• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Dietary Vitamins A, B2, and B6Supplementation on Growth and Feed Utilization of Juvenile Chinese Soft-shelled Turtle Pelodiscus sinensis according to an Orthogonal Array Experiment

    2017-01-20 11:06:28JunweiLIZhencaiYANGXiaolingHANQuansenXIEandHaiyanLIU
    Asian Herpetological Research 2016年4期

    Junwei LI, Zhencai YANG*, Xiaoling HAN, Quansen XIEand Haiyan LIU

    1Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization of Ministry of Agriculture of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

    2College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China

    Effects of Dietary Vitamins A, B2, and B6Supplementation on Growth and Feed Utilization of Juvenile Chinese Soft-shelled Turtle Pelodiscus sinensis according to an Orthogonal Array Experiment

    Junwei LI1,2, Zhencai YANG2*, Xiaoling HAN2, Quansen XIE2and Haiyan LIU2

    1Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization of Ministry of Agriculture of China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China

    2College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China

    An orthogonal experimental design OA9(33) was used to evaluate the effects of vitamins (A, B2, and B6) on the growth and digestive ability of the juvenile Chinese soft-shelled turtle, Pelodiscus sinensis (initial weight, 5.9±0.2 g). A total of 135 turtles were divided into 9 groups, which each included 15 individuals. The results revealed that vitamin A (VA) had the strongest impacts on the growth rate and feed utilization among the three vitamins; 35,000 IU kg-1VA had optimal effects on the feeding intake and specifc growth rate, and 20,000 IU kg-1VA had optimal effects on protein digestibility and the feed conversion ratio. Vitamin B2(VB2) was essential for regulating protein deposition and the energy effciency for growth of the turtles; 120 mg kg-1VB2resulted in increased protein and energy deposition, and 180 mg kg-1VB2had greater benefcial effects on the growth rate. Vitamin B6(VB6) had important effects on protein and feed efficiency; however, VB6at an excessive level (120 mg kg-1) restricted turtle growth. Based on the above growth results, dietary supplementation of VA, VB2and VB6at levels of 35,000 IU kg-1, 180 mg kg-1and 70 mg kg-1, respectively, were recommended for the juvenile soft-shelled turtle.

    Pelodiscus sinensis, vitamin, growth performance, digestion capacity, orthogonal design

    1. Introduction

    The Chinese soft-shelled turtle, Pelodiscus sinensis, is one of the most commercially important reptile species in China (Xie et al., 2012; Pu and Niu, 2013), and its total production reached 341,288 tons in 2014 (Fisheries Department of Agriculture Ministry of China, 2014). The researches on the bioenergetics and nutritional requirements of soft turtles have been reported (Nuangsaeng and Boonyaratapalin, 2001; Huang et al., 2003; Huang and Lin, 2004; Zhou et al., 2004; Hou et al., 2013; Chen and Huang, 2014); however, supplementation of the diets of these reptiles with several vitamins must be optimized for better growth performance. Vitamins play many important roles in the growth, physiology and metabolism of developing animals (Halver, 2003) and can affect the feeding and skeletal development of larval fsh (Fernández and Gisbert, 2011; Reham et al., 2013). The availability of vitamins at optimal levels is essential for normal animal growth. Previous studies have shown that vitamin A (VA) (Yutaka et al., 2011; Chen and Huang, 2014), B2(VB2) (Deng and Wilson, 2003) and B6(VB6) (Giri et al., 1997) are essential for animal growth.

    Among these vitamins, VA (retinoids) includes a group of compounds that are structurally similar and exhibit biological activity due to retinol; these compounds bind to or activate a specific receptor or group of receptors (Hemre et al., 2004; Reham et al., 2013). VA is essential for maintenance of normal vision and growth in fish (Olson, 1991; Funkenstein, 2001); in addition, it enhances development of the alimentary tract (Lahov and Regelson, 1996). Previous studies have shown thatall vertebrate species can suffer from VA defciency and/ or toxicity, and the biological consequences of both deficiency and toxicity are similar among most species. Normal growth and reproduction can only be sustained in the presence of optimal VA levels (Stéphanie et al., 2010). The requirement for VA in turtles has been shown to be approximately 2.5–3.5 mg kg-1in a single factor experiment (Chen and Huang, 2014).

    Riboflavin (VB2) is a water-soluble vitamin required by all animals (Deng and Wilson, 2003; Souto et al., 2008). It cannot be synthesized by monogastric animals, which must therefore consume foods with suffcient VB2levels to meet their metabolic demands (Kavita et al., 1996). A low VB2level, especially in fish, results in several signs of gross defciency, including high mortality, uncoordinated swimming, photophobia, cataracts, dark skin coloration, low feed conversion efficiency, cornea and eye lens opacity, and dark body pigmentation (NRC, 1993; Deng and Wilson, 2003); in addition, high dietary VB2intake is necessary to support maximum weight gain in fsh (Serrini et al., 1996).

    VB6is the precursor of the coenzyme pyridoxal phosphate, which is required for the non-oxidative degradation of amino acids through transamination, deamination, and desulfuration. VB6metabolism is related to dietary protein or amino acid metabolism in animals (Hilton, 1989; Giri et al., 1997), and the structures and functions of digestive and immune system in fsh are affected by this vitamin (He et al., 2009; Feng et al., 2010; Li et al., 2010). Due to its multiple roles in various metabolic processes, a number of potential signs are indicative a VB6defciency in animals. In fsh, these signs include anorexia, anemia, dark coloration, loss of equilibrium, poor growth, and high mortality (Albrektsen et al., 1993; Giri et al., 1997). However, little information is available on the dietary VB2and VB6requirement of the soft-shelled turtle.

