郭 靜,徐桂英,黃 昊,楊星九,高 苒
(北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物研究所,北京 100021)
綜述與專(zhuān)論
外泌體在腫瘤診療中的研究進(jìn)展
郭 靜,徐桂英,黃 昊,楊星九,高 苒
(北京協(xié)和醫(yī)學(xué)院比較醫(yī)學(xué)中心,中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物研究所,北京 100021)
外泌體是具有磷脂雙分子膜結(jié)構(gòu)的納米級(jí)囊泡,直徑在30~100 nm,廣泛分布于血清、唾液、尿液等體液中。外泌體中包含多種蛋白質(zhì)、核苷酸、甚至病毒等遺傳物質(zhì),廣泛參與細(xì)胞間物質(zhì)交換和信息傳遞。最近研究發(fā)現(xiàn),腫瘤細(xì)胞分泌的外泌體中mRNA和miRNA等遺傳物質(zhì)直接來(lái)自母體腫瘤細(xì)胞,此外外泌體攜帶的遺傳物質(zhì)可以直接作用于受體細(xì)胞,因此外泌體可能成為腫瘤診斷和治療的新靶點(diǎn)。本文對(duì)外泌體作為腫瘤診斷的標(biāo)志物以及外泌體對(duì)腫瘤治療的作用作一綜述。
外泌體;腫瘤;miRNA;診斷;治療
大多數(shù)細(xì)胞(包括正常細(xì)胞和病變細(xì)胞)都會(huì)向胞外和體液中釋放具有雙分子膜結(jié)構(gòu)的納米級(jí)囊泡。這些胞外囊泡按尺寸大小可分為三大類(lèi):外泌體(20~100 nm),微囊泡(100~1000 nm),凋亡小體(1~5 μm)。凋亡小體是細(xì)胞在凋亡或受機(jī)械壓力時(shí)為了排出來(lái)自凋亡細(xì)胞的有毒成分而形成的泡狀小體[1];微囊泡直接由細(xì)胞質(zhì)膜向胞外發(fā)芽而形成[2];外泌體是Trams等在1980年最先發(fā)現(xiàn)的[3],外泌體在尺寸、組成和功能等方面與微囊泡和凋亡小體差異很大,外泌體直徑在30~100 nm,外泌體中含有多種蛋白質(zhì),其中四跨膜蛋白是目前發(fā)現(xiàn)最大的蛋白家族,包括CD9和CD63等。外泌體不是直接來(lái)源于質(zhì)膜的發(fā)芽或脫落[4],而是多泡體(multivesicular body,MVB)在細(xì)胞內(nèi)吞過(guò)程中與細(xì)胞膜融合最終外排形成的囊泡[5]。外泌體廣泛存在于體液中,如血清、唾液、乳汁[6]、腦脊液[7]、尿液[8]、和精液[9]等體液中。外泌體在腫瘤微環(huán)境中含量尤其豐富,與腫瘤的發(fā)生發(fā)展、免疫逃逸、微環(huán)境建立密切相關(guān)[10]。大量研究表明,腫瘤細(xì)胞來(lái)源的外泌體可以應(yīng)用于腫瘤早期檢測(cè)和治療。本文對(duì)腫瘤細(xì)胞來(lái)源的外泌體在腫瘤早期檢測(cè)和外泌體在腫瘤治療方面的作用進(jìn)行概述。
1.1 外泌體的組成
外泌體包含多種蛋白質(zhì)、DNA、 mRNA、 miRNA,長(zhǎng)鏈非編碼RNA(long non-coding RNA, lncRNA),甚至病毒和朊病毒等遺傳物質(zhì)。不同細(xì)胞來(lái)源的外泌體擁有相同的一組蛋白或蛋白家族,這些蛋白可以作為外泌體的標(biāo)記物,包括膜相關(guān)蛋白,如四跨膜蛋白CD9、CD63、CD81和CD82;細(xì)胞質(zhì)蛋白,如Hsp 70和Hsp 90;細(xì)胞分選所需的運(yùn)輸?shù)鞍?,如Alix和TSG101;膜運(yùn)輸和融合蛋白,如Rab家族GTP酶和膜聯(lián)蛋白;而大部分外泌體包含熱休克蛋白和主要組織相容性復(fù)合物(MHC)I類(lèi)分子[4,11]。外泌體也包含各種特異性蛋白,取決于供體細(xì)胞和具體功能,如B淋巴細(xì)胞和樹(shù)突狀細(xì)胞分泌的外泌體包含MHC-I類(lèi)和MHC-II類(lèi)蛋白[12]。一些腫瘤細(xì)胞分泌的外泌體攜帶細(xì)胞粘附分子、金屬蛋白酶和組織特異性蛋白,與腫瘤的發(fā)生發(fā)展密切相關(guān)[13]。此外,脂類(lèi)分析顯示外泌體中還含有膽固醇和其他脂類(lèi)[4,14]。
除蛋白質(zhì)和脂質(zhì)體外,外泌體還包含大量的核苷酸,如mRNA、microRNA、lncRNA和DNA等。這些核苷酸能夠通過(guò)靶細(xì)胞膜的融合被受體細(xì)胞吸收,控制受體細(xì)胞的蛋白表達(dá)或激活信號(hào)通路[15]。目前,外泌體中大概有1639種mRNA被發(fā)現(xiàn),這個(gè)數(shù)量還在逐年上升。雖然細(xì)胞分泌的外泌體中含有大量的RNA,但是每一個(gè)外泌體中RNA分子的種類(lèi)是唯一的或不含有RNA分子[16]。研究發(fā)現(xiàn),鼠源外泌體中的RNA被運(yùn)送到人源細(xì)胞后,新的鼠蛋白會(huì)在受體細(xì)胞中發(fā)現(xiàn),說(shuō)明外泌體可以誘導(dǎo)受體細(xì)胞的轉(zhuǎn)錄過(guò)程[15]。
