in the dark at 4°C for 30 min. After electrophoresis, the slides were placed in a stainingtray and covered with a pH 7.5 Tris-HCl neutralizing buffer in the dark for 15 min. This last step was repeated 3 times. The slides were drained, overlayered with 20 μg/ mL EtBr, covered with coverslips, and examined at 400× using a fluorescence microscope. All slides were coded and examined blindly. Routinely, 100–120 cells were examined per animal.

    Table 1 Detection of DNA damage with DNA damage frequency and cell viability in erythrocytes of Polypedates megacephalus tadpoles (Gosner-stage 37-38) after a 48 h exposure to different concentrations of abamectin, ivermectin and emamectin-benzoate.

    2.5 Statistical AnalysisThe standard of classify comets as 0–4 class (Collins et al., 1995) was used according to degree of DNA damage using software CASP in the study (Figure 1). Comet assay tail factor % was used as DNA damage degree according to Valic et al. (2004). Comet assay tail factor % = ∑i×Fi (The “i” was coeffcients of the various classify comets, with 2.5,12.5, 30, 67.5 and 97.5, respectively; and the “Fi” was the percent of various class damages). Prior to any statistical tests all variables were tested for normality using the Kolmogorov- Smirnov test and for homogeneity of variances using Bartlett’s test. The results of the different treatment groups relative to the negative control groups were compared using non-parametric comparisons (Kruskal-Wallis test). Alpha levels of 0.05 and 0.01 were used to determine significance in all statistical analysis. Linear regression analyses were carried out to establish correlations between dose and DNA damage (Comet assay tail factor %). All data processing was made using statistical software SPSS 19.0.

    Figure 1 Classifcation of comets as 0–3 class in erythrocytes of Polypedates megacephalus tadpoles.

    3. Results

    No death and morbidity of the tadpoles were observed after the treatment. DNA damage degrees (Comet assay tail factor %) with DNA damage frequency and cell viability in each treatment group were summarized in table 1.

    As shown in table 1, Polypedates megacephalus tadpoles exposed to the lower concentrations of EMB (0.040 mg/L) did not show a significant increase in the mean Comet assay tail factor % compared to those of the negative control (P > 0.05). However, the tadpoles exposed to the lower concentrations of ABM (0.006 mg/ L) showed a significant increase in DNA damage (P <0.05), and the tadpoles exposed to other concentrations of the three avermectins showed a highly significant increase in DNA damage (P < 0.01). Similarly, the tadpoles exposed to MMS (3.125 mg/L) showed a strong signifcant increase in DNA damage (P < 0.01).

    The three avermectins increased the DNA damage observed in the tadpoles in a dose-responsive manner. There were strong linear correlations between the DNA damages and the concentrations of the three test substances (Figure 2). The cellular distributions of DNA damages in tadpoles are shown in Figure 3. Of the tadpoles treated with increasing concentrations of the three test substances, higher proportions of cells had greater amount of DNA damage than those of the negative control.

    Figure 2 Linear correlations between the DNA damages (Comet assay tail factor %) of tadpoles and the concentrations of abamectin, ivermectin and emamectin benzoate.

    4. Discussion

    Cell viability was found to be more than 85 %, measure up the most current internationally accepted standards for conducting the comet assay (Tice et al., 2000), using the Trypan-blue dye exclusion technique. DNA damage frequency and DNA damage degree were evaluated in the testes of three avermectins-exposed Polypedates megacephalus tadpoles. The results indicate that the comet assay can detect DNA damage induced by exposing P. megacephalus tadpoles to avermectins.