    Many experiments have been conducted investigating VA, VB2and VB6requirements in aquatic animals (Halver, 1989; Serrini et al., 1996; Shiau and Chen, 2000; Lin et al., 2003; Stéphanie et al., 2010), and most studies on vitamin requirements have examined a single vitamin. However, assessments of vitamin combinations may yield a more realistic representation of vitamin requirements in animals, as appropriate combinations of VB2, VB6, niacin and pantothenic acid have been shown to improve the growth and meat quality of crucian carps (Lin et al., 2003). Tan et al. (2007) used an orthogonal design to evaluate the possible nutritional functions of vitamins A, D3, E, and C on gonadal development and the immune response of yearling eel. An orthogonal array design is a useful statistical tool for multi-factor analyses that can reflect a general condition with the fewest number of experimental trials and can be used to determine dominant contributing factors, as well as the appropriate combination of levels of each factor (Montgomery, 1991; Zheng and Jiang, 2003). Few experiments have been conducted to determine the vitamin requirements of fsh according to an orthogonal design (Rong et al., 1996; Lin et al., 2003). In previous studies, the recommended dietary VA, VB2and VB6requirements for the softshelled turtle were determined according to production experience, but limited information is available about the effects of these 3 vitamins on the growth of this reptile species.

    The present study was conducted to explore the effects of vitamins on feeding, growth and protein utilization of juvenile soft-shelled turtles using an orthogonal experimental design. The fndings may aid in providing a basis to further optimize the vitamin supplementation in turtles’ diets.

    2. Materials and Methods

    2.1 Experimental designThe study was performed in a laboratory at Hebei Normal University, Shijiazhuang, Hebei Province, China. We used an OA933experimental design to study the effects of dietary supplementation of 3 vitamins at 3 levels (VA: 5000, 20,000 and 35,000 IU kg-1; VB2: 60, 120 and 180 mg kg-1; and VB6: 20, 70 and 120 mg kg-1) on the growth and development of softshelled turtles (Table 1). An orthogonal array design was used to determine which vitamin had the strongest effects on feeding, growth and protein utilization efficiency of soft-shelled turtles. In this experiment, 135 turtles were divided into 9 groups, which each included 15 individuals.

    2.2 Experimental dietsVitamins A, B2and B6were added to the nine experimental diets (T1 to T9) as shown in Table 1. The main nutritional components of the basic experimental powder diets were measured (Table 2). To determine the nutrient digestibility, 0.1% chromium oxide, an inert marker, was added to each diet. The powder diets were blended with water (35%), formed into wet pellets and stored at –20°C.

    2.3 Experimental animals and proceduresThe turtles were acclimated to the laboratory conditions for 3 weeks in 135 aquaria [60 cm (l) × 30 cm (w) × 30 cm (h), water volume of 20 L] and fed the T1 diet. Thewater temperature was maintained at 30±0.5°C using a thermostat-controlled electric heater. The photoperiod was maintained at 14L:10D, with illumination between 07:00 and 21:00. The pH ranged from 7.5 to 8.0, and the DO content was over 6 mg L-1.

    Table 2 The ingredients and nutrient composition of the experimental diets.

    We randomly allocated 135 turtles to the aquaria, with one turtle per aquarium. The average body weight of the turtles was 5.90±0.20 g (weight±SD). The turtles were fed their respective diets at a rate of 4% body weight per day twice daily at 08:00 and 16:00. Uneaten feed was collected, and feces were removed after 30 minutes of feeding and were then dried at 60°C to a constant weight. Approximately one-third of the water in each aquarium was exchanged every day to maintain the water quality. The experiment continued for 80 days.

    2.4 Sample collection and measurementPrior to the experiment, 15 turtles were randomly collected for collecting the initial samples. At the end of the experiment, all turtles from each group were sampled. The protein contents of all turtle samples were measured. The diets, uneaten feed, feces and turtles were dried at 60°C to a constant weight and were then smashed and sieved using a sample sifter. The crude protein contents of the samples were determined using the Kjeldahl method, and their energy contents were measured using a calorimeter (DJL-9, Changsha Xingdian Instrument, Changsha, Hunan, China).

    2.5 Data calculationThe survival rate(SR), feed intake (FI), specific growth rate (SGR), feed conversion ratio (FCR), apparent digestibility coefficient of dry matter (ADC), protein digestibility coefficient (PDC), protein effciency rate (PER), protein deposition rate (PDR) and energy effciency (EGE) were calculated as follows:

    SR (%) = 100 × N2/ N1

    FI (%) = 100 × F / [T (W1 + W2) / 2],

    SGR (%d-1) = 100 (ln W2– ln W1) / T

    FCR = F / (W2– W1)

    ADC (%) = 1 – [(Cr2O3in diet / Cr2O3in feces) × 100%

    PDC (%) = 1 – [(Cr2O3in diet / Cr2O3in feces) × (protein in feces / protein in diet)] × 100%

    PER (%) = 100 (W2– W1) / Fp

    PDR (%) = 100 × Bp/ Fp

    EGE(%)= 100 × G / (C–F)

    where N1and N2are the initial and final numbers of turtles in each tank, respectively; W1and W2are the initial and fnal body weights of the turtles (g), respectively; T is the duration of the experiment (d); F is the cumulative feed intake; Fpis the protein intake; and Bpis body protein gain.

    G, C and F (kJ) are growth energy, intake energy, and faecal energy, respectively, in the energy budget equation (C = G + F + U + R); and C–F represent the energy assimilated by the turtles.

    2.6 Data calculation and statistical analysesThe importance of the three vitamins for growth was evaluated based on the effectiveness of each vitamin according to calculated ranges (R) (Roy 1990) and the difference between the mean maximum and minimum values of each index at the three vitamin levels, which indicated the most infuential factor (i.e., the factor resulting in the greatest improvement) for growth performance (Yan et al., 2009).

    The data were analyzed using Statistica 6.0 software (Statsoft Inc., Tulsa, OK, USA). One-way ANOVA was used to detect the differences among the treatment means at a 5% signifcance level, and Duncan’s multiple range test was used to evaluate the differences among the treatment means.

    3. Results

    3.1 Survival rate, feed intake and growthThere was no mortality during the 80 days of this experiment. The results revealed that the feed intake was the highest for the T3 diet, with signifcantly higher intake than the T5 or T6 diet (F = 1.46, df = 134, P3,5= 0.049, P3,6= 0.040) (Table 3). The feed intake ranges (R) for the three vitamins at the three levels varied from 0.038 to 0.083, and VA exhibited the largest range (Table 4). The order of importance of the vitamins to feed intake was VA>VB2>VB6, and the vitamin combination and levels resulting in the highest feed intake was A3, B23, and B63(Table 4).

