• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      水與MOR分子篩復(fù)合環(huán)境對(duì)布洛芬分子手性轉(zhuǎn)變反應(yīng)共催化的理論研究

      2017-01-16 08:40:39孫永清王佐成湯得懷
      關(guān)鍵詞:限域能壘過渡態(tài)

      孫永清,王佐成,高 峰,湯得懷

      (1. 白城技師學(xué)院 基礎(chǔ)部,白城 137000; 2. 白城師范學(xué)院 物理與電子信息學(xué)院,白城 137000;3. 白城師范學(xué)院 計(jì)算機(jī)科學(xué)學(xué)院,白城 137000)

      水與MOR分子篩復(fù)合環(huán)境對(duì)布洛芬分子手性轉(zhuǎn)變反應(yīng)共催化的理論研究

      孫永清1,王佐成2,高 峰2,湯得懷3

      (1. 白城技師學(xué)院 基礎(chǔ)部,白城 137000; 2. 白城師范學(xué)院 物理與電子信息學(xué)院,白城 137000;3. 白城師范學(xué)院 計(jì)算機(jī)科學(xué)學(xué)院,白城 137000)

      采用量子力學(xué)與分子力學(xué)組合的ONIOM方法,研究布洛芬限域在水與MOR分子篩復(fù)合環(huán)境的手性轉(zhuǎn)變.結(jié)構(gòu)研究表明: 1,2個(gè)和3個(gè)水分子助氫遷移反應(yīng)的過渡態(tài)分子氫鍵鍵角不斷增大,3個(gè)水分子助氫遷移反應(yīng)的10元環(huán)過渡態(tài)結(jié)構(gòu)明顯偏離平面.反應(yīng)通道研究發(fā)現(xiàn): 標(biāo)題反應(yīng)有a1,a2和b三個(gè)通道.a1和a2是經(jīng)過水助羧基內(nèi)質(zhì)子遷移和質(zhì)子以新羰基氧為橋從手性碳向苯環(huán)遷移的共同歷程后,再分別直接遷移到手性碳的另一側(cè)和以新羰基氧為橋遷移到手性碳的另一側(cè);b是水助質(zhì)子以羰基氧為橋從手性碳的一側(cè)遷移到另一側(cè).勢(shì)能面計(jì)算表明,a2是主反應(yīng)通道,在2個(gè)水分子助質(zhì)子遷移反應(yīng)時(shí),決速步吉布斯自由能壘被降到最低值124.3kJ·mol-1,與裸反應(yīng)、限域在MOR分子篩和限域在水環(huán)境的此通道決速步能壘287.1,263.4kJ·mol-1和152.2kJ·mol-1相比較,均有明顯降低.結(jié)果表明: 水與MOR分子篩復(fù)合環(huán)境對(duì)布洛芬手性轉(zhuǎn)變具有較好的共催化作用,可作為理想的實(shí)現(xiàn)布洛芬手性轉(zhuǎn)變的納米反應(yīng)器.

      MOR分子篩; 布洛芬; 手性轉(zhuǎn)變; 密度泛函; 過渡態(tài)

      布洛芬(Ibuprofen,Ibu)具有手性,有左布洛芬(S-Ibu)和右布洛芬(R-Ibu)兩種異構(gòu)體.醫(yī)學(xué)上廣泛使用Ibu治療強(qiáng)直脊椎炎、風(fēng)濕關(guān)節(jié)炎和神經(jīng)炎等.人們對(duì)Ibu已經(jīng)進(jìn)行了廣泛的研究,文獻(xiàn)[1]進(jìn)行了外消旋Ibu的動(dòng)力學(xué)拆分模擬和實(shí)驗(yàn)的研究.文獻(xiàn)[2-4]的研究表明,R-Ibu的活性是S-Ibu的160倍,其療效和安全性也遠(yuǎn)遠(yuǎn)優(yōu)于S-Ibu,在生命體內(nèi)可以緩慢實(shí)現(xiàn)S-Ibu的旋光異構(gòu).

      文獻(xiàn)[5-6]的研究表明,Ibu分子的手性轉(zhuǎn)變裸反應(yīng)有8條路徑,裸反應(yīng)決速步質(zhì)子遷移反應(yīng)的能壘是287.1kJ·mol-1,2個(gè)水分子助決速步質(zhì)子遷移反應(yīng)的能壘為152.2kJ·mol-1.文獻(xiàn)[7]的研究表明,扶椅型SWCNT對(duì)Ibu分子手性轉(zhuǎn)變的限域影響是,隨著SWCNT直徑的減小,手性轉(zhuǎn)變反應(yīng)路徑由2條變?yōu)?條,決速步能壘逐漸變小.

