劉紫娟,李 萍,宗毓錚,董 琦,郝興宇
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 太谷 030801)
大氣CO2濃度升高對谷子生長發(fā)育及玉米螟發(fā)生的影響*
劉紫娟,李 萍,宗毓錚,董 琦,郝興宇**
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 太谷 030801)
人類活動導(dǎo)致全球大氣CO2濃度持續(xù)升高,研究大氣CO2濃度升高對C4作物谷子(Setaria italica)生長發(fā)育及蟲害發(fā)生的影響,可以為谷子等C4作物制訂應(yīng)對氣候變化栽培措施提供理論依據(jù)。本研究利用OTC (Open Top Chamber)系統(tǒng),設(shè)兩個CO2濃度梯度(正常大氣CO2濃度、正常CO2濃度+200 μmol·mol-1)模擬CO2濃度升高對谷子生長發(fā)育的影響。結(jié)果表明:大氣 CO2濃度升高后,谷子凈光合速率(Pn)、氣孔導(dǎo)度(gs)、葉片蒸騰速率(Tr)和水分利用率(WUE)分別增加38.73%、27.53%、6.93%和40.56%;谷子葉片光系統(tǒng)Ⅱ最大光化學(xué)量子產(chǎn)量(Fv/Fm)和非光化學(xué)淬滅系數(shù)(NPQ)顯著下降,光系統(tǒng)Ⅱ?qū)嶋H光化學(xué)量子產(chǎn)量(ΦPSII)和表觀電子傳遞效率(ETR)顯著增加,而對光化學(xué)淬滅系數(shù)(qP)無顯著影響;此外,谷子株高、莖粗和小穗數(shù)分別增加3.41%、13.28%和13.11%;而葉重、莖重、千粒重、單株粒數(shù)和產(chǎn)量無顯著變化,穗重和地上部分生物量分別顯著下降12.8%和7.44%;大氣CO2濃度升高后,谷子灌漿期和收獲期玉米螟(Ostrinia furnacalis)發(fā)生數(shù)量顯著增加。大氣CO2濃度升高將有利于谷子的生長發(fā)育,但會增加玉米螟危害。
CO2濃度升高;谷子;光合作用;產(chǎn)量;玉米螟
工業(yè)革命以來由于人類活動(包括大量使用石油、煤炭等化石燃料以及過度砍伐森林等)使全球大氣CO2濃度從工業(yè)革命前的280 μmol·mol-1上升到目前的396 μmol·mol-1,到21世紀(jì)末全球CO2濃度將達(dá)到421~936 μmol·mol-1[1]。大氣CO2濃度升高會促進(jìn)作物的光合作用,有利于作物生物量和產(chǎn)量的提高[2-4]。而光合速率的增加會使植物組織中碳水化合物含量增加,氮的相對含量降低[4],植物葉片化學(xué)成分會發(fā)生變化,從而影響昆蟲的取食、生長發(fā)育及種群動態(tài),并對植物的生產(chǎn)力產(chǎn)生影響[5]。也有研究認(rèn)為大氣CO2濃度升高后植物影響昆蟲的化感素的產(chǎn)生會發(fā)生變化,并對害蟲發(fā)生產(chǎn)生影響[6]。戈峰等[7]指出大氣 CO2濃度升高后,麥蚜(Sitobion avenae)產(chǎn)卵期提前,繁殖能力提高;而棉鈴蟲(Helicoverpa armigera)的種群數(shù)量和適合度會下降。
C4植物可以利用維管束鞘增加葉肉細(xì)胞內(nèi)的CO2濃度使葉綠體的羧化效率較C3植物更高[8-9]。由于C4植物可以在維管束內(nèi)濃縮CO2以提高CO2利用效率,大氣CO2濃度升高對其的促進(jìn)作用要小于C3植物,有研究表明,在沒有干旱脅迫條件下,大氣CO2濃度升高對玉米及 C4雜草無顯著影響[2,10]。谷子(Setaria italica)是C4作物,耐旱耐貧瘠,在我國北方廣泛種植。目前關(guān)于大氣CO2濃度升高對作物影響的研究多集中在C3作物,對C4作物的相關(guān)研究較少,C4作物生長發(fā)育及蟲害發(fā)生對大氣 CO2濃度升高的響應(yīng)機制尚不明確。本研究利用開頂式氣室進(jìn)行大氣CO2濃度升高對C4作物谷子影響的研究,進(jìn)行光合作用、葉綠素?zé)晒饧吧锪亢彤a(chǎn)量變化的分析,并對后期蟲害情況進(jìn)行了觀測,為明確大氣CO2濃度升高對谷子的綜合影響提供參考。
1.1 試驗材料
試驗在山西農(nóng)業(yè)大學(xué)試驗基地進(jìn)行(37.42°N,112.58°E)。種植品種為‘原平小谷’,為山西省原平地區(qū)農(nóng)家品種。
1.2 設(shè)施構(gòu)成與試驗設(shè)計
整個系統(tǒng)主要由控制系統(tǒng)和 2個開頂式氣室(Open Top Chamber,OTC)組成。2個氣室大小面積(4 m×4 m)一致,間距4 m。其中一個為對照氣室,室內(nèi)CO2濃度與外界 CO2濃度一致(360~400 μmol·mol-1);另外一個氣室為處理氣室,室內(nèi) CO2濃度比對照氣室高200 μmol·mol-1,實際控制誤差為±30 μmol·mol-1。系統(tǒng)還進(jìn)行空氣濕度和土壤濕度的監(jiān)測[11]。