miRNA作為外泌體中重要的內(nèi)含物,是生理和病理過(guò)程中重要的調(diào)控者。研究發(fā)現(xiàn),腫瘤患者血清來(lái)源的外泌體中一些miRNA的表達(dá)明顯上調(diào),表明這些miRNA可以作為腫瘤早期診斷的標(biāo)志物[17]。
1.2 外泌體的分泌調(diào)節(jié)和提取
如今人們對(duì)外泌體的起源和分泌的分子機(jī)制知之甚少,但外泌體的分泌被多種信號(hào)分子精確控制[18]。通常,外泌體的分泌受多種因素的影響,如:神經(jīng)酰胺的合成、鈣信號(hào)、p53基因、酸中毒、高溫和外界應(yīng)力等[19-22]。外泌體的分泌主要受保守的細(xì)胞質(zhì)蛋白家族控制,如Rab家族GTP酶,尤其是Rab27a和Rab27b[23]。
超速離心能夠得到較高純度的外泌體是目前公認(rèn)的提取外泌體的有效方法[24],但是其過(guò)程復(fù)雜且耗時(shí)較長(zhǎng)。外泌體試劑盒在許多試驗(yàn)中證明了它的高效性,其操作簡(jiǎn)單方便無(wú)需超速離心,通過(guò)加入幾種試劑就能夠得到外泌體沉淀[25]。2009年,Logozzi M等人設(shè)計(jì)了一種內(nèi)部具有三明治結(jié)構(gòu)的酶聯(lián)反應(yīng)吸附試驗(yàn),應(yīng)用管家蛋白(CD63和Rab5b)的表達(dá)與腫瘤細(xì)胞關(guān)聯(lián)作為標(biāo)記物,成功捕獲并量化了血漿來(lái)源的外泌體[26]。同時(shí),發(fā)現(xiàn)相比較健康對(duì)照組腫瘤患者血漿中外泌體含量更高[27]。
1.3 外泌體的功能
隨著生態(tài)新城的建設(shè),規(guī)劃區(qū)域內(nèi)的耕地將被逐步開(kāi)發(fā)建設(shè),灌溉渠道亦將逐漸失去功能,但規(guī)劃區(qū)域下游尚有3萬(wàn)多畝耕地需引水灌溉??紤]到灌溉渠道水位高于周邊地面0.5~1 m,若保持現(xiàn)有灌溉渠系,不利于新城的市政基礎(chǔ)設(shè)施建設(shè),影響周邊區(qū)域環(huán)境。
一直以來(lái),外泌體被看做是細(xì)胞內(nèi)運(yùn)送“垃圾”的載體,允許細(xì)胞排出廢物,如對(duì)細(xì)胞分化不利的分子和對(duì)細(xì)胞有損傷的藥物分子[28],但研究發(fā)現(xiàn)外泌體是免疫表達(dá)重要的調(diào)控者和抗原遞呈者[29],之后外泌體的功能被廣泛研究。雖然外泌體在生理和病理方面作用的具體細(xì)節(jié)仍在研究,但其主要功能是通過(guò)自身膜蛋白與靶細(xì)胞識(shí)別并融合,進(jìn)而參與細(xì)胞間信息和物質(zhì)的傳遞,可以調(diào)節(jié)受體細(xì)胞的轉(zhuǎn)錄及表型[4,30]。外泌體是天然的細(xì)胞間RNA傳輸?shù)男攀?,Cossetti C等[31]構(gòu)建了一種人源黑色素瘤細(xì)胞移植瘤穩(wěn)定表達(dá)EGFR編碼質(zhì)粒的小鼠模型,發(fā)現(xiàn)EGFR編碼的RNA被外泌體運(yùn)送到血液,最終到達(dá)小鼠的精子中,說(shuō)明外泌體可以將遺傳信息運(yùn)送到受體細(xì)胞。
大量研究發(fā)現(xiàn),腫瘤細(xì)胞來(lái)源的外泌體中含有大量特異性miRNA,且生化性能穩(wěn)定易于保存,可以作為腫瘤早期診斷的標(biāo)志物[32]。 Madhavan 等[33]對(duì)胰腺癌患者血清來(lái)源的外泌體研究表明, 83%患者的外泌體中miR-1246、 miR-4644、miR-3976 和miR-4306表達(dá)水平明顯上調(diào),然而健康對(duì)照組則較少表達(dá)。Ogata-Kawata 等[34]研究發(fā)現(xiàn),結(jié)直腸癌患者血清來(lái)源的外泌體中l(wèi)et-7a、miR-1229、miR-1246、miR-150、miR-21、miR-223 和miR-23a的表達(dá)水平明顯高于健康對(duì)照組。I期結(jié)腸癌患者,miR-23a 和miR-1246 的表達(dá)具有較高的敏感度,分別達(dá)到95%和90%,手術(shù)后它們的表達(dá)水平明顯下調(diào)。