      目前臨床上使用的Ibu多數(shù)為消旋體,單一手性的R-Ibu的價(jià)格及其昂貴[8],尋找一個(gè)既經(jīng)濟(jì)又環(huán)保的方法使S-Ibu轉(zhuǎn)化為R-Ibu十分重要.分子篩的價(jià)格低廉和綠色環(huán)保,使利用分子篩實(shí)現(xiàn)對(duì)Ibu分子手性轉(zhuǎn)變反應(yīng)的催化具有實(shí)際意義.只是利用MOR分子篩實(shí)現(xiàn)布洛芬的手性轉(zhuǎn)變反應(yīng)還不具有可行性.文獻(xiàn)[9-10]研究了α-丙氨酸限域在SWBNNT(9,9)和SWBNNT(10,6)分別與水構(gòu)成的復(fù)合環(huán)境下的手性轉(zhuǎn)變機(jī)制,研究結(jié)果表明,納米管的限域和水分子的共催化作用使反應(yīng)能壘明顯降低.基于文獻(xiàn)[9-10]的研究經(jīng)驗(yàn),本工作研究了全硅MOR分子篩與水的復(fù)合環(huán)境對(duì)Ibu分子手性轉(zhuǎn)變反應(yīng)的共催化機(jī)制.

      1 模型的選取與計(jì)算研究方法

      MOR分子篩含有12元環(huán)和8元環(huán)兩種一維主直孔道,12元環(huán)窗口直徑為0.65nm×0.70nm,八元環(huán)窗口直徑為0.26nm×0.57nm.Ibu與3個(gè)水分子以氫鍵形成的水合分子的最大橫向線度為0.60nm×0.53nm,只能進(jìn)入12元環(huán)孔道,因此,將MOR分子篩的12元環(huán)孔道作為限域環(huán)境.Ibu與3個(gè)水分子以氫鍵形成的水合分子的最大縱向線度為1.369nm,為充分地考慮孔道限域效應(yīng),采用周期性模型把含有12元環(huán)和部分8元環(huán)直孔道分子篩骨架包括進(jìn)來,用含有240T的簇模型作為限域催化環(huán)境(此模型的長度是3.2nm左右),用氫原子飽和模型截?cái)嗵幍墓柙樱压铓滏I長固定為1.46nm,如圖1(a)所示.

      采用QM/MM組合的ONIOM(Our Own N-layered Integrated molecule Orbit and Molecule Mechanics)方法[11],研究標(biāo)題反應(yīng)機(jī)制.將分子篩與其內(nèi)部反應(yīng)物的水合物等形成的包結(jié)物分為兩層處理: 內(nèi)層反應(yīng)底物為QM區(qū),考慮到分子篩與內(nèi)部反應(yīng)底物的長程作用,用CAM(Coulomb-attenuated hybrid exchange-correlation functional)結(jié)合DFT的長程校正泛函CAM-B3LYP[12-13]方法,基組采用6-31G(d,p);外層分子篩為MM區(qū),采用分子力學(xué)的UFF(Universal Force Field)力場(chǎng)[14]處理,為不使分子篩骨架形變,把外層固定,全參數(shù)優(yōu)化穩(wěn)定點(diǎn)和過渡態(tài)[15-16].對(duì)QM區(qū)采用6-311++G(2df,pd)基組計(jì)算各包結(jié)物的高水平單點(diǎn)能,利用Gtotal=ESP+Gtc(ESP和Gtc分別為高水平的單點(diǎn)能和吉布斯自由能熱校正)計(jì)算高水平的總吉布斯自由能,繪制反應(yīng)過程的吉布斯自由能勢(shì)能面.通過對(duì)過渡態(tài)進(jìn)行頻率分析和內(nèi)稟反應(yīng)坐標(biāo)(IRC)計(jì)算[17],確認(rèn)過渡態(tài)的可靠性.Ibu分子與1個(gè)水分子以氫鍵形成的復(fù)合分子限域在MOR分子篩內(nèi)的包結(jié)物記為Ibu·1H2O@MOR,其它體系的表示類似.文中計(jì)算均采用Gaussian 09軟件包[18]完成.

      2 結(jié)果與討論

      在B3LYP/6-31+G(d,p)水平,優(yōu)化的單體S型和R型Ibu的幾何構(gòu)型[5],見圖1(b)和(c).

      通過對(duì)圖1的分析與計(jì)算研究發(fā)現(xiàn),限域在MOR分子篩與水復(fù)合環(huán)境下,S-Ibu的手性轉(zhuǎn)變反應(yīng)分為3個(gè)通道a1,a2和b.a1和a2的前三步基元反應(yīng)相同,是水助羧基內(nèi)質(zhì)子遷移,形成新的羰基,然后水助質(zhì)子以新的羰基氧為橋從手性碳遷移到苯環(huán).a1的后續(xù)過程是,水助質(zhì)子從苯環(huán)直接遷移到手性碳的另一側(cè),實(shí)現(xiàn)手性轉(zhuǎn)變;a2的后續(xù)過程是,水助質(zhì)子以新羰基氧為橋從苯環(huán)遷移到手性碳的另一側(cè),實(shí)現(xiàn)手性轉(zhuǎn)變.b通道是水助手性碳上的質(zhì)子直接以羰基氧為橋,從手性碳的一側(cè)遷移到另一側(cè),實(shí)現(xiàn)手性轉(zhuǎn)變.水環(huán)境下,可以有很多水分子以氫鍵的形式與反應(yīng)過程中的駐點(diǎn)形成水合分子,計(jì)算表明,質(zhì)子遷移反應(yīng)能壘只與參與反應(yīng)的水分子個(gè)數(shù)有關(guān).因此,我們只討論參與反應(yīng)的水分子個(gè)數(shù)不同的情形.研究發(fā)現(xiàn),由于分子篩12元環(huán)孔道的限制,只能是1,2個(gè)和3個(gè)水分子作水助質(zhì)子遷移反應(yīng)的媒介.下面對(duì)3個(gè)通道上的反應(yīng)機(jī)理分別進(jìn)行討論.