    Although numerous studies report on the toxicities of avermectins (Madsen et al., 1990; Herd, 1995; Davies et al., 1998; Katharios et al., 2002; Jensen et al., 2003; Jencic et al., 2006; Sanderson et al., 2007; Yu et al., 2007; Fanigliulo and Sacchetti, 2008; Jiang et al., 2008; R?mbke et al., 2009; Egeler et al. 2010; R?mbke et al., 2010; Tang et al., 2011; Prichard et al., 2012; Bansod et al., 2013), little information is available on their genotoxicities. The 96-h LC50values of ABM to Brachydanio rerio, Oncorhynchus mykiss and Pelophylax nigromaculatus were 55.1 μg/L (Tisler and Erzen, 2006), 3.2 μg/L (Jencic et al., 2006) and 43.2 μg/L (Wang and Zhao, 2013), respectively. The 96-h LC50values of IVM to Salmo gairdneri and Xenopus laevis larvae were 3.3 μg/L (Bloom and Matheson, 1993) and 5.5 μg/L (Martini et al, 2012), respectively. The 96 h-LC50values of EMB to Brachydanio rerio and Rana zhenhaiensis tadpoles were 0.113 mg/L (Wei et al., 2008) and 0.129 mg/L (Chen et al., 2011) , respectively. The adverse effectof ABM was found on male rat fertility (Elbetieha and Da’as, 2003) and it might have reproductive toxicity (Bing, et al., 2008). Wang and Zhao (2013) found that ABM can induce micronucleus and nuclear anomalies in erythocytes of Pelophylax nigomaculatus. Zhang et al. (2014) recently reported an in situ assay for quantifying genotoxicity of IVM to the tadpoles at Gosner stage 30-33 in laboratory conditions using alkaline SCGE, and EMB was also found to produce genotoxicity on Rana zhenhaiensis tadpoles (Fang et al., 2010).

    Figure 3 Distribution of DNA damage (based on damage class of DNA patterns pooled across 8 tadpoles in each dose group) observed at the cellular level in Polypedates megacephalus tadpoles after exposure for a 48 h period to selected concentrations of abamectin, ivermectin and emamectin benzoate.

    According to these results above and our fnding that avermectins can cause DNA damage in tadpoles at the concentrations below the recommended applied levels (Xu et al., 2010), we consider it possible that avermectins are carcinogenic, and confrm it has the negative impact on the development of tadpoles. Amphibian tadpoles were found to be susceptible to genetic damage caused by short-term exposure to low concentrations of chemicals(Ralph et al., 1996; Clements et al., 1997). Our study also shows amphibian tadpoles may be considered as a sensitive biomonitor for detecting the genotoxic potential of avermectins.

    In conclusion, because of their genotoxic effects at relatively low concentrations, dose- dependent responses, frequent application and broad array of uses, avermectins likely pose a threat to organisms inhabiting in small water bodies.

    AcknowledgementsWe thank Dr. Xiaohong HUANG for her helping to improve the English of this article. The research was granted by the Natural Science Foundation of Fujian, China (2015J01124).

    Ankley G. T., Tietge J. E., Defoe D. L., Jensen K. M., Holcombe G. W., Durhan E. J., Diamond S. A. 1998. Effects of ultraviolet light and methoprene on survival and development of Rana pipiens. Environ Toxicol Chem, 17: 2530–2542

    Bansod Y. V., Kharkar S. V., Raut A., Choudalwar P. 2013. Abamectin: an uncommon but potentially fatal cause of pesticide poisoning. Int J Res Med Sci, 1: 285–286

    Berrill M., Bertram S., Pauli B. 1997. Effects of pesticides on amphibian embryos and tadpoles. In: Green D. M. (ed). Amphibians in decline: Canadian studies of a global problem. Society for the Study of Amphibians and Reptiles, St. Louis, MO. 233–245

    Bing X., Ru S. G., Zhou W. L., Jia Y. G. 2008. Avermectin’s safety evaluation of environmental estrogenic activity and reproductive toxicity. J Wuhan Univ, 54: 745–750 (In Chinese)

    Bloom R. A., Matheson J. C. 1993. Environmental assessment of avermectins by the US Food and Drug Administration. Vet Parasitol, 48: 281–294

    Cai M. Z. 1979. Observations on reproductive habits of thirty-two anuran species of Fujian Province. J Fujian Nor Univ, (1): 71–79 (In Chinese)

    Chen Z. X., Fang X. Q., Lin L., Geng B.R. 2011. Acute toxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll, 23: 21–23 (In Chinese)

    Clements C., Ralph S., Petras M. 1997. Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline sing-cell gel DNA electrophoresis (Comet) assay. Environ Mol Mutagen, 29: 277?288

    Collins A. R., Ma A. G., Duthie S. J. 1995. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutation Res, 336: 69–77

    Currie B. J., McCarthy J. S. 2010. Permethrin and Ivermectin for Scabies. N Engl J Med, 362: 717–725

    Danishefsky S. J, Armistead D. M., Wincott F. E., Selnick H. G., Hungate R. 1989. The total synthesis of avermectin-A1A. J Am Chem Soc, 111: 2967–2980