Melo等[35]發(fā)現(xiàn)腫瘤細(xì)胞來(lái)源的外泌體中磷脂酰肌醇聚糖-1(glypican-1, GPC1)屬于細(xì)胞表面蛋白多糖在外泌體中含量豐富,在患者血清和患癌小鼠體內(nèi)成功分離出含GPC1的外泌體與健康對(duì)照組相比其含量有明顯差異,利用蛋白多糖含量的高低,在胰腺癌中還成功區(qū)分了早期和晚期腫瘤,此外含GPC1的外泌體還攜帶特殊的KRAS突變基因,可以預(yù)測(cè)預(yù)后和輔助化療效果。Zhou等[36]同樣發(fā)現(xiàn)使用表面處理后的金屬納米顆??梢蕴禺愋缘淖R(shí)別外泌體,前列腺癌細(xì)胞分泌的外泌體表面蛋白能夠被這些特異性的納米顆粒識(shí)別,如上皮細(xì)胞粘附分子(Epithelial cell adhesion molecule,EpCAM),也可以成為新的腫瘤診斷標(biāo)記物。
3.1 促進(jìn)腫瘤細(xì)胞發(fā)展,侵襲和轉(zhuǎn)移
腫瘤轉(zhuǎn)移是大部分腫瘤治療失敗的主要原因。腫瘤轉(zhuǎn)移是一種過(guò)程,這個(gè)過(guò)程允許腫瘤細(xì)胞侵襲某些特定的正常人類(lèi)器官,形成新的轉(zhuǎn)移灶。腫瘤細(xì)胞來(lái)源的外泌體能夠提供自分泌、旁分泌、內(nèi)分泌和其它能夠促進(jìn)腫瘤生長(zhǎng)的信號(hào),促進(jìn)腫瘤的侵襲和轉(zhuǎn)移[37]。
Hong BS等[38]發(fā)現(xiàn)結(jié)直腸癌細(xì)胞來(lái)源的外泌體富含與細(xì)胞周期相關(guān)的mRNAs,能夠促進(jìn)內(nèi)皮細(xì)胞增殖,促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)移。研究發(fā)現(xiàn),肝癌細(xì)胞來(lái)源的外泌體通過(guò)調(diào)節(jié)β活化激酶-1及其相關(guān)信號(hào)通路的表達(dá)可以促進(jìn)肝癌細(xì)胞的生長(zhǎng)[39]。除腫瘤細(xì)胞外,其它細(xì)胞(巨噬細(xì)胞、人骨髓間充質(zhì)干細(xì)胞、肥大細(xì)胞)分泌的外泌體通過(guò)調(diào)控相應(yīng)的信號(hào)通路,同樣可以促進(jìn)腫瘤細(xì)胞增殖[40]。
轉(zhuǎn)移前腫瘤細(xì)胞會(huì)控制局部微環(huán)境,使其最有利于遷移和移植,其控制范圍甚至?xí)谶h(yuǎn)端病灶區(qū)[44],這個(gè)過(guò)程需要腫瘤基質(zhì)間復(fù)雜的相互作用,包括各種細(xì)胞間通信[37]。外泌體在腫瘤轉(zhuǎn)移中扮演重要的角色,它們會(huì)排出腫瘤抑制相關(guān)的miRNA,如miR23b,使受體區(qū)獲得轉(zhuǎn)移特性,促進(jìn)腫瘤細(xì)胞遠(yuǎn)端轉(zhuǎn)移[34]。黑色素瘤細(xì)胞分泌的外泌體能夠?yàn)槟[瘤轉(zhuǎn)移創(chuàng)造微環(huán)境,增強(qiáng)黑色素瘤細(xì)胞的遷移能力[45],此外,腫瘤細(xì)胞來(lái)源的外泌體能夠誘導(dǎo)宿主免疫應(yīng)答及其表型的轉(zhuǎn)化,在前哨淋巴結(jié)中建立一個(gè)利于腫瘤的環(huán)境[46]。雖然這些現(xiàn)象在不同的腫瘤模型中已經(jīng)被發(fā)現(xiàn),但是具體的可能機(jī)制仍然需要繼續(xù)探索。
3.2 促進(jìn)腫瘤的血管新生
腫瘤血管新生主要受缺氧誘導(dǎo)因子家族的調(diào)節(jié),腫瘤細(xì)胞中供給和消耗氧量的不平衡,使腫瘤細(xì)胞處于低氧環(huán)境,特別是腫瘤晚期患者[47],在低氧環(huán)境下腫瘤細(xì)胞會(huì)表現(xiàn)出更強(qiáng)的生長(zhǎng)能力,腫瘤細(xì)胞在低氧環(huán)境下能夠分泌更多外泌體,調(diào)節(jié)腫瘤微環(huán)境促進(jìn)腫瘤血管新生和轉(zhuǎn)移[48]。缺氧環(huán)境能夠促進(jìn)腫瘤細(xì)胞分泌外泌體,主要受低氧誘導(dǎo)因子的控制。當(dāng)乳腺癌細(xì)胞在低氧(1%氧含量)和嚴(yán)重缺氧(0.1%氧含量)時(shí),外泌體的獲得量分別提高32.3±4.8%和90.9±7.1%[49]。