      2.1 限域在MOR分子篩與水復(fù)合環(huán)境下S-Ibu在a1和a2通道的手性轉(zhuǎn)變反應(yīng)機(jī)理

      1水助a1和a2的反應(yīng)歷程見圖2A(第742頁),共同的反應(yīng)歷程見圖2A的X,篇幅所限只對(duì)前2個(gè)基元反應(yīng)機(jī)理做詳細(xì)討論.首先是第1基元反應(yīng),羧基內(nèi)質(zhì)子遷移.S-Ibu與羧基右側(cè)的1個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)S-Ibu·1H2O@MOR,經(jīng)過1水助羧基內(nèi)氫遷移的6元環(huán)過渡態(tài)a1(a2)STS1·1H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)SINT1·1H2O(m)@MOR(此處m表示水分子在羧基右側(cè),后面雷同的表示不再予以解釋),738O成為新羰基.此過程反應(yīng)物S-Ibu·1H2O的741H與742O的距離是0.17078nm,743H與739O的距離是0.19087nm,水分子與S-Ibu在羧基的方向以強(qiáng)氫鍵結(jié)合.過渡態(tài)STS1·1H2O的氫鍵鍵角738O-741H-742O和742O-743H-739O都是153.5°,距離平角180.0°相差很大,氫鍵較弱,這說明六元環(huán)結(jié)構(gòu)過渡態(tài)STS1·1H2O不穩(wěn)定,會(huì)產(chǎn)生較大的能壘.接著是第2基元反應(yīng),質(zhì)子從手性碳向新羰基的遷移過程.SINT1與其740H和738O前面的1個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)SINT1·1H2O(n)@MOR(此處n表示水分子在740H和738O的前面,后面雷同的表示不再予以解釋),經(jīng)1個(gè)水分子助手性碳上的H向新羰基O遷移的6元環(huán)過渡態(tài)a1(a2)TS2·1H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)INT2·1H2O(m)@MOR,此時(shí)INT2的羧基質(zhì)子化.TS2·1H2O的氫鍵鍵角720C-740H-742O和742O-743H-738O分別是149.8°和154.3°,距離平角180.0°相差更大,氫鍵更弱,這說明六元環(huán)結(jié)構(gòu)過渡態(tài)TS2·1H2O更不穩(wěn)定,會(huì)產(chǎn)生更大的能壘;反應(yīng)物SINT1·1H2O(n)的740H與手性碳720C斷鍵需要的能量也要高于S-Ibu·1H2O的741H-738O鍵斷需要的能量.因此,第2基元反應(yīng)的能壘高于第1基元反應(yīng),后面的勢(shì)能面計(jì)算結(jié)果說明此分析是正確的.第3基元反應(yīng)是INT2與苯環(huán)和743H前面的1個(gè)水分子以氫鍵結(jié)合的水合分子包結(jié)物a1(a2)INT2·1H2O(n)@MOR,經(jīng)過以水分子為媒介,質(zhì)子化羧基上的743H向苯環(huán)遷移的過渡態(tài)a1(a2)TS3·1H2O@MOR,異構(gòu)成中間體包結(jié)物a1(a2)INT3·1H2O(m)@MOR.TS3·1H2O的氫鍵鍵角分別是155.9°和166.8°,比TS2·1H2O的大些,因此,過渡態(tài)a1(a2)TS3·1H2O@MOR會(huì)比a1(a2)TS2·1H2O@MOR穩(wěn)定.又由于反應(yīng)物a1(a2)INT2·1H2O(n)@MOR到a1(a2)TS3·1H2O@MOR是斷H-O鍵,比斷H-C鍵容易.因此,a1(a2)TS3·1H2O@MOR產(chǎn)生的能壘會(huì)比a1(a2)TS2·1H2O@MOR低很多.