谷子于2013年6月13日播種于長×寬×高為60cm× 40cm×35cm 塑料整理箱中,箱底部打5個孔用于排水,箱內(nèi)裝土28cm 深。每箱種10穴,每穴播3~5粒種子,長出后每穴留苗1株。每個氣室種10箱。每隔3~5 d澆水,水量約相當(dāng)于10~20 mm降水,保證無干旱脅迫。拔節(jié)期施尿素和磷酸二銨,折合每盆純N11.04 g和純P12.24 g,從谷子出苗開始進(jìn)行CO2釋放到收獲前停止供氣,整個生長期全天 24 h均進(jìn)行CO2釋放控制,各氣室其他管理措施一致。
1.3 光合作用測定
光合作用測定:在谷子抽穗期(播后 54 d)和灌漿期(播后81 d)進(jìn)行光合作用的測定。在每個氣室分別選取有代表性的谷子10株,每株選取完全展開的旗葉用便攜式光合氣體分析系統(tǒng)(Li 6400,Li-CorInc,Lincoln NE,USA)進(jìn)行光合作用測定,測定指標(biāo)有凈光合速率(Pn)、氣孔導(dǎo)度(gs)、胞間CO2濃度(Ci)、蒸騰速率(Tr),并計算水分利用效率(WUE),WUE=Pn/Tr,測定時間為9:00—11:30。高CO2濃度氣室內(nèi)葉室CO2濃度設(shè)定在600 μmol·mol-1,對照氣室內(nèi)谷子葉片葉室CO2濃度設(shè)定在400 μmol·mol-1。測定時使用內(nèi)置紅藍(lán)光源,光量子通量密度(PPFD)為1 400 μmol·m-2·s-1,葉室溫度設(shè)定在28℃。
1.4 葉綠素?zé)晒鉁y定
在谷子抽穗期(播后54 d)和灌漿期(播后81 d),每個氣室各選取有代表性的植株10株,每株選取完全展開的旗葉利用便攜式熒光分析系統(tǒng)(Mini-PAM,Walz,Effeltrich,Germany)測定葉綠素?zé)晒鈪?shù),白天 8:00—12:00之間測定光反應(yīng)并做好標(biāo)記,夜間10:00—12:00之間測定暗反應(yīng),光反應(yīng)和暗反應(yīng)均使用選好的10株谷子葉片進(jìn)行測定。測定葉綠素初始熒光(F0)、最大熒光(Fm),光下最小熒光(F0′)和光下最大熒光(Fm′),并計算Fv/Fm、ΦPSII、qP、ETR、NPQ等葉綠素?zé)晒鈪?shù)[12]。
1.5 形態(tài)指標(biāo)、生物量產(chǎn)量測定
2013年10月6日(播后117 d)收獲所有植株,自然風(fēng)干后對全部植株進(jìn)行株高、莖粗、穗長、分蘗數(shù)、小穗數(shù)、葉重、莖重、穗重、單株粒數(shù)、千粒重、生物量和產(chǎn)量測定。
1.6 玉米螟危害程度統(tǒng)計
在灌漿期(播后 80 d)對玉米螟危害情況進(jìn)行調(diào)查,根據(jù)每株是否有危害癥狀統(tǒng)計玉米螟數(shù)量,并以相片記錄危害情況。收獲后對全部植株玉米螟數(shù)量進(jìn)行調(diào)查,統(tǒng)計玉米螟數(shù)量。
1.7 統(tǒng)計分析
以Microsoft Excel 2003進(jìn)行數(shù)據(jù)處理和圖表繪制,以SAS 8.1統(tǒng)計軟件進(jìn)行CO2處理的顯著性分析。
2.1 CO2濃度升高對谷子葉片光合生理的影響
大氣CO2濃度升高后,谷子凈光合速率(Pn)、氣孔導(dǎo)度(gs)、葉片蒸騰速率(Tr)和水分利用率(WUE)均極顯著增加。凈光合速率(Pn)兩個發(fā)育期平均增加38.73%,氣孔導(dǎo)度(gs)平均增加 27.53%,葉片蒸騰速率(Tr)平均增加 6.93%,水分利用率(WUE)增加40.56%(表1)。
表1 大氣CO2濃度升高對谷子光合生理的影響Table1 Effect of elevated CO2concentration on gas exchange parameters of foxtail millet
2.2 CO2濃度升高對谷子葉片葉綠素?zé)晒獾挠绊?/p>
大氣 CO2濃度升高后,谷子葉片光系統(tǒng)Ⅱ最大光化學(xué)量子產(chǎn)量(Fv/Fm)和非光化學(xué)淬滅系數(shù)(NPQ)顯著下降,光系統(tǒng)Ⅱ?qū)嶋H光化學(xué)量子產(chǎn)量(ΦPSII)和表觀電子傳遞效率(ETR)顯著增加,而光化學(xué)淬滅系數(shù)(qP)無顯著變化(表2)。
2.3 CO2濃度升高對谷子形態(tài)指標(biāo)的影響
大氣 CO2濃度升高后,谷子株高、莖粗和小穗數(shù)分別增加3.41%、13.28%和13.11%,谷子分蘗數(shù)下降65.50%,而穗長和節(jié)數(shù)無顯著變化(表3)。
2.4 CO2濃度升高對谷子生物量和產(chǎn)量的影響
大氣 CO2濃度升高后,谷子穗重顯著下降12.08%,而單位面積葉重、單位面積莖重、千粒重和單株粒數(shù)無顯著變化。大氣CO2濃度升高后,谷子地上部分生物量下降 7.44%,而產(chǎn)量無顯著變化(表4)。
2.5 CO2濃度升高對谷子玉米螟危害程度的影響
灌漿期后,我們發(fā)現(xiàn)谷子出現(xiàn)玉米螟危害狀,對照中僅有個別植株有危害狀,而高 CO2濃度處理氣室中大部分植株均有危害狀(圖1),如圖2C中部分谷子莖被咬斷,谷穗下垂,圖 2D中大部分植株根部均有玉米螟的粉末狀排泄物。鼓粒期和收獲期,CO2濃度升高后玉米螟危害數(shù)量均極顯著增加(圖2)。