外泌體促進(jìn)腫瘤血管新生,緩解腫瘤細(xì)胞的缺氧狀態(tài),然而在缺氧條件下形成的新血管是混亂的無(wú)序的,研究發(fā)現(xiàn),使腫瘤血管系統(tǒng)正?;梢愿纳苹熜Ч湍[瘤放射敏感度[50]。因此,抑制外泌體的分泌或轉(zhuǎn)移,可能會(huì)抑制或正?;[瘤血管新生。在臨床中,抑制血管新生可以通過(guò)調(diào)控一些靶向分子基因,如貝伐單抗(Bevacizumab, Avastin)。對(duì)于結(jié)直腸癌患者和晚期非小細(xì)胞肺癌患者,通過(guò)使用貝伐單抗使得化療效果能夠更加持久[51]。美國(guó)食品和藥品監(jiān)督管理局已經(jīng)批準(zhǔn),在轉(zhuǎn)移性結(jié)直腸癌和晚期非小細(xì)胞肺癌的治療中可以使用貝伐單抗,并且建議和鼓勵(lì)阻斷腫瘤細(xì)胞來(lái)源的外泌體對(duì)血管新生的促進(jìn)作用,從而改善腫瘤治療效果。
3.3 腫瘤免疫調(diào)節(jié)
腫瘤發(fā)展和轉(zhuǎn)移的過(guò)程中,大多數(shù)腫瘤細(xì)胞受到免疫系統(tǒng)排斥。抑制免疫反應(yīng)或免疫逃逸對(duì)于腫瘤發(fā)展至關(guān)重要,在這個(gè)過(guò)程中外泌體充當(dāng)重要的角色。大多數(shù)腫瘤患者存在免疫抑制和免疫缺陷,最近免疫療法在腫瘤治療中越來(lái)越受到重視,如惡性黑色素瘤,腎癌,肝癌甚至是非小細(xì)胞肺癌[52]。外泌體的另外一個(gè)應(yīng)用是作為腫瘤疫苗的開(kāi)發(fā),腫瘤細(xì)胞來(lái)源的外泌體通常包含一些腫瘤抗原可以使抗原遞呈細(xì)胞(antigen presenting cells, APC)激活,包括樹(shù)突狀細(xì)胞[53]。Escudier等[54]在15例轉(zhuǎn)移性黑色素瘤患者,采用自體樹(shù)突狀細(xì)胞來(lái)源的外泌體進(jìn)行治療,結(jié)果顯示外泌體沒(méi)有二級(jí)毒性和最大耐受劑量,表明了外泌體的安全性。研究發(fā)現(xiàn)樹(shù)突狀細(xì)胞來(lái)源的外泌體能夠顯著增加NK細(xì)胞的循環(huán)數(shù)量,且在一半患者體內(nèi)上調(diào)類(lèi)分子相關(guān)蛋白NKG2D的表達(dá),進(jìn)而增強(qiáng)NK細(xì)胞的抗腫瘤活性[55]。
另外一個(gè)類(lèi)似的臨床研究,在非小細(xì)胞肺癌患者的治療中,應(yīng)用自體樹(shù)突狀細(xì)胞(dendritic cells, DC)來(lái)源的外泌體可以運(yùn)載黑色素瘤抗原基因(melanoma antigen gene, MAGE),這項(xiàng)臨床研究表明,外泌體制得的疫苗具有可行性和有效性[56]。Dai等[57]發(fā)現(xiàn),腹水來(lái)源的外泌體結(jié)合粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)或單獨(dú)使用外泌體治療40位結(jié)直腸癌患者,結(jié)果發(fā)現(xiàn)兩種治療方法都是安全且可行的,因?yàn)橥饷隗w結(jié)合GM-CSF能夠誘導(dǎo)T淋巴細(xì)胞免疫反應(yīng)。同時(shí)研究表明,腫瘤細(xì)胞來(lái)源的外泌體能夠促進(jìn)免疫抑制[58]。如OVA(ovalbumin)表達(dá)的黑色素瘤細(xì)胞,包含所有的OVA蛋白,能夠抑制OVA特異性的免疫反應(yīng)[59]。
腫瘤細(xì)胞來(lái)源的外泌體可以抑制多種淋巴細(xì)胞的免疫反應(yīng),也能夠通過(guò)下調(diào)NKG2D基因的表達(dá)引起免疫逃逸[55,60]。Clayton研究發(fā)現(xiàn),NKG2D的下調(diào)是由于外泌體遞送轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor B1, TGFβ1)到CD8+T細(xì)胞或NK細(xì)胞的結(jié)果,各種腫瘤細(xì)胞來(lái)源的外泌體攜帶有NKG2D配體,這些外泌體能夠控制NKG2D在NK細(xì)胞和CD8+ T細(xì)胞的表達(dá),因此會(huì)引起免疫逃逸[61]。雖然很多研究表明,腫瘤細(xì)胞分泌的外泌體抑制特定抗原和非特異性抗腫瘤反應(yīng),但其同樣能夠激活免疫系統(tǒng)[4,62]。
3.4 腫瘤化療的增敏作用