    Davidson C. 2004. Declining downwind: Amphibian population declines in California and historical pesticide use. Ecol Appl, 14: 1892?1902

    Davies I. M., Gillibrand P. A., McHenery J. G., Rae G. H. 1998. Environment risk of ivermectin to sediment dwelling organisms. Aquaculture, 163: 29–46

    Duellman W. E., Trueb L. 1994. Biology of amphibians. Baltimore: The John Hopkings University Press

    Egeler P., Gilberg D., Fink G., Duis K. 2010. Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegates. J Soils Sedime, 10: 368–376

    Egerton J. R., Ostlind D. A., Blair L. S., Eary C. H., Suhayda D., Cifelli S., Riek R. F., Campbell W. C. 1979. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob Agents Chemother. 15: 372–378

    Elbetieha A., Da’as S. I. 2003. Assessment of antifertility activities of abamectin pesticide in male rats. Ecotoxicol Environ Saf, 55: 307–313

    Fang X. Q., Chen Z. X., Lin L., Geng B. R. 2010. Genotoxicity of emamectin benzoate on Rana zhenhaiensis tadpoles. J Ningde Teach Coll, 22: 373–376 (In Chinese)

    Fanigliulo A., Sacchetti M. 2008. Emamectin benzoate: new insecticide against helicoverpa armigera. Commun Agric Appl Biol Sci, 73: 651–653

    Geng B. R., Lin L., Zhang Q. J., Zhong B.J. 2010. Genotoxicity of the pesticide dichlorvos and herbicide butachlor on Rana zhenhaiensis tadpoles. Asian Herpetol Res, 1: 118–122

    Gosner K. L. 1960. A simplifed table for staging anuran embryos and larvae with notes on identifcation. Herpetologica, 16: 183–190

    Herd R. 1995. Endectocidal drugs: ecological risks and countermeasures. Int J Parasitol, 25: 875–885

    Jencic V., Cerne M., Erzen N. K., Kobal S., Cerkvenik-Flajs V. 2006. Abamectin effects on rainbow trout (Oncorhynchus mykiss). Ecotoxicol, 15: 249–257

    Jensen J., Krogh P. H., Sverdrup L. E. 2003. Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere, 50:437–443

    Jiang M., Peng Z. X., Wu H., Hu K., Huang X. X. 2008. Application of ivermectin in aquaculture and corresponding aqua-ecosystem risk. Fish Modern, 35: 47–50 (In Chinese)

    Katharios P., Iliopoulou-Georgudaki J., Kapata-Zoumbos K., Spiropoulos S. 2002. Toxicity of intraperitoneally injected ivermectin in sea bream, Sparus aurata. Fish Physiol Biochem, 25: 99–108

    Krieger R. I. 2001. Handbook of pesticide toxicology second edition volume 1. American: Academic Press

    Madsen M., Overgaard-Nielsen B., Holter P., Pedersen O. C., Br?chner-Jespersen J., Vagn-Jensen K. M., Nansen P., Gr?nvold J. 1990. Treating cattle with ivermectin: effects on the fauna and decomposition of dung pats. J Appl Ecol, 27: 1–15

    Mann R. M., Bidwell J. R. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Poll, 1l4: 195–205

    Martini F., Tarazona J. V., Pablos M. V. 2012. Are fish and standardized FETAX assays protective enough for amphibians? A case study on Xenopus laevis larvae assay with biologically active substances present in livestock wastes. Sci World J, 2012: 1–6

    Prichard R., Ménez C., Lespine A. 2012. Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitol: Drugs and Drug Resistance, 2: 134–153

    Putter J. G., Mac Connell F. A., Preiser F. A., Haidri A. A., Rishich S. S., Dybas R. A. 1981. Avermectins: novel class of insecticides, acaricides and nematicides from a soil microorganism. Experientia, 37: 963–964

    Ralph S., Petras M., Pandrangi R., Vrzoc M. 1996. Alkaline single cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mut, 28: 112–120

    Reddy P. P. 2013. Recent advances in crop protection. Springer: 13–24

    R?mbke J., Floate K. D., Jochmann R., Sch?fer M. A., Puniamoorthy N., Kn?be S., Lehmhus J., Rosenkranz B., Scheffczyk A., Schmidt T., Sharples A., Blanckenhorn W. U. 2009. Lethal and sublethal toxic effects of a test chemical (ivermectin) on the yellow dung fly Scathophaga stercoraria based on a standardized international ring test. Environ Toxicol Chem, 28: 2117–2124