      從INT3開始分成2個(gè)路徑,a1路徑的反應(yīng)歷程見圖2A的Y.INT3與苯環(huán)和手性碳后面的1個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1INT3·1H2O(n1)@MOR,經(jīng)1水助質(zhì)子從苯環(huán)到手性碳的過渡態(tài)a1TS4·1H2O@MOR,異構(gòu)成產(chǎn)物a1P1R-Ibu·1H2O(m)@MOR,完成手性轉(zhuǎn)變.經(jīng)過以1個(gè)水分子為媒介質(zhì)子在羧基內(nèi)回遷的過渡態(tài)a1RTS5·1H2O@MOR,a1P1R-Ibu·1H2O(n1)@MOR異構(gòu)成為產(chǎn)物a1P2R-Ibu·1H2O@MOR.a2路徑的反應(yīng)歷程見圖3A(第745頁)的Z.先是INT3與苯環(huán)和新羰基之間的1個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a2INT3·1H2O(n2)@MOR,經(jīng)1個(gè)水分子助質(zhì)子從苯環(huán)向新羰基遷移的過渡態(tài)a2TS4·1H2O@MOR,異構(gòu)成產(chǎn)物中間體a2INT4·1H2O(m)@MOR.接著INT4與其手性碳和質(zhì)子化羧基之間的1個(gè)水分子以氫鍵結(jié)合的水合分子a2INT4·1H2O(n)@MOR,經(jīng)質(zhì)子從質(zhì)子化羧基向手性碳遷移的過渡態(tài)a2TS5·1H2O@MOR,異構(gòu)成產(chǎn)物a2P1R-Ibu·1H2O@MOR,完成手性轉(zhuǎn)變.最后,a2P1R-Ibu·1H2O(m)@MOR,經(jīng)過與a1RTS5·1H2O@MOR雷同的過渡態(tài)a2RTS5·1H2O@MOR,異構(gòu)成產(chǎn)物a2P2R-Ibu·1H2O@MOR.此基元反應(yīng)的各駐點(diǎn)包結(jié)物構(gòu)象與a1第5基元反應(yīng)的基本相同,從略.

      2個(gè)和3個(gè)水分子助S-Ibu的手性轉(zhuǎn)變歷程同于1個(gè)水分子的情形,計(jì)算表明,第2步基元反應(yīng)是決速步,為節(jié)省篇幅,只討論前2步基元反應(yīng)歷程.

      2水助a1和a2共同的前2步反應(yīng)歷程見圖2B(第743頁). S -Ibu與羧基右側(cè)的2個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)S -Ibu·2H2O@MOR,經(jīng)過2水助羧基內(nèi)氫遷移的8元環(huán)過渡態(tài)a1(a2)STS1·2H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)SINT1·2H2O(m)@MOR. SINT1與其手性碳上的740H和新羰基738O前面的2個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)SINT1·2H2O(n)@MOR,經(jīng)2個(gè)水分子助手性碳上的H向新羰基O遷移的8元環(huán)過渡態(tài)a1(a2)TS2·2H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)INT2·2H2O(m)@MOR. 3水助a1和a2共同的前2步反應(yīng)歷程見圖2C(第744頁). S -Ibu與羧基右側(cè)的3個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)S -Ibu·3H2O@MOR,經(jīng)過3水助羧基內(nèi)氫遷移的10元環(huán)過渡態(tài)a1(a2)STS1·3H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)SINT1·3H2O(m)@MOR.SINT1與其手性碳上的740H和新羰基738O前面的3個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物a1(a2)SINT1·3H2O(n)@MOR,經(jīng)3個(gè)水分子助手性碳上的H向新羰基O遷移的過渡態(tài)a1(a2)TS2·3H2O@MOR,異構(gòu)成中間體產(chǎn)物包結(jié)物a1(a2)INT2·3H2O(m)@MOR.分子結(jié)構(gòu)計(jì)算表明: a1(a2)TS2·2H2O@MOR的氫鍵鍵角720C-740H-742O,742O-743H-745O和745O-747H-738O分別是167.04°,166.62°和168.94°,a1(a2)TS2·3H2O@MOR的氫鍵鍵角720C-740H-742O、742O-743H-748O、748O-749H-745O和745O-747H-738O分別是167.80°,172.78°,171.80°和174.33°,均比a1(a2)TS2·1H2O@MOR中的氫鍵鍵角153.5°增大許多,更接近180.00°.這導(dǎo)致8元環(huán)結(jié)構(gòu)a1(a2)TS2·2H2O@MOR和10元環(huán)結(jié)構(gòu)a1(a2)TS2·3H2O@MOR均比6元環(huán)結(jié)構(gòu)a1(a2)TS2·1H2O@MOR穩(wěn)定許多,因此,過渡態(tài)a1(a2)TS2·2H2O@MOR和a1(a2)TS2·3H2O@MOR產(chǎn)生的能壘比a1(a2)TS2·1H2O@MOR低.a1(a2)TS2·3H2O@MOR的10元環(huán)結(jié)構(gòu)與8元環(huán)結(jié)構(gòu)a1(a2)TS2·2H2O@MOR相比較,對(duì)應(yīng)的氫鍵鍵角略增大,似乎應(yīng)該結(jié)構(gòu)更穩(wěn)定,產(chǎn)生的能壘會(huì)略低些.但過渡態(tài)a1(a2)TS2·3H2O@MOR的10元環(huán)結(jié)構(gòu)圖和二面角數(shù)據(jù)顯示,過渡態(tài)a1(a2)TS2·3H2O@MOR的10元環(huán)結(jié)構(gòu)明顯偏離平面,這說明其結(jié)構(gòu)不穩(wěn)定,會(huì)導(dǎo)致其產(chǎn)生的能壘增高.因此,10元環(huán)結(jié)構(gòu)過渡態(tài)a1(a2)TS2·3H2O@MOR與8元環(huán)結(jié)構(gòu)過渡態(tài)a1(a2)TS2·2H2O@MOR產(chǎn)生的能壘不會(huì)低,甚至可能高些,后面的勢(shì)能面計(jì)算證明了此處分析的正確性.