表2 大氣CO2濃度升高對谷子葉綠素?zé)晒鈪?shù)的影響Table 2 Effect of elevated CO2concentration on chlorophyll fluorescence parameters of foxtail millet
表3 CO2濃度升高對谷子形態(tài)指標(biāo)的影響Table3 Effect of elevated CO2concentration on growth of foxtail millet
表4 CO2濃度升高對谷子產(chǎn)量和地上部分生物量的影響Table 4 Effect of elevated CO2concentration on yield and above-ground biomass of foxtail millet
圖1 CO2濃度升高對谷子玉米螟危害影響情況Fig.1 Effect of elevated CO2concentration on Asian corn borer of foxtail millet
圖2 CO2濃度升高對谷子玉米螟發(fā)生數(shù)量的影響Fig.2 Effect of elevated CO2concentration on the number of Asian corn borer in foxtail millet
大氣CO2濃度升高對C3植物的促進(jìn)作用要高于C4植物[8-9]。本研究發(fā)現(xiàn)大氣 CO2濃度升高使 C4作物谷子凈光合速率顯著增加。大氣CO2濃度升高后,C4植物光合作用增加的原因是由于這些 C4植物在目前大氣CO2濃度下沒有達(dá)到飽和[13]。大部分研究認(rèn)為,大氣CO2濃度升高會使C3和C4植物氣孔導(dǎo)度下降[2,14-18]。但也有研究發(fā)現(xiàn)一些樹木在大氣 CO2濃度升高后氣孔導(dǎo)度沒有下降[19-20]。本研究發(fā)現(xiàn)大氣 CO2濃度升高后谷子氣孔導(dǎo)度增加,這與其他作物的研究不同。長期大氣 CO2濃度升高條件下,谷子葉片氣孔可能會對高 CO2濃度產(chǎn)生適應(yīng),使氣孔導(dǎo)度的變化與其他作物不同,但有待今后的研究進(jìn)一步證實。氣孔導(dǎo)度的增加會有利于更多CO2進(jìn)入葉片,這也是該試驗條件下谷子葉片凈光合速率增加的原因之一。由于氣孔導(dǎo)度的增加,谷子葉片蒸騰速率也將增加。這意味著谷子在未來氣候條件下水分消耗將會增加,這和其他作物不同[14-15,21]。但由于光合速率的增加,水分利用率仍隨CO2濃度升高而增加。
光系統(tǒng)Ⅱ最大光化學(xué)量子產(chǎn)量(Fv/Fm)可以反映植物葉片潛在的最大光合能力[22],大氣 CO2濃度升高使谷子Fv/Fm下降,表明大氣CO2濃度升高使谷子光合潛力下降。但由于 CO2供應(yīng)充足,光系統(tǒng)Ⅱ?qū)嶋H光化學(xué)量子產(chǎn)量(ΦPSII)和表觀電子傳遞效率(ETR)顯著增加,這與凈光合速率的變化一致。大氣 CO2濃度升高使谷子非光化學(xué)淬滅系數(shù)(NPQ)顯著下降,這會減少植物化學(xué)能以熱能的形式消耗[23],這也將有利于光合作用的提高。
光合作用的增加促進(jìn)了谷子的生長發(fā)育,使谷子株高、莖粗和小穗數(shù)顯著增加,但由于鼓粒期后大氣 CO2濃度升高條件下玉米螟危害加重,導(dǎo)致穗重和地上部分生物量下降,而葉重、莖重和產(chǎn)量均無顯著變化。這可能是由于大氣CO2濃度升高后谷子光合作用增加,會使植物合成更多碳水化合物積累到植株內(nèi),而葉片氮含量相對下降,葉片其他化學(xué)成分包括以碳為基礎(chǔ)的次生代謝物含量也會發(fā)生變化,影響昆蟲的取食及生長發(fā)育[5]。也有研究認(rèn)為大氣CO2濃度升高后植物影響昆蟲化感素的產(chǎn)生會發(fā)生變化,這會影響昆蟲的行為并對害蟲發(fā)生產(chǎn)生影響[6]。另外,大氣CO2濃度升高后植物氣孔導(dǎo)度會有所變化,葉片蒸騰速率會相應(yīng)變化,導(dǎo)致葉片溫度發(fā)生變化,這些微氣象條件的變化也會影響昆蟲的行為和種群變化[6]。其他研究表明大氣 CO2濃度升高會使植物遭受蟲害的幾率增加[5,7,24]。大氣 CO2濃度升高后谷子玉米螟危害加重的機制還有待進(jìn)一步深入研究。未來氣候變化條件下谷子受到害蟲的危害可能會加重,這或?qū)⒃黾由a(chǎn)中蟲害防治方面的成本。
綜上研究結(jié)果表明:大氣 CO2濃度升高后,C4作物谷子光合作用和水分利用率增加,生長發(fā)育受到促進(jìn)。但由于后期玉米螟危害會加重,導(dǎo)致收獲后谷子地上部分生物量下降,產(chǎn)量無顯著變化。
References
[1]IPCC.Summary for policymakers[M]//Stocker T F,Qin D H,Plattner G K,et al.Climate Change 2013:The Physical Science Basis.Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom:Cambridge University Press,2013