    R?mbke J., Krogh K. A., Moser T., Scheffczyk A., Liebig M. 2010. Effects of the veterinary pharmaceutical ivermectin on soil invertebrates in laboratory tests. Arch Environ Contam Toxicol, 58: 332–340

    Sanderson H., Laird B., Pope L., Brain R., Wilson C., Johnson D., Bryning G., Peregrine A. S., Boxall A., Solomon K. 2007. Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol, 85: 229–240

    Singh G., Chahil G. S., Jyot G., Battu R. S., Singh B. 2013. Degradation dynamics of emamectin benzoate on cabbage under subtropical conditions of Punjab, India. Bull Environ Contam Toxicol, 91:129–133

    Stuart S. N., Chanson J. S., Cox N. A., Young B. E., Rodrigues A. S., Fischman D. L., Waller R. W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306: 1783–1786

    Sun J., Meng S. Q. 2009. Status and development trend of avermectin in Chinese market. World Pestic, 31(Suppl. 2): 18–21

    Tang W. W., Lu Y. X., Mu B., Yin X. F., Zhang L. L. 2011. Research progress in emamectin benzoate toxicology. Chin J Foren Med, 26: 210–212

    Tice R.R. 1995. Applications of the single cell gel assay to environmental biomonitoring for genotoxic pollutants. In: Butterworth B. M., Corkum L. D., Guzma′n-Rinco′n J. ed. Biomonitoring and Bio-markers as Indicators of Environmental Change. New York: Plenum Press, 69–79

    Tice R. R., Agurell E., Anderson D., Burlinson B., Hartmann A., Kobayashi H., Miyamae Y., Rojas E., Ryu J. C., Sasaki Y. F. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mut, 35: 206–221

    Tisler T., Erzen N. K. 2006. Abamectin in the aquatic environment. Ecotoxicol, 15: 495–502

    Tyler M. J. 1994. Australian frogs: A natural history. Chatswood: Reed Books

    Valic E., Jahn O., P?pke O., Winker R., Wolf C., Rüdiger.W. H. 2004. Transient increase in micronucleus frequency and DNA effects in the comet assay in two patients after intoxication with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int Arch Occup Environ Heal, 77: 301–306

    Wang D. D., Zhao E. M. 2013. Study on toxicological effect of avermectins on Pelophylax nigromaculatus. Sichuan J Zoo, 32: 334–342 (In Chinese)

    Wang M. Z., Jia X. Y. 2009. Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata. Ecotoxicol, 18: 94–99

    Wei F. L., Zhu J. W., Li S. N., Zhu G. N. 2008. Acute toxicity of emamectin benzoate on environmental organism. Pestic Sci Admin, 29: 19–24 (In Chinese)

    Xie F., Lau M. W. N., Stuart S. N., Chanson J. S., Cox N. A., Fischman D. L. 2007. Conservation needs of amphibians in China: A review. Sci Chin Series C: Life Sciences, 50(2): 265–276

    Xu H. R., Yang R. B., Fu Q., Liao H. Y. 2010. Abamectin residue in water, soil and rice. Environ Sci Manage, 35: 35–37 (In Chinese)

    Yu X. L., Cheng C. H., Zhang Q. 2007. The primary study about immune effects of 1.8 % AVM latex on mice. Acta Acad Med Zunyi, 30: 254–256 (In Chinese)

    Zhang L. L., Li Q. Y., Geng B. R. 2014. Genotoxicity of ivermectin on Polypedates megacephalus tadpoles. J Fujian Nor Univ, 30: 106–110 (In Chinese)

    *Corresponding author: Prof. Baorong GENG, from College of Life Sciences, Fujian Normal University, with his research mainly focusing on taxonomy, ecology and ecotoxicology of amphibians.