      在ONIOM(CAM-B3LYP/6-311++G(2df,pd): UFF)∥ONIOM(CAM-B3LYP/6-31G(d,p): UFF)雙理論水平,全參數(shù)優(yōu)化a1和a2路徑上的各個(gè)駐點(diǎn)包結(jié)物,計(jì)算單點(diǎn)能.駐點(diǎn)包結(jié)物的幾何結(jié)構(gòu)和過渡態(tài)在虛頻下的振動(dòng)模式見圖2.對(duì)諸過渡態(tài)進(jìn)行的頻率分析和IRC計(jì)算,確認(rèn)了過渡態(tài)的可靠性.各駐點(diǎn)包結(jié)物的吉布斯自由能熱校正和過渡態(tài)虛頻(Ima)見表1.駐點(diǎn)包結(jié)物的單點(diǎn)能,熱校正總吉布斯自由能和相對(duì)總吉布斯自由能見表1(第744~745頁).

      結(jié)構(gòu)Gtc/(a.u.)Esp/(a.u.)Gtotal/(a.u.)ΔGtotal/(kJ·mol-1)Ima/cm-1a1(a2)S?Ibu·1H2O@MOR0.24240-718.29095-718.048550.0a1(a2)STS1·1H2O@MOR0.23841-718.27061-718.0322042.91428.48a1(a2)SINT1·1H2O(m)@MOR0.24204-718.29021-718.048171.0a1(a2)SINT1·1H2O(n)@MOR0.24527-718.28482-718.039550.0a1(a2)TS2·1H2O@MOR0.23916-718.20900-717.96984183.01627.52a1(a2)INT2·1H2O(m)@MOR0.24363-718.25351-718.0098877.9a1(a2)INT2·1H2O(n)@MOR0.24485-718.25634-718.011490.0a1(a2)TS3·1H2O@MOR0.24043-718.21042-717.96999109.01508.41a1(a2)INT3·1H2O(m)@MOR0.24200-718.24249-718.0004928.9a11INT3·1H2O(n1)@MOR0.23917-718.23511-717.995940.0a1TS4·1H2O@MOR0.23822-718.18207-717.94385136.81516.94a1P1R?Ibu·1H2O(m)@MOR0.24019-718.27763-718.03744-109.0a1P1R?Ibu·1H2O(n)@MOR0.24483-718.29161-718.046780.0a1RTS5·1H2O@MOR0.24031-718.27234-718.0320338.71424.22a1P2R?Ibu·1H2O@MOR0.24432-718.29305-718.04873-5.1a2INT3·1H2O(n2)@MOR0.24032-718.24221-718.001890.0a2TS4·1H2O@MOR0.23928-718.20626-717.9669891.71523.83a2INT4·1H2O(m)@MOR0.24193-718.25481-718.01288-28.9a2INT4·1H2O(n)@MOR0.24193-718.25481-718.012880.0a2TS5·1H2O@MOR0.23662-718.21141-717.97479100.01611.56a2P1R?Ibu·1H2O(m)@MOR0.24025-718.28419-718.04394-81.5

      (續(xù)表)

      根據(jù)表1中的數(shù)據(jù),繪制了標(biāo)題反應(yīng)在a1和a2反應(yīng)通道上的吉布斯自由能勢(shì)能面,見圖3.

      從圖3看出,標(biāo)題反應(yīng)在a1和a2通道分別經(jīng)過5個(gè)和6個(gè)過渡態(tài),通過5個(gè)和6個(gè)基元反應(yīng)實(shí)現(xiàn),前3個(gè)基元反應(yīng)是共同的過程.第2步基元反應(yīng)為共同的決速步驟,對(duì)于第4基元反應(yīng),a2通道的能壘明顯低,為優(yōu)勢(shì)反應(yīng)通道.a1和a2通道的決速步能壘在2個(gè)水分子作氫遷移媒介時(shí)被降到最低值124.3kJ·mol-1,是由手性碳上的H直接向新羰基氧738O遷移的過渡態(tài)產(chǎn)生的.比裸反應(yīng)和限域在水環(huán)境的此通道決速步能壘287.1和152.2kJ·mol-1[5-7]相比較大幅度降低或明顯降低.說明MOR分子篩與水的復(fù)合環(huán)境對(duì)S -Ibu在a1和a2通道的旋光異構(gòu)具有顯著的限域共催化作用.