    There were no significant differences in the SGR among the treatments (F = 0.822, df = 134, P = 0.58). The SGR ranges (R) for the 3 vitamins varied from 4.8% to 18.4%, and VA exhibited the largest range. The order of importance of the vitamins to the SGR was VA>VB2>VB6, and the optimal vitamin combination for achieving the highest SGR was A3, B23, and B62(Table 4).3.2 Dietary nutrient utilizationThe FCR, PER, PDR, ADC and PDC are listed in Table 5. There were no significant differences in the ADC or PDC among the groups analyzed (FADC= 0.63, df = 134, PADC= 0.72; FPDC= 0.85, df = 134, PPDC= 0.92). The ADC ranges (R) varied from 0.25 to 1.25, and VA exhibited the largest range. The order of importance of the 3 vitamins to the ADC and PDC was VA>VB2>VB6, and the optimal vitamin combinations were A2, B22, and B63for the ADC and A2, B21, and B63for the PDC (Table 6).

    During the experiment, no significant differences in the PER or FCR were detected among the nine treatment groups (FPER= 0.67, df = 134, PPER= 0.558; FFCR= 0.64, df = 134, PFCR= 0.74). The order of importance of the 3 vitamins to the PER and FCR was VA>VB6>VB2, and the optimal vitamin combination was A2, B22, and B61of vitamins for the PER and FCR (Tables 6 and Table 7).

    T6 yielded a higher PDR than T1, T3 and T9 (F = 1.32, df = 134, P6,1= 0.049, P6,3= 0.035, P6,9= 0.043). The order of importance of the 3 vitamins to the PDR was VB2>VA>VB6, and the optimal vitamin combination was A2, B22, and B61for the PDR (Table 7).

    3.3 Energy utilizationThere were signifcant differences in the energy intake among the nine groups (FEI= 1.06, df = 134, PEI= 0.041) (Table 8). Group T3 exhibited the greatest energy intake, which was significantly higher than those of groups T2, T5, and T6 (P3,2= 0.04, P3,5= 0.04, P3,6= 0.032). The energy intake ranges (R) for the three vitamins varied from 6.1 to 12.69, and VA exhibited the largest range. The order of importance of the vitamins with regard to energy intake was VA>VB2>VB6, and the vitamin combination resulting in the greatest energy intake was A1, B23, and B63(Table 9).

    Significant differences in the energy efficiency for growth were also observed (FEGE= 1.06, df = 134, PEGE= 0.041); that of group T6 produced was greater than those of groups T1, T3, T4, T7, T8, and T9. The order of importance of the vitamins with regard to the energy effciency for growth was VB2>VA>VB6, and the vitamin combination resulting in the greatest energy effciency for growth was A2, B22, and B61(Table 9).

    4. Discussion

    Assessment of appropriate vitamin combinations may provide a more realistic representation of the vitamin requirements of animals, as appropriate combinations of VB2, VB6, niacin and pantothenic acid have been shown to improve the growth and meat quality of crucian carps (Lin et al., 2003). In the present study, no mortality, avitaminosis or hypervitaminosis was observed during the experiment, and the results indicated that dietary supplementation with the different combinations of VA, VB2and VB6did not significantly affect the SR of the soft-shelled turtles. The results also demonstrated that the vitamin combinations clearly affected the FI, PDR and EGE of the reptiles (P<0.05).

    In the present study, VA had much greater effects on the FI, SGR, ADC, PDC, FC and PER than VB2and VB6(Tables 4, 6 and 7), indicating that VA playsimportant roles in multiple processes, including those related to digestion, nutrient utilization and growth. VA supplementation at level 2 improved digestive functions (ADC, PDC, FC, PDR and PER) more than that at level 1 or 3. Further, VA supplementation at level 3 had greater effects on the SGR than that at the other levels, indicating that a high VA level (35,000 IU kg-1) can improve the feeding and growth rate of the softshelled turtles. The above results demonstrate that VA plays a broad and important role in juvenile turtle growth. Previous studies have suggested that the VA requirements of most finfish range from 1000 to 20,000 IU kg-1(Masumoto, 2002; Mohamed et al., 2003; Moren et al., 2004; Hernandez et al., 2005). Based on the appropriate levels, dietary VA supplementation at 20,000-35,000 IU kg-1should be used for soft-shelled turtles. The differing demands for VA between these two animals may be attributed to differences in metabolic processes (Chen and Huang, 2014). In contrast with the present study, the recommended dietary VA requirement for turtles was found to be 10800-11600 IU kg-1in the aforementioned study (Chen and Huang, 2014), and the turtle growth (WG, FCR and PER) in the present study was superior to that in this previous study. The discrepant results between

    two studies may be due to the use of different ingredients, nutrient compositions and VA supplementation levels in the diets. In the present study, VA supplementation at level 3 (35,000 IU kg-1) had more benefcial effects on the turtle growth rate than that at level 2 (20,000 IU kg-1).

    Table 3 Effects of the different diets on feeding and growth of Pelodiscus sinensis.

    Table 4 Results of analysis of the effects of different vitamin levels on feed intake and growth.

    Table 5 Effects of the different diets on diet utilization in Pelodiscus sinensis.

    Table 6 Results of analysis of the effects of different vitamin levels on diet utilization.

    Table 7 Results of analysis of the effects of different vitamin levels on PDR and PER.

    Table 8 Effects of the different diets on energy intake and net energy effciency for growth.

    Table 9 Results of analysis of the effects of different vitamin levels on energy intake and energy effciency for growth.