[2]Leakey A D B,Uribelarrea M,Ainsworth E A,et al.Photosynthesis,productivity,and yield of maize are not affected by open-air elevation of CO2concentration in the absence of drought[J].Plant Physiology,2006,140(2):779–790
[3]李靖濤,居輝,王宏富,等.不同水分條件下CO2濃度升高對冬小麥碳氮轉(zhuǎn)運的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2015,23(8):954–963 Li J T,Ju H,Wang H F,et al.Effects of elevated CO2concentration on accumulation and translocation of carbon and nitrogen of winter wheat under different water conditions[J].Chinese Journal of Eco-Agriculture,2015,23(8):954–963
[4]郝興宇,李萍,楊宏斌,等.大氣CO2濃度升高對綠豆生長及 C、N吸收的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2011,19(4):794–798 Hao X Y,Li P,Yang H B,et al.Effects of enriched atmospheric CO2on the growth and uptake of N and C in mung bean[J].Chinese Journal of Eco-Agriculture,2011,19(4):794–798
[5]王曉偉,姬蘭柱,王桂清,等.大氣CO2濃度升高對森林食葉昆蟲的潛在影響[J].應(yīng)用生態(tài)學(xué)報,2006,17(4):720–726 Wang X W,Ji L Z,Wang G Q,et al.Potential effects of elevated carbon dioxide on forest leaf-feeding insects[J].Chinese Journal of Applied Ecology,2006,17(4):720–726
[6]Zavala J A,Nabity P D,DeLucia E H.An emerging understanding of mechanisms governing insect herbivory under elevated CO2[J].Annual Review of Entomology,2013,58(1):79–97
[7]戈峰,陳法軍,吳剛,等.我國主要類型昆蟲對CO2升高響應(yīng)的研究進(jìn)展[J].昆蟲知識,2010,47(2):229–235 Ge F,Chen F J,Wu G,et al.Research advance on the response of insects to elevated CO2in china[J].Chinese Bulletin of Entomology,2010,47(2):229–235
[8]Liu Z,Sun N,Yang S J,et al.Evolutionary transition from C3to C4photosynthesis and the route to C4rice[J].Biologia,2013,68(4):577–586
[9]Ghannoum O,Evans J R,von Caemmerer S.Chapter 8 nitrogen and water use efficiency of C4plants[M]//Raghavendra A S,Sage R F.C4Photosynthesis and RelatedCO2Concentrating Mechanisms.Netherlands:Springer,2011:129–146
[10]Duarte B,Santos D,Silva H,et al.Photochemical and biophysical feedbacks of C3and C4Mediterranean halophytes to atmospheric CO2enrichment confirmed by their stable isotope signatures[J].Plant Physiology and Biochemistry,2014,80:10–22
[11]胡曉雪,杜維俊,楊珍平,等.大氣CO2濃度和氣溫升高對野生大豆光合作用的影響[J].山西農(nóng)業(yè)科學(xué),2015,43(7):798–801 Hu X X,Du W J,Yang Z P,et al.Effect of elevated CO2concentration and increased temperature on the photosynthesis of wild soybean[J].Journal of Shanxi Agricultural Sciences,2015,43(7):798–801