      2.2 限域在MOR分子篩與水復(fù)合環(huán)境下的S -Ibu在b通道手性轉(zhuǎn)變決速步的反應(yīng)機(jī)理

      S -Ibu在b通道手性轉(zhuǎn)變反應(yīng)決速步見圖4.S -Ibu與手性碳、手性碳上的質(zhì)子和羰基前面的1個(gè)、2個(gè)和3個(gè)水分子以氫鍵結(jié)合的水合分子的包結(jié)物bS -Ibu·1H2O@MOR、bS -Ibu·2H2O@MOR和bS -Ibu·3H2O@MOR,分別經(jīng)過圖4所示的六元環(huán)、八元環(huán)和十元環(huán)結(jié)構(gòu)過渡態(tài)bTS1·1H2O@MOR、bTS1·2H2O@MOR和bTS1·3H2O@MOR,異構(gòu)成產(chǎn)物中間體bINT1·1H2O@MOR、bINT1·2H2O@MOR和bINT1·3H2O@MOR.以后的過程先是,bINT1考慮溶劑效應(yīng)的羧基異構(gòu).bINT1經(jīng)過質(zhì)子化羧基上的H在紙面里外反轉(zhuǎn)的過渡態(tài),質(zhì)子化羧基上的1個(gè)質(zhì)子H擺到紙面里(此過程能壘很小).然后,擺到紙面里的質(zhì)子再以水分子為媒介在紙面里遷移到手性碳,完成手性轉(zhuǎn)變過程,此過程雷同于第1基元反應(yīng).篇幅所限,不對(duì)這兩個(gè)基元反應(yīng)進(jìn)行討論.

      過渡態(tài)的結(jié)構(gòu)數(shù)據(jù)顯示: bTS·1H2O@MOR的氫鍵鍵角在149.9°~154.9°之間,bTS·2H2O@MOR和bTS·3H2O@MOR氫鍵鍵角在169.9°~170.8°和169.3°~173.6°之間,明顯大于前者,更接近180°.所以bTS·2H2O@MOR和bTS·3H2O@MOR的結(jié)構(gòu)比bTS·1H2O@MOR穩(wěn)定,產(chǎn)生的能壘要低些.bTS·2H2O@MOR和bTS·3H2O@MOR的結(jié)構(gòu)數(shù)據(jù)顯示,過渡態(tài)bTS·3H2O@MOR十元環(huán)結(jié)構(gòu)與過渡態(tài)bTS·2H2O@MOR的八元環(huán)結(jié)構(gòu)相比較,明顯偏離平面.說明過渡態(tài)bTS·3H2O@MOR相對(duì)不穩(wěn)定,產(chǎn)生的能壘會(huì)相對(duì)高,這抵消了bTS·3H2O@MOR比bTS·2H2O@MOR的氫鍵稍強(qiáng)的因素,使得他們二者產(chǎn)生的能壘不會(huì)相差很大,后面的勢(shì)能面計(jì)算說明了此分析的正確性.

      在與前面相同的理論計(jì)算水平上,全參數(shù)優(yōu)化b通道上不同個(gè)數(shù)的水分子助決速步驟的駐點(diǎn)包結(jié)物,計(jì)算單點(diǎn)能.得到b通道各駐點(diǎn)包結(jié)物的幾何構(gòu)型以及過渡態(tài)在虛頻下的振動(dòng)模式,見圖4.對(duì)諸過渡態(tài)的頻率分析和IRC計(jì)算,確認(rèn)了過渡態(tài)的可靠性.各駐點(diǎn)吉布斯自由能熱校正和過渡態(tài)虛頻(Ima)見表2.駐點(diǎn)的高水平單點(diǎn)能,熱校正的總自由能和相對(duì)總自由能亦見表2.

      結(jié)構(gòu)Gtc/(a.u.)Esp/(a.u.)Gtotal/(a.u.)ΔGtotal/(kJ·mol-1)Ima/cm-1bS?Ibu·1H2O@MOR0.24049-718.28229-718.04180.0bTS·1H2O@MOR0.23912-718.21208-717.97296180.71724.19bINT1·1H2O@MOR0.24211-718.24800-718.0058994.3bS?Ibu·2H2O@MOR0.26489-794.73339-794.46850.0bTS·2H2O@MOR0.25977-794.67297-794.4132145.21388.65bINT1·2H2O@MOR0.26388-794.70321-794.4393376.6bS?Ibu·3H2O@MOR0.28568-871.18914-870.903460.0bTS·3H2O@MOR0.28389-871.13217-870.84828144.9967.77bINT1·3H2O@MOR0.28958-871.16481-870.8752374.1

      根據(jù)表2的數(shù)據(jù),繪制了Ibu限域在MOR分子篩,在b通道水助手性轉(zhuǎn)變決速步反應(yīng)過程的吉布斯自由能勢(shì)能面示意圖,見圖5.

      從圖5可以看出,標(biāo)題反應(yīng)在b通道的決速步驟能壘在以2個(gè)和3個(gè)水分子為質(zhì)子遷移媒介時(shí)被降到最低值145.2和144.9kJ·mol-1,是由質(zhì)子H從手性碳向羰基氧739O遷移的過渡態(tài)產(chǎn)生的.比裸反應(yīng)和只限域水環(huán)境的決速步能壘295.8和170.4kJ·mol-1[5-6]有明顯降低和大幅度地降低.說明MOR分子篩對(duì)S -Ibu在b通道的旋光異構(gòu)具有較好的限域催化作用.與前面2.1的研究結(jié)果共同說明,MOR分子篩與水的復(fù)合環(huán)境可以作Ibu旋光異構(gòu)反應(yīng)的理想納米反應(yīng)器.綜合圖3和5可知,a2是主反應(yīng)通道,在2個(gè)水分子助質(zhì)子遷移反應(yīng)時(shí),決速步吉布斯自由能壘被降到最低值124.3kJ·mol-1.