    In this study, VB2had greater infuences on the PDR and EGE than VA and VB6based on the relative orders of importance of these vitamins, which is consistent with the fnding that the whole-body protein content in Jian carp increases with an increasing dietary ribofavin levels (Li et al., 2009). The results of this study indicate that VB2may play an important role in converting dietary protein and energy into usable protein and energy in the softshelled turtle. In previous studies, VB2at a suitable level has been shown to be conductive to the growth of some aquaculture animals (Xu et al., 1995; Souto et al., 2008; Li et al., 2010). Souto et al. (2008) have found that sea bream fed a VB2- enriched diet (17.7 mg kg-1) grew better than those fed a control diet (13.7mg kg-1). In addition, a low dietary VB2level (100 mg/kg) has been shown to result in a higher SGR than a high dietary VB2level (400mg kg-1) in shrimp (Xu et al., 1995), perhaps due to the high levels of digestive enzymes and energy necessary for separating VB2from proteins (Wang and Shan, 2007). In the present study, VB2supplementation at level 2 (120 mg kg-1) resulted in the optimal rates of absorption and conversion of protein and energy (Tables 7 and 9), and that at level 3 (180 mg kg-1) yielded an optimal growth rate compared with that at the other two levels; thus, the VB2level in the juvenile turtle diet should be approximately 120–180 mg kg-1.

    Previous experiments have demonstrated that VB6infuences the PER and feed coeffcient ratio (FCR). The metabolism of this vitamin is related to dietary protein or amino acid metabolism in animals (Hilton, 1989; Giri et al., 1997). In the present study, VB6had fewer effects on protein metabolism than VA based on the order of importance of the vitamins (Tables 6 and 7). Further, VB6had a greater influence on the FCR than VB2, and the same result has been found in a study conducted by Lin et al. (2003) showing that VB6has important effects on digestive enzyme and alkaline phosphatase activities (He et al., 2009). The bass Lateolabrax japonicus and Jian carp Cyprinus carpio exhibit optimal growth atVB6concentratons of 20 mg kg-1(Zhong and Zhang, 2001) and 6.07mg kg-1(He et al., 2009), respectively. Further, the most appropriate VB6level for shrimp is approximately 140 mg kg-1(Xu et al., 1995). In the present study, based on the PER and FCR K values, VB6supplementation at level 1 (20 mg kg-1) was optimal compared with that at the other levels, and the PER and FCR gradually worsened with increasing VB6levels (Tables 6 and 7). In addition, VB6supplementation at level 2 (70 mg kg-1) resulted in a higher SGR of the turtles (Table 4). Therefore, VB6should be kept at a low level (20–70 mg kg-1) in the juvenile turtle diet.

    The results of this study demonstrated that the order of importance of the 3 vitamins with regard to the turtle feed intake, growth and digestibility was VA>VB2>VB6and that the order of importance with regard to the conversion capacity was VB2>VA>VB6(Tables 4, 6, and 7). These findings suggest that at the levels tested, VA influenced feeding, growth, digestion and feed utilization, and had the strongest effects on the soft-shelled turtles, that VB2played an important role in growth effciency (PDR and EGE), and that VB6had greater effects on the FCR and PER than did VB2.

    The results showed that the vitamin combination A2, B22, and B61generated the highest PDR and PER and that combination A3, B23, and B62resulted in optimal growth; thus, based on the growth results, the dietary VA, VB2and VB6requirements for soft-shelled turtles were estimated to be 35,000 IU kg-1, 180 mg kg-1and 70 mg kg-1, respectively.

    AcknowledgementsThis work was fnancially supported by the National Natural Science Foundation of China (Nos. 30972261, 31172085, 31272315 and 41606137).

    Albrektsen S., Waagbo R., Sandnes K. 1993. Tissue vitamin B concentrations and aspartate aminotransferase (Asp T) activity in Atlantic salmon (Salmo salar) fed graded dietary levels of vitamin B, Fik Dir Skr Ser Ernaring, 6: 21–34

    Chen L. P., Huang C. H. 2014. Estimation of dietary vitamin A requirement of juvenile soft-shelled turtle, Pelodiscus sinensis. Aquac Nutr, Doi: 10.1111/anu. 12172

    Deng D. F., Wilson R. P. 2003. Dierary ribofavin requirement of juvenile sunshine bass (Morone chrysops♀×Morone saxatilis♂). Aquaculture, 218: 695–701

    Feng L., He W., Jiang J., Liu Y., Zhou X. Q. 2010. Effects of dietary pyridoxine on disease resistance, immune responses and intestinal microfora in juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 16: 254–261

    Fisheries Department of Agriculture Ministry of China. 2012. China Fisheries Yearbook. Beijing: China Agriculture Press (In Chinese)

    Funkenstein B. 2001. Developmental expression, tissue distribution and hormonal regulation of fish (Sparusaurata) serum retinolbinding protein. Comp Biochem Phys, 129: 613–622

    Giri N. A., Teshima S. I., Kanazawa A. 1997. Effects of dietary pyridoxine and protein levels on growth, vitamin B6 content, and free amino acid profile of juvenile Penaeus japonicus.Aquaculture, 157: 263–275

    Halver J. E. 1989. The vitamins. In Halver J. E. (Ed.), Fish Nutrition. New York: Academic Press, 32–102

    Halver J. E. 2003. The vitamins. In Halver J. E. (Ed.), Fish Nutrition, 3rd Edition. New York: Academic Press, 61–141

    He W., Zhou X. Q., Feng L., Jiang J., Liu Y. 2009. Dietary pyridoxine requirement of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 15: 402–408

    Hemre G. I., Deng D. F., Wilson R. P., Berntssen M. H. G. 2004. VitaminA metabolism and early biological responses in juvenile sunshine bass (Moronechrysop×M.saxatilis) fed graded levels of vitaminA. Aquaculture, 235: 645–665

    Hernandez L. H. H., Teshima S. I., Ishikawa M., Alam S., Koshio S., Tanaka Y. 2005. Dietary vitamin A requirements of juvenile Japanese founder Paralichthys olivaceus. Aquac Nutr, 11: 3–9

    Hilton J. W. 1989. The interaction of vitamins, minerals and diet composition in the diet of fsh. Aquaculture, 79: 223–244

    Hou J. L., Jia Y. J., Yang Z. C., Li Y. J., Cheng F. X., Li D., Ji F. S. 2013. Effects of Taurine Supplementation on Growth Performance and Antioxidative Capacity of Chinese Soft-shelled Turtles, Pelodiscus sinensis, Fed a Diet of Low Fish Meal Content. J World Aquac Soc, 44: 786–794

    Huang C., Lin W., Wu S. 2003. Effect of dietary calcium and phosphorus supplementation in fish meal-based diets on the growth of soft-shelled turtle Pelodiscus sinensis (Wiegmann). Aquac Res, 34: 843-848