    E-mail: brgeng@fjnu.edu.cn

    Received: 10 September 2015 Accepted: 9 June 2016

    国产片特级美女逼逼视频| 又爽又黄a免费视频| 亚洲高清免费不卡视频| 久久 成人 亚洲| 久久久久久久精品精品| 久久97久久精品| 国产免费一区二区三区四区乱码| 卡戴珊不雅视频在线播放| 校园人妻丝袜中文字幕| 日韩强制内射视频| 99九九线精品视频在线观看视频| 欧美少妇被猛烈插入视频| 一级毛片电影观看| 国产成人一区二区在线| 亚洲精品久久午夜乱码| av国产精品久久久久影院| 久久国产亚洲av麻豆专区| 女人十人毛片免费观看3o分钟| 毛片一级片免费看久久久久| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频 | 精品熟女少妇av免费看| 国产探花极品一区二区| 成人美女网站在线观看视频| 好男人视频免费观看在线| 日本欧美视频一区| 亚洲不卡免费看| 蜜桃久久精品国产亚洲av| 成年免费大片在线观看| 五月天丁香电影| 国精品久久久久久国模美| 国产精品不卡视频一区二区| videos熟女内射| 在线观看一区二区三区激情| 久久这里有精品视频免费| 国产伦精品一区二区三区四那| 国产成人午夜福利电影在线观看| 中文资源天堂在线| 国产成人freesex在线| 岛国毛片在线播放| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 在线看a的网站| 伊人久久精品亚洲午夜| 啦啦啦中文免费视频观看日本| 我要看日韩黄色一级片| 国产淫语在线视频| 国产精品伦人一区二区| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 亚洲高清免费不卡视频| 成人国产av品久久久| 最近中文字幕2019免费版| 成年人午夜在线观看视频| 国模一区二区三区四区视频| 青青草视频在线视频观看| 国产伦精品一区二区三区视频9| 99热全是精品| 亚洲国产欧美在线一区| 欧美高清成人免费视频www| 国产亚洲午夜精品一区二区久久| 久久久久视频综合| 精品久久久久久久久av| 偷拍熟女少妇极品色| 啦啦啦视频在线资源免费观看| videossex国产| 精品一区二区三区视频在线| 韩国av在线不卡| 久久久久久久大尺度免费视频| 久久精品国产亚洲av天美| 黄色欧美视频在线观看| 18+在线观看网站| 亚洲国产日韩一区二区| 精品国产露脸久久av麻豆| av网站免费在线观看视频| 国产精品成人在线| 亚洲伊人久久精品综合| 尾随美女入室| 97在线视频观看| 亚洲国产精品成人久久小说| 在现免费观看毛片| 国产精品久久久久久精品电影小说 | 啦啦啦在线观看免费高清www| 亚洲国产欧美在线一区| 99九九线精品视频在线观看视频| 亚洲成人手机| 成年人午夜在线观看视频| 成人二区视频| 国产亚洲av片在线观看秒播厂| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 99精国产麻豆久久婷婷| 亚洲精品亚洲一区二区| 亚洲欧洲国产日韩| 精品久久久久久久久av| 有码 亚洲区| 国产高清不卡午夜福利| 久久鲁丝午夜福利片| 国产白丝娇喘喷水9色精品| 全区人妻精品视频| 国产精品一区二区在线观看99| 国产女主播在线喷水免费视频网站| 国产精品福利在线免费观看| 成人国产av品久久久| av天堂中文字幕网| 欧美精品一区二区大全| 免费观看a级毛片全部| 国国产精品蜜臀av免费| 国产成人a∨麻豆精品| 少妇熟女欧美另类| 久久精品国产a三级三级三级| 国产毛片在线视频| 91午夜精品亚洲一区二区三区| 国产精品一及| 亚洲伊人久久精品综合| 日产精品乱码卡一卡2卡三| 成人亚洲欧美一区二区av| 国产精品国产av在线观看| 老熟女久久久| 国产亚洲一区二区精品| 国产亚洲精品久久久com| 少妇裸体淫交视频免费看高清| 亚洲va在线va天堂va国产| 中文字幕免费在线视频6| 97超碰精品成人国产| 日本-黄色视频高清免费观看| 免费播放大片免费观看视频在线观看| 又大又黄又爽视频免费| av一本久久久久| 成人无遮挡网站| 亚洲成人一二三区av| 久久久久久久久久久丰满| 成人一区二区视频在线观看| 日本-黄色视频高清免费观看| 成人国产麻豆网| 免费大片18禁| 一级毛片我不卡| 国产69精品久久久久777片| 一个人免费看片子| 五月开心婷婷网| 汤姆久久久久久久影院中文字幕| 亚洲怡红院男人天堂| 日韩av免费高清视频| 午夜福利视频精品| 国产中年淑女户外野战色| 少妇的逼好多水| 免费久久久久久久精品成人欧美视频 | 日本黄大片高清| 99精国产麻豆久久婷婷| 91精品一卡2卡3卡4卡| 好男人视频免费观看在线| 毛片一级片免费看久久久久| 一级二级三级毛片免费看| 精品熟女少妇av免费看| 国产精品一区二区在线观看99| 