      分子結(jié)構(gòu)研究表明: 2個(gè)和3個(gè)水分子助氫遷移反應(yīng)的過渡態(tài)分子氫鍵鍵角比1個(gè)水分子助氫遷移反應(yīng)時(shí)明顯增大,3個(gè)水分子助氫遷移反應(yīng)的10元環(huán)過渡態(tài)結(jié)構(gòu)明顯偏離平面.反應(yīng)通道研究發(fā)現(xiàn): 標(biāo)題反應(yīng)有a1、a2和b三個(gè)通道.a1和a2是經(jīng)過水助羧基內(nèi)質(zhì)子遷移和質(zhì)子以新羰基氧為橋從手性碳向苯環(huán)遷移的共同歷程后,再分別直接遷移到手性碳的另一側(cè)和以新羰基氧為橋遷移到手性碳的另一側(cè),要分別經(jīng)過5個(gè)和6個(gè)基元反應(yīng);b是水助質(zhì)子以羰基氧為橋從手性碳的一側(cè)遷移到另一側(cè),要經(jīng)歷3個(gè)基元反應(yīng).反應(yīng)勢(shì)能面計(jì)算表明,a2是主反應(yīng)通道,在2個(gè)水分子助質(zhì)子遷移反應(yīng)時(shí),決速步吉布斯自由能壘被降到最低值124.3kJ·mol-1,與裸反應(yīng)、只是限域在MOR分子篩和限域在水環(huán)境的此通道決速步能壘287.1,263.4kJ·mol-1和152.2kJ·mol-1相比較,分別大幅降低和明顯降低.結(jié)果表明: 水與MOR分子篩復(fù)合環(huán)境對(duì)布洛芬分子的手性轉(zhuǎn)變具有較好的限域共催化作用,可作為實(shí)現(xiàn)布洛芬手性轉(zhuǎn)變的理想的納米反應(yīng)器.

      用鋁取代某位置的硅形成B酸位,此時(shí)酸催化的作用可能更值得期待,此工作正在進(jìn)行中.

      [1] BHATIA S, LONG W S, KAMARUDDIN A H. Enzymatic membrane reactor for the kinetic resolution of racemic ibuprofen ester: modeling and experimental studies[J].ChemicalEngineeringScience, 2004,59(22-23): 5061-5068.

      [2] 肖方清.右旋布洛芬的制備[J].中國醫(yī)藥工業(yè)雜志,2000,31(11): 486-488.

      [3] 林文輝.手性藥物布洛芬的體內(nèi)藥物動(dòng)力學(xué)研究[D].沈陽: 沈陽藥科大學(xué),2004: 8-10.

      [4] CHENG H, ROGERS J D, DEMETRIADES J L,etal. Pharmacokinetics and bioinversion of ibuprofen enantiomers in humans[J].PharmaceuticalResearch, 1994,11(6): 824-830.

      [5] 鄒曉威,梅澤民,王佐成,等.孤立條件下布洛芬分子手性轉(zhuǎn)變過程的理論研究[J].原子與分子物理學(xué)報(bào),2015,32(2): 173-180.

      [6] 梅澤民,王佐成,閆紅彥,等.水環(huán)境下布洛芬分子的手性轉(zhuǎn)變機(jī)理[J].吉林大學(xué)學(xué)報(bào)(理學(xué)版).2015,53(2): 331-339.

      [7] 王佐成,梅澤民,呂 洋,等.扶手椅型單壁碳納米管的尺寸對(duì)布洛芬分子手性轉(zhuǎn)變的限域影響[J].復(fù)旦學(xué)報(bào)(自然科學(xué)版).2015,54(2): 234-244.

      [8] 趙亞華.分子生物學(xué)教程[M].北京: 科學(xué)出版社,2011: 5-6.

      [9] 梅澤民,佟 華,王佐成,等.α-丙氨酸限域在扶椅型SWBNNT(9,9)與水復(fù)合環(huán)境下的手性轉(zhuǎn)變機(jī)制[J].中山大學(xué)學(xué)報(bào)(自然科學(xué)版).2016,54(3): 85-92.

      [10] 佟 華,梅澤民,王佐成,等.α-Ala限域在螺手性SWBNNT(10,6)與水復(fù)合環(huán)境下手性轉(zhuǎn)變機(jī)理[J].復(fù)旦學(xué)報(bào)(自然科學(xué)版).2016,55(4): 529-540.

      [11] SVENSSON M, HUMBEL S, FROESE R D J,etal. ONIOM: A multilayered integrated MO+MM method for geometry optimizations and single point energy predictions. A test for Diels-Alder reactions and Pt(P(t-Bu)3)2+ H2oxidtivae addition[J].PhysicalChemistry, 1996,100(50): 19357-19363.

      [12] KOBAYASHI R, AMOS R D. The application of CAM-B3LYP to the charge-transfer band problem of the zincbacteriochlorin-bacteriochlorin complex[J].ChemPhysLetts, 2006,420: 106-109.

      [13] YIN S W, DAHLBOM M G, CANFIELD P J,etal.Assignment of the Qy absorption spectrum of photosystem-I from thermosynechococcus elongatus based on CAM-B3LYP calculations at the PW91-optimized protein structure[J].PhysChemB, 2007,111(33) : 9923-9930.