外泌體可以增強(qiáng)腫瘤耐藥,通過(guò)改變腫瘤局部PH值或信號(hào)通路,可以影響外泌體的分泌,進(jìn)而提高化療藥物的效果。由于腫瘤細(xì)胞來(lái)源的外泌體容易靶向腫瘤細(xì)胞,可用外泌體投放化療藥物、活性小分子和基因治療劑[63]。研究發(fā)現(xiàn),表面修飾后的外泌體可靶向腫瘤細(xì)胞,同時(shí)可以運(yùn)送阿霉素等藥物[64]。應(yīng)用外泌體投放microRNA可以增強(qiáng)腫瘤對(duì)化療藥物的敏感度,研究發(fā)現(xiàn),miR-15、miR-16、miR-342和anti-miR-221/22均可增強(qiáng)腫瘤細(xì)胞對(duì)于他莫昔芬的敏感度;其中過(guò)表達(dá)miR-15和miR-16可以恢復(fù)表達(dá)Bcl-2抗凋亡基因[65]。過(guò)表達(dá)miR-342可以增加他莫昔芬誘導(dǎo)的凋亡[66]。吉非替尼的在腫瘤治療時(shí)的靶標(biāo)是PI3K通路,microRNA家族的Let-7可抑制這個(gè)信號(hào)通路,進(jìn)而增強(qiáng)腫瘤細(xì)胞對(duì)吉非替尼的敏感度[67]。Anti-miR-135可以增強(qiáng)肺癌異種移植瘤細(xì)胞對(duì)紫杉醇的敏感度[68]。miR-34在肺癌、前列腺癌和胰腺癌等腫瘤中表達(dá)較低,可以使用miR-34替代療法,起到對(duì)常規(guī)化療藥物的增敏作用[69]。
3.5 腫瘤治療中的應(yīng)用
外泌體的主要功能就是遞送各種生物分子,包括蛋白質(zhì)、多肽配體、DNA和RNAs。當(dāng)外泌體有計(jì)劃或有選擇性的包裹特殊生物活性分子時(shí),可以用于投放抑癌分子或化療藥物。如人第10號(hào)染色體缺失的磷酸酶-張力蛋白同源的蛋白(phosphatase and tensin homolog deleted on chromosome ten, PTEN,一種腫瘤抑制蛋白),被發(fā)現(xiàn)存在于鼠胚胎成纖維細(xì)胞和人胚胎腎臟細(xì)胞來(lái)源的外泌體中。PTEN能夠被受體細(xì)胞吞噬并抑制細(xì)胞增殖[70]。在遺傳工程中,外泌體可以運(yùn)送自殺式mRNA或蛋白質(zhì),也可以運(yùn)送前體藥物在腫瘤組織中轉(zhuǎn)化成5-氟 尿嘧啶(5-FU),能夠誘導(dǎo)腫瘤細(xì)胞凋亡[71]。還有學(xué)者發(fā)現(xiàn),修飾后的外泌體能夠有效的遞送let-7a miRNA到乳腺癌細(xì)胞,使表皮生長(zhǎng)因子表達(dá)[72]。然而,所有的應(yīng)用都僅處于實(shí)驗(yàn)階段,外泌體在臨床上的應(yīng)用還需要進(jìn)一步探索。
腫瘤細(xì)胞來(lái)源的外泌體含有腫瘤活化分子,這些分子可以引起宿主的免疫反應(yīng)參與腫瘤治療。因此,開(kāi)發(fā)靶向性、功能性的外泌體對(duì)腫瘤治療具有深遠(yuǎn)的意義。在1989年,Lentz MR發(fā)現(xiàn),使用血液提取法,降低血液中外泌體的含量,6/16患者的腫瘤體積減少50%以上[73]。Aethlon Medical設(shè)計(jì)了一種血液過(guò)濾治療方案,叫做自適應(yīng)親和力平臺(tái)技術(shù)系統(tǒng)(adaptive dialysis-like affinity platform technology, Aethlon ADAPT),這個(gè)系統(tǒng)能夠捕獲大量的抗體和其他類(lèi)似物質(zhì),如核酸適配體、蛋白配體和外泌體[74]。除了血液凈化,質(zhì)子泵抑制劑(Proton pump inhibitors, PPIs)同樣能夠改善低PH值條件的腫瘤細(xì)胞,在活體內(nèi)用PPI預(yù)處理能夠減少腫瘤細(xì)胞來(lái)源的外泌體在血漿中的含量,因此PPI很有可能成為抑制腫瘤細(xì)胞分泌外泌體的有效方法[75]。
一直以來(lái),對(duì)外泌體的研究主要集中在腫瘤疫苗方面,但外泌體對(duì)腫瘤的具體作用及其調(diào)節(jié)機(jī)制尚不明確仍需深層次研究。大量研究表明,外泌體中miRNA在腫瘤的發(fā)生發(fā)展中具有極其重要的作用,其作為腫瘤早期診斷標(biāo)志物已經(jīng)得到廣泛研究,但外泌體中miRNA表達(dá)譜尚不完善、對(duì)于特定腫瘤尚未找到特異性的單個(gè)或多個(gè)miRNA,同時(shí)對(duì)于腫瘤細(xì)胞選擇性包裹miRNA并釋放外泌體以及受體細(xì)胞攝取的外泌體的作用機(jī)制目前缺乏有力的理論支撐。由于外泌體與受體細(xì)胞具有很好的特異性結(jié)合,使其成為理想的藥物載體,蛋白質(zhì)等大分子物質(zhì)可以裝載到外泌體內(nèi)[76]。研究人員已成功將轉(zhuǎn)載藥物的外泌體應(yīng)用于臨床治療,然而外泌體如何影響腫瘤環(huán)境中遠(yuǎn)端細(xì)胞的增殖、生長(zhǎng)知之甚少,需要不斷探索。外泌體作為具有細(xì)胞間物質(zhì)和信息傳遞功能的活性分子,學(xué)者們正在不斷揭開(kāi)其在腫瘤發(fā)生發(fā)展過(guò)程中的神秘面紗。