男人爽女人下面视频在线观看| av卡一久久| 国产永久视频网站| 免费看光身美女| 波野结衣二区三区在线| 日韩av不卡免费在线播放| 美女主播在线视频| 欧美另类一区| 午夜福利影视在线免费观看| av不卡在线播放| 精品99又大又爽又粗少妇毛片| 丝袜喷水一区| 尾随美女入室| 身体一侧抽搐| 日韩中文字幕视频在线看片 | 尤物成人国产欧美一区二区三区| 久久这里有精品视频免费| 日韩在线高清观看一区二区三区| 看十八女毛片水多多多| 欧美日韩视频精品一区| 欧美日韩视频高清一区二区三区二| 欧美国产精品一级二级三级 | 欧美bdsm另类| 国产精品免费大片| 最近手机中文字幕大全| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频 | 最近的中文字幕免费完整| 香蕉精品网在线| 80岁老熟妇乱子伦牲交| 精品酒店卫生间| 人人妻人人澡人人爽人人夜夜| 国产成人精品久久久久久| av.在线天堂| 秋霞伦理黄片| 纵有疾风起免费观看全集完整版| 爱豆传媒免费全集在线观看| av在线播放精品| 性色av一级| 国产精品麻豆人妻色哟哟久久| 女性生殖器流出的白浆| av在线蜜桃| 草草在线视频免费看| 久久ye,这里只有精品| 五月天丁香电影| 欧美xxxx性猛交bbbb| 精品亚洲成a人片在线观看 | freevideosex欧美| 久久久久久久久大av| 人人妻人人添人人爽欧美一区卜 | 亚洲av成人精品一区久久| 联通29元200g的流量卡| 少妇人妻精品综合一区二区| 嘟嘟电影网在线观看| 久久精品熟女亚洲av麻豆精品| 成人亚洲精品一区在线观看 | 婷婷色麻豆天堂久久| 日韩中字成人| 成人亚洲欧美一区二区av| 亚洲av欧美aⅴ国产| 男女国产视频网站| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 高清黄色对白视频在线免费看 | 丰满人妻一区二区三区视频av| 亚洲综合精品二区| 免费人成在线观看视频色| 日韩欧美 国产精品| 一区二区av电影网| 丰满乱子伦码专区| 91久久精品国产一区二区成人| a级毛色黄片| 亚洲丝袜综合中文字幕| 欧美区成人在线视频| 国内揄拍国产精品人妻在线| 综合色丁香网| 少妇 在线观看| 直男gayav资源| 一级毛片久久久久久久久女| 中文乱码字字幕精品一区二区三区| 亚洲精品一区蜜桃| 看免费成人av毛片| 国产午夜精品久久久久久一区二区三区| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频 | 99热6这里只有精品| 日日啪夜夜爽| 插阴视频在线观看视频| 大香蕉97超碰在线| 水蜜桃什么品种好| 亚洲av男天堂| 久久精品久久精品一区二区三区| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 亚洲av成人精品一二三区| 国产大屁股一区二区在线视频| 国产精品一区二区在线观看99| 精品一区二区免费观看| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美 | 亚洲国产av新网站| 成人漫画全彩无遮挡| 大香蕉97超碰在线| 中文字幕制服av| 大香蕉久久网| 在线观看一区二区三区| 男男h啪啪无遮挡| videos熟女内射| 美女脱内裤让男人舔精品视频| 黑人高潮一二区| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 欧美老熟妇乱子伦牲交| 欧美人与善性xxx| 久久精品人妻少妇| 成年女人在线观看亚洲视频| 在线亚洲精品国产二区图片欧美 | 国产av一区二区精品久久 | 寂寞人妻少妇视频99o| 国产男女超爽视频在线观看| 天堂中文最新版在线下载| 街头女战士在线观看网站| 国产伦精品一区二区三区视频9| 亚洲欧洲日产国产| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 18+在线观看网站| 免费观看av网站的网址| av国产免费在线观看| 中文精品一卡2卡3卡4更新| 视频中文字幕在线观看| 男人爽女人下面视频在线观看| 欧美高清性xxxxhd video| 另类亚洲欧美激情| 国产熟女欧美一区二区| 国产精品福利在线免费观看| av又黄又爽大尺度在线免费看| 超碰av人人做人人爽久久| 国产在视频线精品| 免费黄网站久久成人精品| 男人添女人高潮全过程视频| 伦精品一区二区三区| 日本-黄色视频高清免费观看| 久久久久人妻精品一区果冻| 亚洲av不卡在线观看| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 午夜福利影视在线免费观看| 高清在线视频一区二区三区| 十八禁网站网址无遮挡 | 最近2019中文字幕mv第一页| av专区在线播放| av福利片在线观看| 两个人的视频大全免费| 