    Huang C., Lin W. 2004. Effects of dietary vitamin E level on growth and tissue lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res, 35: 948-954

    Kavita P. P., David H. B. 1996. Supplemtantal iron, copper, zinc, ascorbate, caffeine and chlortetracycline do not affect ribofavin utilization in the chick. Nutr Res, 16: 1943–1952

    Lahov E., Regelson W. 1996. Antibacterial and immunostimulating casein-de-rived substances from milk, casecidin, isracidin peptides. Food Chem Toxicol, 34: 131–145

    Li E. C., Yu N., Chen L. Q., Zeng C., Liu L. H., Qin J. G. 2010. Dietary Vitamin B6 Requirement of the Pacifc White Shrimp, Litopenaeus vannamei, at Low Salinity. J World Aquac Soc, 41: 756–763

    Li W., Zhou X. Q., Feng L., Liu Y., Jiang J. 2010. Effect of dietary ribofavin on growth, feed utilization, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr, 16: 137–143

    Lin S. M., Zeng D. M., Ye Y. S., Luo L. 2003. A study on vitamin B2, B6, niacin and pantothenic acid requirements of allogenetic crucian carps. Chin J Anim Nutr, 15: 43–47

    Masumoto T. 2002. Yellowtail, Seriola quinqueradiata. In Webster C. D., Lim C. (Eds.), Nutrient Requirement and Feeding of Finfsh for Aquaculture. New York: CABI Publishing, 131–146

    Mohamed J. S., Sivaram V., Christopher R., Marian M. P., Murugardass S., Hussain M. R. 2003. Dietary vitamin A requirement of juvenile greasy grouper (Epinephelus tauvina). Aquaculture, 219: 693–701

    Montgomery D. C. 1991. Design and Analysis of Experiments, 3rd Edition. New York: John Wiley and Sons, 649

    Moren M., Opstad I., Bemtssen M. H. G., Zambonino I. J. L., Hamre K. 2004. An optimum level of vitamin A supplements for Atlantichalibut (Hippoglossus hippoglossus L.) juveniles. Aquaculture, 235: 587–599

    Nuangsaeng B., Boonyaratapalin M. 2001. Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquaculture Research, 32: 106-111

    NRC (National Research Council). 1993. Nutrient Requirements of Fish, National Academy Press, Washington, DC., 114

    Olson J. A. 1991. Vitamin A. In Machin, L. (Ed.), The Handbook of vitamins. New York: Marcel Dekker, 1–59

    Pu L. J., Niu C. J. 2013. Molecular cloning and characteristics of catalase cDNA from Chinese soft-shelled turtle (Pelodiscus sinensis). Asian Herpetol Res, 4(2): 90–99

    Reham K. N., Jennifer M. C., Malcolm R. B., Barbara F. N., Stephen C. B. 2013. The effects of dietary vitamin A in rotifers on the performance and skeletal abnormality of striped trumpeter Latris lineata larvae and post larvae. Aquaculture, 404–405: 105–115

    Rong C. K., Zhen R. L., Yue B. Y., Liang S. X. 1996. Studies on the nutritional requirements of fat-solube vitamins A, D3, E K3for shrimp Penaeus Chinensis. J Tianjin Agric Coll, 3: 1– 6

    Roy R. K. 1990. A primer on the Taguchi Method. Van Nostrand Reinhold, 7–9

    Serrini G., Zhang Z., Wilson R. P. 1996. Dietary riboflavin requirement of fngerling channel catfsh (Ictalurus punctatus). Aquaculture, 139: 285–290

    Shiau S. Y., Chen Y. 2000. Estimation of the dietary vitamin A requirement of juvenile grass Shrim P. Penaeusmondon. Nutrition, 130: 90–94

    Souto M., Saavedra M., Ferreira P. P., Herrero C. 2008. Riboflavin enrichment throughout the food chain from the marine microalgae Tetraselmis suecica to the rotifer Brachionus plicatilis and to White Sea Bream (Diplodus sargus) and Gilthead Sea bream (Sparus aurata) larvae. Aquaculture, 283: 128–133

    Stéphanie F. D., Emilie L., Anne S., Jeannine B., José-Luis Z. I., Sadasivam J. K. 2010. Effects of dietary vitamin A on broodstock performance, egg quality, early growth and retinoid nuclear receptor expression in rainbow trout (Oncorhynchus mykiss). Aquaculture, 303: 40–49

    Tan Q. S., He R. G., Xie S. Q., Xie C. X., Zhang S. P. 2007. Effect of Dietary Supplementation of Vitamins A, D3, E, and C on Yearling Rice Field Eel, Monopterus albus: Serum Indices, Gonad Development, and Metabolism of Calcium and Phosphorus. J World Aquac Soc, 38: 146–153

    Wang A., Shan A. S. 2007. Vitamin modern animal agricultural production. Beijing: Science press, 126

    Xie Q. S., Yang Z. C., Li J. W., Li Y. J. 2012. Effect of protein restriction with subsequent re-alimentation on compensatory growth of juvenile soft-shelled turtles (Pelodiscus sinensis). Aquac Int, 20: 19–27

    Xu Z. C., Liu T. B., Li A. J. 1995. Studies on the requirement for riboflavin nicotinamide and pyridoxine in the prawn Penaeus Chinensis. J Fish China, 19: 97–104

    Yan L. L., Zhang G. F., Liu Q. G., Li J. L. 2009. Optimization of culturing the freshwater pearl mussels, Hyriopsis cumingii with filter feeding Chinese carps (bighead carp and silver carp) by orthogonal array design. Aquaculture, 292: 60–66

    Yutaka H., Du S. J., Shuichi S., Tomonari K., Hiroshi F., ToshioT. 2011. Analysis of the mechanism of skeletal deformity in fish larvae using a vitamin A-induced bone deformity model. Aquaculture, 315: 26–33

    Zheng S., Jiang F. 2004. Experiment Design and Data Processing. Beijing: China architecture and industry publishing company, 60–90

    Zhong W. R., Zhang S. H. 2001. Studies on the Requirements of Lateclabrux japonicus for Vitamins at Various Growth Stages. J Zhejiang Ocean Univ (Nat Sci), 20: 98–102

    Zhou X. Q., Niu C. J., Sun R. Y. 2004. Effects of the combination of vitamin C and E on non-specifc immune function in juvenile soft-shelled turtle Trionyx Sinensis. Acta Hydrobiol Sinica, 28: 356–360

    *Corresponding authors: Dr. Zhencai YANG, from College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China, with his research focusing on reptiles nutrition.