[12]Rascher U,Bobich E G,Lin G H,et al.Functional diversity of photosynthesis during drought in a model tropical rainforest-the contributions of leaf area,photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange[J].Plant,Cell &Environment,2004,27(10):1239–1256
[13]Wand S J E,Midgley G F,Jones M H,et al.Responses of wild C4and C3grass (Poaceae) species to elevated atmospheric CO2concentration:A meta-analytic test of current theories and perceptions[J].Global Change Biology,1999,5(6):723–741
[14]Ainsworth E A,Long S P.What have we learned from15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis,canopy properties and plant production to rising CO2[J].New Phytologist,2005,165(2):351–372
[15]Ainsworth E A,Rogers A.The response of photosynthesis and stomatal conductance to rising [CO2]:Mechanisms and environmental interactions[J].Plant,Cell &Environment,2007,30(3):258–270
[16]Yu J J,Sun L H,Fan N L,et al.Physiological factors involved in positive effects of elevated carbon dioxide concentration on bermudagrass tolerance to salinity stress[J].Environmental and Experimental Botany,2015,115:20–27
[17]Vu J C V,Allen Jr L H.Growth at elevated CO2delays the adverse effects of drought stress on leaf photosynthesis of the C4sugarcane[J].Journal of Plant Physiology,2009,166(2):107–116
[18]Gao J,Han X,Seneweera S,et al.Leaf photosynthesis and yield components of mung bean under fully open-air elevated [CO2][J].Journal of Integrative Agriculture,2015,14(5):977–983
[19]Saxe H,Ellsworth D S,Heath J.Tree and forest functioning in an enriched CO2atmosphere[J].New Phytologist,1998,139(3):395–436
[20]Ellsworth D S.CO2enrichment in a maturing pine forest:Are CO2exchange and water status in the canopy affected[J].Plant,Cell &Environment,1999,22(5):461–472
[21]Hao X Y,Li P,Feng Y X,et al.Effects of fully open-air [CO2]elevation on leaf photosynthesis and ultrastructure of isatis indigotica fort[J].PLoS One,2013,8(9):e74600
[22]郝興宇,韓雪,李萍,等.大氣CO2濃度升高對綠豆葉片光合作用及葉綠素?zé)晒鈪?shù)的影響[J].應(yīng)用生態(tài)學(xué)報,2011,22(10):2776–2780 Hao X Y,Han X,Li P,et al.Effects of elevated atmospheric CO2concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters[J].Chinese Journal of Applied Ecology,2011,22(10):2776–2780