亚洲av成人精品一二三区| 一本色道久久久久久精品综合| 一级毛片久久久久久久久女| 国产精品嫩草影院av在线观看| 成人二区视频| 亚洲精华国产精华液的使用体验| 日本免费在线观看一区| 99热网站在线观看| 欧美zozozo另类| 国产精品伦人一区二区| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 一级片'在线观看视频| 久久午夜福利片| 老熟女久久久| 岛国毛片在线播放| 五月伊人婷婷丁香| 一级二级三级毛片免费看| 麻豆精品久久久久久蜜桃| 80岁老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 中文精品一卡2卡3卡4更新| 免费大片18禁| 亚洲精品456在线播放app| 国产毛片在线视频| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 一本久久精品| 老师上课跳d突然被开到最大视频| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 亚洲精品国产av成人精品| 日日啪夜夜爽| 欧美区成人在线视频| 久久久久久伊人网av| 欧美xxxx黑人xx丫x性爽| 97在线人人人人妻| 国产av精品麻豆| www.色视频.com| 亚洲高清免费不卡视频| 亚洲国产成人一精品久久久| 免费看光身美女| 国产黄频视频在线观看| 国产精品欧美亚洲77777| 国内精品宾馆在线| 国产大屁股一区二区在线视频| 插逼视频在线观看| 欧美日韩在线观看h| 一级二级三级毛片免费看| 亚洲精品中文字幕在线视频 | 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花 | 国产v大片淫在线免费观看| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 亚洲精品乱码久久久v下载方式| 免费大片黄手机在线观看| 国产 一区精品| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人精品一区二区| 午夜日本视频在线| 日韩av免费高清视频| 日本一二三区视频观看| 丝袜喷水一区| av在线蜜桃| 国产亚洲欧美精品永久| 国产片特级美女逼逼视频| 一级毛片aaaaaa免费看小| 精品国产露脸久久av麻豆| 日韩中文字幕视频在线看片| 欧美国产精品va在线观看不卡| 男女无遮挡免费网站观看| 母亲3免费完整高清在线观看| 午夜久久久在线观看| 9热在线视频观看99| 久久亚洲精品不卡| 嫁个100分男人电影在线观看 | 午夜福利视频在线观看免费| 国产成人精品无人区| 亚洲国产欧美在线一区| 国产精品99久久99久久久不卡| 午夜免费男女啪啪视频观看| 这个男人来自地球电影免费观看| 精品一区在线观看国产| 超碰97精品在线观看| 午夜福利,免费看| 国产精品成人在线| 高清不卡的av网站| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| 久久久国产一区二区| 国产亚洲av高清不卡| 九草在线视频观看| 精品久久蜜臀av无| 午夜激情av网站| 欧美人与善性xxx| 午夜老司机福利片| 女性被躁到高潮视频| 午夜福利一区二区在线看| 亚洲熟女精品中文字幕| 高清不卡的av网站| 十八禁高潮呻吟视频| 最近中文字幕2019免费版| 777米奇影视久久| 亚洲一区中文字幕在线| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密 | 黄色a级毛片大全视频| 嫩草影视91久久| 亚洲一码二码三码区别大吗| 午夜av观看不卡| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕日韩| 在线天堂中文资源库| av网站免费在线观看视频| 首页视频小说图片口味搜索 | 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 精品第一国产精品| 人人妻,人人澡人人爽秒播 | 七月丁香在线播放| 亚洲欧美一区二区三区国产| 一本一本久久a久久精品综合妖精| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看 | 日韩伦理黄色片| 国产片特级美女逼逼视频| 视频区欧美日本亚洲| 久久久久精品国产欧美久久久 | 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸 | 国产熟女午夜一区二区三区| 国产片特级美女逼逼视频| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 在线观看人妻少妇| 制服诱惑二区| 欧美日韩av久久| 亚洲av日韩精品久久久久久密 | 