    E-mail: zcyang@mail.hebtu.edu.cn

    Received: 26 January 2016 Accepted: 28 February 2016

    国产在线一区二区三区精| 69精品国产乱码久久久| 精品一品国产午夜福利视频| 一级黄片播放器| 一级毛片我不卡| 日本猛色少妇xxxxx猛交久久| 在线观看免费日韩欧美大片| 尾随美女入室| 少妇精品久久久久久久| 美女国产高潮福利片在线看| √禁漫天堂资源中文www| 一区在线观看完整版| 免费高清在线观看日韩| 久久久精品免费免费高清| 欧美成人午夜精品| 日日爽夜夜爽网站| 久久久国产一区二区| 久久精品亚洲av国产电影网| 国产成人精品福利久久| 美女午夜性视频免费| 午夜激情av网站| 国产人伦9x9x在线观看| av免费观看日本| 最近最新中文字幕大全免费视频 | 国产 精品1| 国产人伦9x9x在线观看| 99香蕉大伊视频| 久久人妻熟女aⅴ| 黄片小视频在线播放| 极品少妇高潮喷水抽搐| 国产老妇伦熟女老妇高清| 久久久久人妻精品一区果冻| 青草久久国产| 99精国产麻豆久久婷婷| 国产又爽黄色视频| 日韩制服丝袜自拍偷拍| 久热爱精品视频在线9| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 亚洲av中文av极速乱| 色94色欧美一区二区| 80岁老熟妇乱子伦牲交| 成年av动漫网址| 久久韩国三级中文字幕| 国产亚洲欧美精品永久| 日韩人妻精品一区2区三区| 国产精品久久久人人做人人爽| 精品亚洲乱码少妇综合久久| 久久久久国产精品人妻一区二区| 久久 成人 亚洲| 欧美日韩亚洲国产一区二区在线观看 | 热99国产精品久久久久久7| 中国三级夫妇交换| av在线观看视频网站免费| 人人妻人人澡人人爽人人夜夜| 熟女av电影| 天天躁狠狠躁夜夜躁狠狠躁| 久久人人爽人人片av| 女人爽到高潮嗷嗷叫在线视频| 嫩草影院入口| 在线观看三级黄色| 美女主播在线视频| 成人亚洲精品一区在线观看| 国产探花极品一区二区| 国产色婷婷99| 男女午夜视频在线观看| 美女视频免费永久观看网站| 丝袜脚勾引网站| 黄色毛片三级朝国网站| 夫妻午夜视频| 最新在线观看一区二区三区 | 国产无遮挡羞羞视频在线观看| 国产精品嫩草影院av在线观看| 欧美日韩视频高清一区二区三区二| 国产精品亚洲av一区麻豆 | 欧美日韩国产mv在线观看视频| 亚洲精品国产色婷婷电影| 观看av在线不卡| 日韩大码丰满熟妇| 欧美xxⅹ黑人| 日韩熟女老妇一区二区性免费视频| a级片在线免费高清观看视频| 在线观看一区二区三区激情| 精品亚洲成国产av| 国产又爽黄色视频| 搡老岳熟女国产| 涩涩av久久男人的天堂| 亚洲少妇的诱惑av| 嫩草影视91久久| 飞空精品影院首页| 另类精品久久| 一级a爱视频在线免费观看| 又黄又粗又硬又大视频| 日日爽夜夜爽网站| 中文字幕av电影在线播放| 久久久久久久久免费视频了| 欧美国产精品一级二级三级| www.精华液| 欧美日韩亚洲国产一区二区在线观看 | 高清视频免费观看一区二区| 在线观看一区二区三区激情| 高清在线视频一区二区三区| 日韩制服丝袜自拍偷拍| 自线自在国产av| 久久久久久久大尺度免费视频| 青春草国产在线视频| 欧美成人午夜精品| 久久久久网色| 老司机在亚洲福利影院| 中文乱码字字幕精品一区二区三区| 亚洲婷婷狠狠爱综合网| 精品少妇内射三级| 亚洲 欧美一区二区三区| 久久久久精品国产欧美久久久 | 毛片一级片免费看久久久久| 国产成人av激情在线播放| 国产高清国产精品国产三级| 国产视频首页在线观看| 国产亚洲最大av| 久久影院123| 99热网站在线观看| 国产成人精品在线电影| 男女床上黄色一级片免费看| 久久精品国产亚洲av涩爱| 成人免费观看视频高清| 久久女婷五月综合色啪小说| 欧美日韩亚洲综合一区二区三区_| 国产成人一区二区在线| 一个人免费看片子| 国产成人欧美| 天天躁日日躁夜夜躁夜夜| 久久 成人 亚洲| 精品卡一卡二卡四卡免费| 91精品国产国语对白视频| 一本大道久久a久久精品| 高清欧美精品videossex| 国产在视频线精品| www日本在线高清视频| 国产 精品1| 国产精品一二三区在线看| 亚洲熟女毛片儿| 在线观看www视频免费| 国产精品久久久久久精品古装| 国产精品国产三级国产专区5o| 婷婷色av中文字幕| 天堂俺去俺来也www色官网| 婷婷色av中文字幕| 99久久人妻综合| 国产午夜精品一二区理论片| 天天躁狠狠躁夜夜躁狠狠躁| 九九爱精品视频在线观看| 久久久国产欧美日韩av| 美女午夜性视频免费| h视频一区二区三区| 尾随美女入室| 捣出白浆h1v1| 午夜福利在线免费观看网站| 免费女性裸体啪啪无遮挡网站| 午夜福利网站1000一区二区三区| 电影成人av| av在线观看视频网站免费| 日本一区二区免费在线视频| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 亚洲精品国产色婷婷电影| 久久青草综合色| 丰满少妇做爰视频| 曰老女人黄片| 秋霞在线观看毛片| 国产精品一二三区在线看| 午夜精品国产一区二区电影| 黑人巨大精品欧美一区二区蜜桃| 新久久久久国产一级毛片| 日韩 欧美 亚洲 中文字幕| 考比视频在线观看| 久久av网站| 亚洲成色77777| 你懂的网址亚洲精品在线观看| 电影成人av| av免费观看日本| 国产成人免费观看mmmm| 欧美中文综合在线视频| 日本爱情动作片www.