[1] Wickman G, Julian L, Olson M. How apoptotic cells aid in the removal of their own cold dead bodies [J]. Cell Death Differ, 2012, 19(5): 735-742.
[2] Heijnen HF, Schiel AE, Fijnheer R,etal. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alphagranules [J]. Blood, 1999; 94(11): 3791-3799.
[3] Trams EG, Lauter CJ, Norman Salem J, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles[J]. Biochim Biophys Acta (BBA)-Biomembranes, 1981, 645(1): 63-70.
[4] Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593.
[5] Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor [J]. Cell, 1983, 33(3): 967-978.
[6] Lasser C, Alikhani VS, Ekstrom K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages [J]. J Transl Med, 2011, 9: 9.
[7] Street JM, Barran PE, Mackay CL, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid [J]. J Transl Med, 2012; 10: 5.
[8] Pisitkun T, Shen RF and Knepper MA. Identification and proteomic profiling of exosomes in human urine [J]. Proc Natl Acad Sci USA, 2004, 101(36): 13368-13373.
[9] Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions [J]. Nucleic Acids Res, 2014: 42(11): 7290-304.
[10] Yu S, Cao H, Shen B, et al. Tumor-derived exosomes in cancer progression and treatment failure[J]. Oncotarget, 2015, 6(35): 37151-37168.
[11] Mathivanan S, Fahner CJ, Reid GE et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids [J]. Nucleic Acids Res, 2012, 40(D1):D1241-D1244.
[12] Denzer K, Kleijmeer MJ, Heijnen HF, et al. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device [J]. J Cell Sci, 2000, 113 (19): 3365-3374.
[13] Liang B, Peng P, Chen S, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes [J]. J Proteomics, 2013, 80: 171-182.
[14] Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia [J]. J Biol Chem, 2012, 287(14): 10977-10989.
[15] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9(6): 654-659.
[16] Li M, Zeringer E, Barta T, et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers [J]. Philos Transact Royal Soc B: Biol Sci, 2014, 369(1652): 20130502.