[23]張守仁.葉綠素?zé)晒鈩恿W(xué)參數(shù)的意義及討論[J].植物學(xué)通報,1999,16(4):444–448 Zhang S R.A discussion on chlorophyll fluorescence kinetics parameters and their significance[J].Chinese Bulletin of Botany,1999,16(4):444–448
[24]Niziolek O K,Berenbaum M R,DeLucia E H.Impact of elevated CO2and increased temperature on Japanese beetle herbivory[J].Insect Science,2013,20(4):513–523
Effect of elevated [CO2]on growth and attack of Asian corn*borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)
LIU Zijuan,LI Ping,ZONG Yuzheng,DONG Qi,HAO Xingyu**
(College of Agriculture,Shanxi Agricultural University,Taigu 030801,China)
Since industrial revolution,global atmospheric carbon dioxide (CO2) concentration ([CO2]) has risen from 280 μmol·mol–1to the current level of about392 μmol·mol–1.Foxtail millet (Setaria italica) is one of the most important C4crops in the semiarid regions of North China,yet there is lack of sufficient information on how the crop responds to climate change in China.Here,we studied the effects of elevated atmospheric [CO2]on foxtail millet in order to understand the changes in foxtail millet production under future CO2concentrations along with the response of C4crops to climate change.An open top chamber (OTC) system was used to test the effect of elevated [CO2]on foxtail millet.One OTC was used as the control chamber,which maintained the ambient [CO2].In another OTC,elevated [CO2](ambient [CO2]+ 200 μmol·mol–1) was constantlymaintained from crop emergence to harvest.Foxtail millet was sown in 40cm × 60cm pots (28cm depth).Ten plants were grown in each pot and10 pots were put in every OTC.Leaf photosynthesis was measured using a portable gas exchange system.Chlorophyll fuorescence parameter was assessed using a miniaturized pulse-amplitude modulated fuorescence analyzer with a leaf clip holder.The changes in morphological parameters,biomass,yield and damage of Asian corn borer (Ostrinia furnacalis) in response to elevated [CO2]were also determined.The results showed that elevated [CO2]increased the net photosynthesis rate (Pn),stomatal conductance (gs),transpiration rate (Tr) and water use efficiency (WUE) of foxtail millet by38.73%,27.53%,6.93% and 40.56%,respectively.The maximal photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) of foxtail millet leaf photosystem Ⅱ significantly decreased under elevated [CO2].Photosystem Ⅱ quantum yield (ΦPSII) and apparent electron transfer rate (ETR) increased,but the change in photochemical quenching destruction coefficient (qP) was not significant.Elevated [CO2]increased foxtail millet plant height,stem diameter and spikelet number by3.41%,13.28% and13.11%,respectively.Elevated [CO2]did not significantly affect leaf mass,stem mass,thousand-seed weight or the number of grain per plant at harvest,but the mass of panicle and aboveground per m2significantly decreased by12.8% and 7.44%,respectively.Furthermore,Asian corn borer damage aggravated at filling-stage and harvest under elevated [CO2].However,yield did not significantly change under elevated [CO2].In conclusion,elevated atmospheric [CO2]promoted the growth and development of foxtail millet,but increased the risk of insect damage.
Elevated CO2concentration;Foxtail millet;Photosynthesis;Yield;Asian corn borer
S162.5
:A
:1671-3990(2017)01-0055-06
10.13930/j.cnki.cjea.160687
劉紫娟,李萍,宗毓錚,董琦,郝興宇.大氣 CO2濃度升高對谷子生長發(fā)育及玉米螟發(fā)生的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2017,25(1):55-60
Liu Z J,Li P,Zong Y Z,Dong Q,Hao X Y.Effect of elevated [CO2]on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J].Chinese Journal of Eco-Agriculture,2017,25(1):55-60
* 國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)課題(2012CB955904)、國家科技支撐計劃項目(2013BAD11B03-8)、山西省科技攻關(guān)計劃項目(20150311006-2)、國家自然科學(xué)基金項目(31601212,31501276)和山西農(nóng)業(yè)大學(xué)博士引進(jìn)人才項目(2013YT05)資助
** 通訊作者:郝興宇,主要從事農(nóng)業(yè)氣象及氣候變化對農(nóng)業(yè)影響研究。E-mail:haoxingyu1976@126.com
劉紫娟,主要從事植物生理生態(tài)方面研究。E-mail:1019313693@qq.com
2016-08-07接受日期:2016-10-05
* This work was supported by the National Program of Key Basic Research Project of China (973 Program) (2012CB955904),the National Key Technology R&D Program of China (2013BAD11B03-8),Shanxi Province Scientific and Technological Projects (20150311006-2),the National Natural Science Foundation of China (31601212,31501276) and Shanxi Agricultural University Doctor Introduce Talents Projects (2013YT05).
** Corresponding author,E-mail:haoxingyu1976@126.com
Received Aug.7,2016;accepted Oct.5,2016
中國生態(tài)農(nóng)業(yè)學(xué)報(中英文)2017年1期