在线观看| 欧美日韩国产mv在线观看视频| 一边摸一边抽搐一进一出视频| 一边摸一边做爽爽视频免费| 999久久久国产精品视频| 国产乱人偷精品视频| 欧美97在线视频| 人人妻人人爽人人添夜夜欢视频| 看十八女毛片水多多多| 精品国产乱码久久久久久男人| 人成视频在线观看免费观看| 日韩一本色道免费dvd| 欧美精品一区二区免费开放| 一区二区av电影网| 亚洲一级一片aⅴ在线观看| 精品一区在线观看国产| 亚洲精品久久午夜乱码| 无限看片的www在线观看| 亚洲欧美一区二区三区国产| 另类精品久久| videos熟女内射| 天天影视国产精品| 中文字幕人妻丝袜一区二区 | 成人三级做爰电影| 亚洲精品国产色婷婷电影| 男男h啪啪无遮挡| 国产精品99久久99久久久不卡 | 男女之事视频高清在线观看 | 新久久久久国产一级毛片| 午夜影院在线不卡| 国产探花极品一区二区| 99精国产麻豆久久婷婷| 一级片免费观看大全| 国产熟女午夜一区二区三区| 成人三级做爰电影| av一本久久久久| 操美女的视频在线观看| 欧美激情高清一区二区三区 | 蜜桃国产av成人99| 亚洲欧美一区二区三区久久| 哪个播放器可以免费观看大片| 中文天堂在线官网| 操出白浆在线播放| xxx大片免费视频| 日韩成人av中文字幕在线观看| 9191精品国产免费久久| 在线免费观看不下载黄p国产| 女人被躁到高潮嗷嗷叫费观| 男女午夜视频在线观看| 久热这里只有精品99| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 一级片免费观看大全| av免费观看日本| 各种免费的搞黄视频| 搡老乐熟女国产| 一本大道久久a久久精品| 少妇人妻精品综合一区二区| 亚洲美女搞黄在线观看| 一区福利在线观看| 人妻一区二区av| 国产精品av久久久久免费| 午夜日本视频在线| 亚洲伊人久久精品综合| 久久久精品94久久精品| xxxhd国产人妻xxx| 午夜日韩欧美国产| 97精品久久久久久久久久精品| 国产一级毛片在线| 久久鲁丝午夜福利片| 色精品久久人妻99蜜桃| 如日韩欧美国产精品一区二区三区| 成人国产av品久久久| 伊人亚洲综合成人网| 亚洲天堂av无毛| svipshipincom国产片| 免费观看性生交大片5| 亚洲国产精品成人久久小说| 国产一级毛片在线| 久久久精品免费免费高清| 女人久久www免费人成看片| 亚洲av中文av极速乱| 国产成人免费观看mmmm| 久久99热这里只频精品6学生| 一本大道久久a久久精品| 亚洲欧美精品综合一区二区三区| 国产无遮挡羞羞视频在线观看| 天天影视国产精品| 啦啦啦 在线观看视频| 高清黄色对白视频在线免费看| 婷婷色综合大香蕉| 男女高潮啪啪啪动态图| 2021少妇久久久久久久久久久| 老汉色∧v一级毛片| 亚洲精品久久成人aⅴ小说| 午夜福利免费观看在线| 香蕉国产在线看| 日韩av免费高清视频| 国产免费一区二区三区四区乱码| 国产黄色视频一区二区在线观看| 亚洲少妇的诱惑av| 99re6热这里在线精品视频| 久久久亚洲精品成人影院| 桃花免费在线播放| 亚洲 欧美一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 婷婷色av中文字幕| 久久国产精品男人的天堂亚洲| 高清视频免费观看一区二区| 叶爱在线成人免费视频播放| av在线观看视频网站免费| 国产精品秋霞免费鲁丝片| 黑人猛操日本美女一级片| 中文字幕av电影在线播放| 老司机在亚洲福利影院| 如何舔出高潮| 欧美在线黄色| 色94色欧美一区二区| 亚洲精品日韩在线中文字幕| 亚洲免费av在线视频| 久久人人爽av亚洲精品天堂| 国产1区2区3区精品| 九色亚洲精品在线播放| 国产一区有黄有色的免费视频| 精品人妻熟女毛片av久久网站| 国产女主播在线喷水免费视频网站| 国产麻豆69| 最近中文字幕高清免费大全6| 欧美国产精品va在线观看不卡| 国产爽快片一区二区三区| 久久天堂一区二区三区四区| 午夜福利在线免费观看网站| 91aial.com中文字幕在线观看| 国产精品免费大片| netflix在线观看网站| 老司机靠b影院| 亚洲成人国产一区在线观看 | 日本欧美视频一区| 亚洲av日韩精品久久久久久密 | 青春草国产在线视频| 一级爰片在线观看| 国产高清不卡午夜福利| 婷婷色综合大香蕉| 在线观看国产h片| 亚洲国产精品成人久久小说| 免费黄频网站在线观看国产| 高清视频免费观看一区二区| 欧美精品一区二区大全| 精品久久久久久电影网| 9热在线视频观看99| 久久久久久久大尺度免费视频| www.av在线官网国产| 成人手机av| 国产精品一区二区在线不卡| 99热全是精品| 午夜免费男女啪啪视频观看| 中文天堂在线官网| 大片电影免费在线观看免费| 欧美 亚洲 国产 日韩一| av线在线观看网站| 老司机影院毛片| 日本wwww免费看| 精品少妇内射三级| 亚洲伊人色综图| 亚洲av日韩精品久久久久久密 | 美女中出高潮动态图| 最近最新中文字幕大全免费视频 | 99香蕉大伊视频| 国产成人av激情在线播放| 黄色 视频免费看| 99re6热这里在线精品视频| 免费高清在线观看视频在线观看| 激情五月婷婷亚洲| 午夜激情av网站| av视频免费观看在线观看| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 中文欧美无线码| 免费观看性生交大片5| 如何舔出高潮| 亚洲成色77777| 熟女少妇亚洲综合色aaa.| 久久精品久久久久久久性| 亚洲在久久综合| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 久热爱精品视频在线9| 欧美人与善性xxx| 欧美日韩视频精品一区| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| av有码第一页| 亚洲国产欧美在线一区| 777久久人妻少妇嫩草av网站| 久热这里只有精品99| 免费人妻精品一区二区三区视频| 黄片播放在线免费| 如何舔出高潮| 大香蕉久久网| 国产成人91sexporn| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 日韩人妻精品一区2区三区| 两个人看的免费小视频| 欧美日韩亚洲高清精品| 老司机影院毛片| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 亚洲,欧美精品.