[17] Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma[J]. Cancer, 2013, 119(6):1159-1167.
[18] Keller S, Sanderson MP, Stoeck A et al. Exosomes: from biogenesis and secretion to biological function [J]. Immunol Lett, 2006, 107(2): 102-108.
[19] Park JE, Tan HS, Datta A, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes [J]. Mol Cell Proteomics, 2010, 9(6): 1085-1099.
[20] Savina A, Furlan M, Vidal M,etal. Exosome release is regulated by a calcium-dependent mechanism in K562 cells [J]. J Biol Chem, 2003, 278(22): 20083-20090.
[21] Lespagnol A, Duflaut D, Beekman C, et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice [J]. Cell Death Differ, 2008, 15(11): 1723-1733.
[22] Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes [J]. Science, 2008, 319(5867): 1244-1247.
[23] Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway [J]. Nat Cell Biol, 2010, 12(1): 19-30.
[24] Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids [M]. Curr Protoc Cell Biol, 2006, Chapter 3: Unit 3.22.
[25] Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Human saliva-derived exosomes: comparing methods of isolation [J]. J Histochem Cytochem, 2015, 63(3): 181-189.
[26] Logozzi M, De Milito A, Lugini L, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients [J]. PloS One, 2009, 4(4): e5219.
[27] Hong CS, Muller L, Boyiadzis M, et al. Isolation and characterization of CD34+blast-derived exosomes in acute myeloid leukemia [J]. PLoS One, 2014, 9(8): e103310.
[28] Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells [J]. Blood, 2004, 104(10): 3257-3266.
[29] Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function [J]. Nat Rev Immunol, 2002, 2(8): 569-579.
[30] Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer [J]. Int J Mol Sci, 2013, 14(7): 14240-14269.
[31] Cossetti C, Lugini L, Astrologo L, et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes [J]. PloS One, 2014; 9(7): e101629.
[32] Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med (Berl ), 2013, 91(4): 431-437.
[33] Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity [J]. Int J Cancer, 2015, 136(11): 2616-2627.
[34] Ogata-Kawata H, Izumiya M, Kurioka D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer [J]. PLoS One, 2014, 9(4): e92921.
[35] Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer [J]. Nature, 2015, 523(7559): 177-182.
[36] Zhou YG, Mohamadi RM, Poudineh M, et al. Interrogating circulating microsomes and exosomes using metal nanoparticles [J]. Small (Weinheim an der Bergstrasse, Germany), 2016, 12(6): 727-32.
[37] Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization [J]. Nat Rev Cancer, 2009, 9(4): 274-284.
[38] Hong BS, Cho J-H, Kim H, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells [J]. BMC Genomics, 2009, 10(1): 556.
[39] Kogure T, Lin WL, Yan IK, et al. Intercellular nanovesicle-mediated microRNA transfer: A mechanism of environmental modulation of hepatocellular cancer cell growth [J]. Hepatology, 2011, 54(4): 1237-1248.
[40] Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo [J]. Cancer Lett, 2012, 315(1): 28-37.
[41] Atay S, Banskota S, Crow J, et al. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion [J]. Proc Natl Acad Sci U S A, 2014, 111(2): 711-716.
[42] Aga M, Bentz GL, Raffa S, et al. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes [J]. Oncogene, 2014, 33(37): 4613-4622.
[43] Demory Beckler M, Higginbotham JN, Franklin JL, et al. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS [J]. Mol Cell Proteomics, 2013, 12(2): 343-355.
[44] Saleem SN, Abdel-Mageed AB. Tumor-derived exosomes in oncogenic reprogramming and cancer progression [J]. Cell Mol Life Sci, 2015; 72(1): 1-10.
[45] Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis [J]. Cancer Res, 2011, 71(11): 3792-3801.
[46] Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver [J]. Nat Cell Biol, 2015, 17(6): 816-26.
[47] Harris AL. Hypoxia—a key regulatory factor in tumour growth [J]. Nat Rev Cancer, 2002, 2(1): 38-47.
[48] Wang T, Gilkes DM, Takano N, et al. Hypoxia inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis [J]. Proc Nat Acad Sci, 2014, 111(31): E3234-E3242.
[49] Umezu T, Tadokoro H, Azuma K, et al. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1 [J]. Blood, 2014, 124(25): 3748-3757.
[50] Poulsen HS, Urup T, Michaelsen SR, et al. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients [J]. Cancer Manag Res, 2014, 6: 373-387.
[51] Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer [J]. N Engl J Med, 2006, 355(24): 2542-2550.
[52] Hoffmann TK, Dworacki G, Tsukihiro T, et al. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance [J]. Clin Cancer Res, 2002, 8(8): 2553-2562.
[53] Andre F, Schartz NE, Movassagh M, et al. Malignant effusions and immunogenic tumour derived exosomes [J]. Lancet, 2002, 360(9329): 295-305.