一级黄片播放器| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 久9热在线精品视频| 欧美精品亚洲一区二区| 一本一本久久a久久精品综合妖精| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 看十八女毛片水多多多| 国产精品 欧美亚洲| 亚洲精品一区蜜桃| 国产精品一国产av| 国产片特级美女逼逼视频| 一级毛片黄色毛片免费观看视频| 一区二区三区四区激情视频| 亚洲精品久久成人aⅴ小说| 最黄视频免费看| 一二三四在线观看免费中文在| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 欧美精品高潮呻吟av久久| av福利片在线| 欧美亚洲日本最大视频资源| av网站免费在线观看视频| 99久久综合免费| 亚洲精品美女久久av网站| 欧美大码av| 久久精品aⅴ一区二区三区四区| 一级毛片 在线播放| 午夜视频精品福利| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| 国产男女内射视频| tube8黄色片| 成人手机av| 午夜福利影视在线免费观看| 亚洲成色77777| 中文字幕av电影在线播放| 捣出白浆h1v1| 黄片播放在线免费| 亚洲人成网站在线观看播放| 久久久久视频综合| 好男人电影高清在线观看| 欧美亚洲 丝袜 人妻 在线| 精品福利观看| 成人亚洲精品一区在线观看| 我的亚洲天堂| 国产91精品成人一区二区三区 | 亚洲国产精品999| 午夜久久久在线观看| 国产真人三级小视频在线观看| 亚洲欧美成人综合另类久久久| 欧美成人午夜精品| 成年美女黄网站色视频大全免费| 91九色精品人成在线观看| 亚洲久久久国产精品| 国产精品三级大全| 国产真人三级小视频在线观看| 亚洲av成人精品一二三区| 亚洲国产欧美日韩在线播放| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 50天的宝宝边吃奶边哭怎么回事| 国产又色又爽无遮挡免| av网站在线播放免费| 欧美精品高潮呻吟av久久| 99热网站在线观看| 亚洲精品一区蜜桃| 国产麻豆69| 亚洲国产成人一精品久久久| 欧美日韩一级在线毛片| 国产视频一区二区在线看| 只有这里有精品99| 亚洲欧美精品综合一区二区三区| 欧美xxⅹ黑人| 一级毛片我不卡| 欧美黑人精品巨大| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 桃花免费在线播放| 午夜免费成人在线视频| 少妇人妻久久综合中文| 18禁观看日本| 视频区图区小说| 18禁观看日本| 一级片免费观看大全| 99九九在线精品视频| 亚洲中文av在线| 久久久久久久久免费视频了| 在线精品无人区一区二区三| 亚洲,一卡二卡三卡| 岛国毛片在线播放| 丝袜美足系列| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| 午夜福利在线免费观看网站| 丰满少妇做爰视频| 亚洲成色77777| 国产免费一区二区三区四区乱码| 国产高清不卡午夜福利| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 91精品国产国语对白视频| 国产精品九九99| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 咕卡用的链子| 老司机影院毛片| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| av电影中文网址| 纵有疾风起免费观看全集完整版| 丝袜脚勾引网站| 1024视频免费在线观看| 久久久精品区二区三区| 操出白浆在线播放| 国产成人欧美| 午夜老司机福利片| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 欧美黑人精品巨大| 青春草亚洲视频在线观看| 精品一品国产午夜福利视频| 欧美精品av麻豆av| 欧美激情 高清一区二区三区| 久久久久久久精品精品| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 人体艺术视频欧美日本| 超碰成人久久| 久久久久久久久久久久大奶| 午夜两性在线视频| 波多野结衣一区麻豆| 久久久久久久国产电影| 午夜老司机福利片| 亚洲第一av免费看| 国产精品 欧美亚洲| 国产成人一区二区在线| 日日爽夜夜爽网站| 国产高清不卡午夜福利| 免费日韩欧美在线观看| 亚洲黑人精品在线| 久久人人爽人人片av| 欧美日韩视频精品一区| 91字幕亚洲| 七月丁香在线播放| 一区福利在线观看| 久久综合国产亚洲精品| 国产在线免费精品| netflix在线观看网站| 亚洲av日韩在线播放| 水蜜桃什么品种好| 欧美成狂野欧美在线观看| 嫩草影视91久久| 狂野欧美激情性xxxx|