| 日韩精品有码人妻一区| 一级毛片我不卡| 国产精品香港三级国产av潘金莲 | 亚洲成人av在线免费| 国产精品亚洲av一区麻豆 | 国产熟女欧美一区二区| e午夜精品久久久久久久| 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| 91国产中文字幕| 国产av国产精品国产| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| av福利片在线| 国产精品久久久久成人av| avwww免费| 欧美日韩视频精品一区| 亚洲成人手机| 精品一品国产午夜福利视频| 中文欧美无线码| 嫩草影院入口| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 王馨瑶露胸无遮挡在线观看| 在线观看免费视频网站a站| 国产精品一国产av| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 久久这里只有精品19| 一边摸一边抽搐一进一出视频| 深夜精品福利| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 成人免费观看视频高清| 国产亚洲欧美精品永久| 韩国高清视频一区二区三区| 国产av精品麻豆| 在线观看国产h片| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧美一区二区综合| 久久国产亚洲av麻豆专区| 精品人妻在线不人妻| 菩萨蛮人人尽说江南好唐韦庄| 一级a爱视频在线免费观看| 伦理电影大哥的女人| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 丝袜美足系列| 亚洲成人国产一区在线观看 | av福利片在线| 男人爽女人下面视频在线观看| 久久午夜综合久久蜜桃| 日本av手机在线免费观看| 国产亚洲精品第一综合不卡| a级毛片在线看网站| 卡戴珊不雅视频在线播放| 成人午夜精彩视频在线观看| 视频区图区小说| 一级黄片播放器| 中文字幕人妻丝袜制服| av一本久久久久| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区 视频在线| 精品亚洲成a人片在线观看| 亚洲精品,欧美精品| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 人人妻人人澡人人看| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 久久午夜综合久久蜜桃| 新久久久久国产一级毛片| 国产黄频视频在线观看| 最近手机中文字幕大全| 国产一区二区三区综合在线观看| 极品人妻少妇av视频| 天堂俺去俺来也www色官网| 黄色一级大片看看| 久久久久国产一级毛片高清牌| 狂野欧美激情性bbbbbb| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| av线在线观看网站| 日韩一本色道免费dvd| 中文字幕高清在线视频| 赤兔流量卡办理| 人人妻人人澡人人看| 精品国产超薄肉色丝袜足j| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线 | 男男h啪啪无遮挡| 91成人精品电影| 婷婷色综合大香蕉| 国产精品一区二区精品视频观看| 老汉色av国产亚洲站长工具| 国产一区亚洲一区在线观看| 午夜精品国产一区二区电影| 伊人亚洲综合成人网| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 大片电影免费在线观看免费| av线在线观看网站| 国产精品偷伦视频观看了| 成年人午夜在线观看视频| 男女床上黄色一级片免费看| 国产男人的电影天堂91| 在线亚洲精品国产二区图片欧美| 精品福利永久在线观看| 一二三四中文在线观看免费高清| 久热这里只有精品99| 桃花免费在线播放| 999精品在线视频| 欧美精品人与动牲交sv欧美| 超碰成人久久| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 青春草视频在线免费观看| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 亚洲,欧美,日韩| 欧美中文综合在线视频| 免费黄频网站在线观看国产| 亚洲美女视频黄频| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 一本大道久久a久久精品| 看十八女毛片水多多多| 丰满乱子伦码专区| 美女中出高潮动态图| 国产精品人妻久久久影院| 久久久久久人人人人人| 国产黄色免费在线视频| 男人爽女人下面视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 黄色毛片三级朝国网站| kizo精华| 高清av免费在线| 一级爰片在线观看| 99久久精品国产亚洲精品| 自线自在国产av| av福利片在线| 亚洲国产欧美日韩在线播放| 日韩大码丰满熟妇| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| 久久女婷五月综合色啪小说| 高清不卡的av网站| 中文字幕人妻丝袜一区二区 | 青春草视频在线免费观看| 性少妇av在线| 欧美日韩亚洲高清精品| 青草久久国产| 国产亚洲av高清不卡| 十八禁人妻一区二区| 亚洲精品第二区| 日韩大码丰满熟妇| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| a 毛片基地| 男女边摸边吃奶| 侵犯人妻中文字幕一二三四区| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 一本久久精品| 女人久久www免费人成看片| 精品少妇久久久久久888优播| 中文字幕人妻丝袜一区二区 | 午夜免费观看性视频| 久久久久国产一级毛片高清牌| 99久久人妻综合| 午夜老司机福利片| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 啦啦啦啦在线视频资源| 国产精品成人在线| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 亚洲自偷自拍图片 自拍| 伦理电影大哥的女人| 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 亚洲av中文av极速乱| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 精品一区二区三区四区五区乱码 | 日韩免费高清中文字幕av| 丝袜美腿诱惑在线| 在线 av 中文字幕| 亚洲av国产av综合av卡| 久久久精品区二区三区| 两性夫妻黄色片| 日韩制服丝袜自拍偷拍| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| 日韩大片免费观看网站| 亚洲第一av免费看| 免费av中文字幕在线| 亚洲久久久国产精品| 国产成人a∨麻豆精品|