      [14] RAPPE A K, CASEWIT C J, COLWELL K S,etal. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].JournaloftheAmericanChemicalSociety, 1992,114(25): 10024-10053.

      [15] GARRETT B C, TRUHLAR D G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules[J].JournalofPhysicalChemistry, 1979,83(8): 1052-1079.

      [16] GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J].TheJournalofChemicalPhysics, 1979,70(4): 1593-1598.

      [17] ISHIDA K, MOROKUMA K, KOMORNICKI A. The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H-+ CH4→CH4+ H-*[J].TheJournalofChemicalPhysics, 1977,66(5): 2153-2156.

      [18] FRISCH M J, TRUCKS G W, SCHLEGEL H B,etal. Gaussian 09. Revision D.01[CP]. Pittsburgh USA: Gaussian, Inc., Wallingford CT, 2013.

      Theoretical Research on the Co-catalysis of Water and MOR Zeolite Combined Environment on the Chiral Transition of Ibuprofen Molecules

      SUN Yongqing1, WANG Zuocheng2, Gao Feng2, TANG Dehuai3

      (1.DepartmentofBasic,BaichengTechnicianInstitute,Baicheng137000,China;2.CollegeofPhysicsandElectronicInformation,BaichengNormalUniversity,Baicheng137000,China;3.ComputerScienceCollege,BaichengNormalUniversity,Baicheng137000,China)

      The chiral transition of ibuprofen molecules confined in water and MOR zeolite combined environment was studied by introducing the ONIOM methods using combination of quantum mechanics and molecular mechanics. The molecular structure researches show that hydrogen bond angles of the transition state molecules increases constantly in the hydrogen transfer reactions with the help of one water molecule, two and three molecules, respectively, and the 10-ring transition state structures in the hydrogen transfer reactions with the help of three water molecules significantly deviates from the plane. The study of reaction channels shows there are three channels a1, a2 and b in the title reaction. The protons transfer with the help of water molecules in carboxyl and from the chiral C to the benzene ring using the carboxyl O as the bridge, and then transfer to the other side of the chiral carbon directly or with new carbonyl O as a bridge in the channels a1and a2, respectively. In channel b, the protons transfer with the help of water molecules transfer from one side to the other of the chiral C with carbonyl O as a bridge. Calculations of potential energy surface show a2 channel is the dominant reaction path, where the rate determined step of Gibbs free energy barrier of two water-assisted proton transfers reaction is reduced to the minimum value 124.3kJ·mol-1, which is significantly lower than the Gibbs free energy barrier 287.1kJ·mol-1, 263.4kJ·mol-1and 152.2kJ·mol-1respectively corresponding to the bare reaction, confined in MOR zeolite and confined in water environment. The results show that water and MOR zeolite combined environment has a good co-catalysis on the chiral transition of ibuprofen molecules and can be used as an ideal nano reactor for the realization of ibuprofen molecules chiral transition.

      MOR zeolite; Ibuprofen; chiral transition; density functional; transition state

      0427-7104(2016)06-0739-11

      2016-06-12

      吉林省科技發(fā)展計(jì)劃項(xiàng)目(20160101308JC)

      孫永清(1968—),男,副教授. E-mail: syfytw@163.com;通訊聯(lián)系人,王佐成(1963—),男,副教授,E-mail: wangzc188@163.com.

      O 641(O641.12;O641.12)

      A

      猜你喜歡
      限域能壘過渡態(tài)
      水液相下Eda酮式異構(gòu)體與超氧化氫自由基反應(yīng)的DFT理論計(jì)算
      聚對(duì)苯二甲酸丁二醇酯二聚體熱降解機(jī)理的理論研究
      基于LMI的過渡態(tài)主控回路閉環(huán)控制律優(yōu)化設(shè)計(jì)
      淺談物理化學(xué)中過渡態(tài)的搜索方法
      分子篩限域碳點(diǎn)材料的研究進(jìn)展
      化學(xué)反應(yīng)歷程教學(xué)的再思考
      重質(zhì)有機(jī)資源熱解過程中自由基誘導(dǎo)反應(yīng)的密度泛函理論研究
      二維材料限域催化獲進(jìn)展
      山西化工(2019年4期)2019-02-17 09:36:46
      兩維材料限域催化效應(yīng)及其對(duì)金屬表面催化反應(yīng)的調(diào)控
      全氟異丁腈分解反應(yīng)機(jī)理
      张家口市| 德庆县| 云霄县| 宁强县| 耿马| 平利县| 苏尼特右旗| 青神县| 刚察县| 河间市| 靖江市| 天长市| 宝应县| 洞头县| 福鼎市| 襄城县| 阆中市| 炎陵县| 稻城县| 修文县| 旺苍县| 东安县| 黑水县| 泾源县| 龙陵县| 咸宁市| 新疆| 广东省| 新巴尔虎右旗| 平乡县| 富宁县| 焦作市| 新野县| 宁国市| 霍城县| 三门峡市| 郓城县| 东至县| 东明县| 弋阳县| 雷山县|