[54] Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial [J]. J Transl Med, 2005, 3(1): 10.
[55] Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha [J]. PLoS One, 2009, 4(3): e4942.
[56] Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced nonsmall cell lung cancer [J]. J Transl Med, 2005, 3(1): 9.
[57] Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer [J]. Mol Ther, 2008, 16(4): 782-790.
[58] Filipazzi P, Burdek M, Villa A, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression [J]. Semin Cancer Biol (Elsevier), 2012, 22(4):342-349.
[59] Yang C, Kim SH, Bianco NR, et al. Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model [J]. PLoS One, 2011, 6(8): e22517.
[60] Clayton A, Tabi Z. Exosomes and the MICA-NKG2D system in cancer [J]. Blood Cells Mol Dis, 2005, 34(3) :206-213.
[61] Clayton A, Mitchell JP, Court J, et al. Human tumor-derived exosomes down-modulate NKG2D expression [J]. J Immunol, 2008, 180(11): 7249-7258.
[62] Gastpar R, Gehrmann M, Bausero MA, et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells [J]. Cancer Res, 2005, 65(12): 5238-5247.
[63] 張敏, 張晨光, 丁衛(wèi). 外泌體及其在腫瘤診斷中的意義[J]. 生理科學(xué)進(jìn)展, 2014, 45(5): 372-378.
[64] Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy [J]. Biomaterials, 2014, 35(7): 2383-2390.
[65] Jeon HM, Sohn YW, Oh SY, et al. Id4 imparts chemoresistance and cancer stemness to glioma cells by derepressing mir-9-mediated suppression of Sox2 [J]. Cancer Res, 2011, 71(9): 3410-3421.
[66] Cittelly DM, Das PM, Salvo VA, et al. Oncogenic Her2 delta 16 suppresses mir-15a /6 and deregulates Bcl-2 to promote endocrine resistance of breast tumors [J]. Carcinogenesis, 2010, 31(12): 2049-2057.
[67] Sebio A, Pare L, Paez D, et al. The Lcs6 polymorphism in the binding site of let-7 microRNA to the KRAS 3’-untranslated region: its role in the efficacy of anti-EGFR-based therapy in metastatic colorectal cancer patients [J]. Pharmacogenet Genomics, 2013, 23(3):142-147.
[68] Holleman A, Chung I, Olsen R R, et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo [J]. Oncogene, 2011, 30(43): 4386-4398.
[69] Han S Y, Zhao M B, Zhuang G B, et al. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells [J]. Lung Cancer, 2012, 75(1): 30-37.
[70] Putz U, Howitt J, Doan A, et al. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells [J]. Sci Signaling, 2012, 5(243): ra70.
[71] Mizrak A, Bolukbasi MF, Ozdener GB, et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth [J]. Mol Ther, 2013, 21(1): 101-108.
[72] Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells [J]. Mol Ther, 2013, 21(1): 185-191.
[73] Lentz MR. Continuous whole blood UltraPheresis procedure in patients with metastatic cancer[J]. J Biol Response Mod,1989, 8(5): 511-527.
[74] Marleau AM, Chen C-S, Joyce JA et al. Exosome removal as a therapeutic adjuvant in cancer [J]. J Transl Med, 2012, 10(1): 134.
[75] Federici C, Petrucci F, Caimi S, et al. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin[J]. PloS One, 2014, 9(2): e88193.
[76] Lai RC, Yeo RW, Tan KH, et al. Exosomes for drug delivery - a novel application for the mesenchymal stem cell [J]. Biotechnol Adv, 2013, 31(5): 543-551.
Research progress of exosomes in tumor diagnosis and treatment
GUO Jing, XUE Gui-ying, HUANG Hao, YANG Xing-jiu,GAO Ran
(Comparative Medicine Center, Peking Union College (PUMC) &Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing 100021, China)
Exosomes have a size of 30-100 nm and membrane-bound nanovesicles, which is widely present in nearly all human body fluids, such as serum, saliva and urine, etc. Exosomes contain multiple proteins, nucleotides, and even viruses, and play an important role in the substance exchange and information transmission between cells. Recently, research found that genetic materials secreted from exosomes such as mRNA and miRNA were directly derived from their parent tumor cells, and they can directly effect on the receptor cells. Therefore, exosomes may become a new target for diagnosis and treatment of cancer. In this review, we described exosomes as a marker in early diagnosis of cancer, and its applications in cancer therapy.
Exosome;Cancer;miRNA; Diagnosis; Treatment
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)。
郭靜(1987-),男,博士研究生,主要研究方向:外泌體與腫瘤,E-mail: guojing5730375@163.com。
高苒(1980-),女,副研究員,研究方向:比較醫(yī)學(xué),E-mail: gaoran26@hotmail.com。
R-33
A
1671-7856(2017) 02-0086-07
10.3969.j.issn.1671-7856. 2017.02.016
2016-07-25