林 毅,馬 臻
(復(fù)旦大學(xué) 環(huán)境科學(xué)與工程系,上海 200433)
PdOx/金屬磷酸鹽催化劑催化分解N2O
林 毅,馬 臻
(復(fù)旦大學(xué) 環(huán)境科學(xué)與工程系,上海 200433)
使用商業(yè)化的金屬磷酸鹽(M-P-O, M=Mg, Al, Ca, Fe, Co, Zn, La)為載體,以Pd(NO3)2為PdOx的前軀體,制備了PdOx/M-P-O系列催化劑,并測(cè)試了催化劑的N2O分解性能.發(fā)現(xiàn)PdOx/Ca-P-O(又記為PdOx/HAP,HAP為羥基磷灰石)在該系列樣品中表現(xiàn)出最佳催化活性,在反應(yīng)溫度375℃時(shí)能催化N2O完全轉(zhuǎn)化.而其他PdOx/M-P-O催化劑幾乎沒(méi)有活性.O2在反應(yīng)氣中的共存對(duì)PdOx/HAP的活性影響很小,而H2O蒸氣的共存明顯抑制活性.但O2和H2O蒸氣對(duì)活性的影響是可逆的,即O2或者H2O撤走后,活性復(fù)原.PdOx/HAP在無(wú)O2和有O2情況下都保持較好的穩(wěn)定性.使用4% H2,在400℃對(duì)PdOx/HAP進(jìn)行預(yù)處理能提高催化活性.使用XRD、TEM、XPS、ICP等對(duì)PdOx/HAP進(jìn)行了表征.
N2O催化分解; Pd催化劑; 羥基磷灰石; 金屬磷酸鹽
N2O是一種常見(jiàn)的溫室氣體,其溫室效應(yīng)分別為CO2和CH4的310和21倍,且在對(duì)流層的壽命長(zhǎng)達(dá)150年[1-3].此外,N2O對(duì)臭氧層有破壞作用.但己二酸廠、硝酸廠、垃圾焚燒廠等固定源和汽車(chē)等移動(dòng)源持續(xù)不斷地排放N2O,對(duì)環(huán)境造成危害.根據(jù)《中華人民共和國(guó)氣候變化初始國(guó)家信息通報(bào)》,1994年中國(guó)N2O排放量為2.6×108t CO2當(dāng)量.2005年開(kāi)始生效的《京都議定書(shū)》提議控制CO2、CH4、N2O等6種溫室氣體的排放.針對(duì)氣候變暖情況,2007年中國(guó)政府公布了《中國(guó)應(yīng)對(duì)氣候變化國(guó)家方案》,明確指出“加強(qiáng)氧化亞氮排放治理等措施,控制工業(yè)生產(chǎn)過(guò)程中的溫室氣體排放.到2010年,力爭(zhēng)使工業(yè)生產(chǎn)過(guò)程中的氧化亞氮排放穩(wěn)定在2005年的水平上”.世界氣象組織2016年10月發(fā)布《溫室氣體公報(bào)》稱,1990年至2015年間,來(lái)自工業(yè)、農(nóng)業(yè)和家庭活動(dòng)的CO2、CH4和N2O等長(zhǎng)壽命溫室氣體,使導(dǎo)致氣候變暖的“輻射強(qiáng)迫”效應(yīng)上升37%.
負(fù)載型Rh催化劑對(duì)N2O分解有較高活性.這類(lèi)催化劑多使用SiO2、Al2O3、TiO2、CeO2等常見(jiàn)氧化物載體[4-7].金屬磷酸鹽被直接用作催化劑應(yīng)用于有機(jī)催化或者去除有害氣體[8-10].金屬磷酸鹽也可被作為催化劑載體制備催化劑,用于CO氧化和有機(jī)催化[11-15].我們?cè)裄hOx負(fù)載于一系列金屬磷酸鹽,發(fā)現(xiàn)在該系列催化劑中,RhOx/HAP(HAP為羥基磷灰石)對(duì)于N2O分解具有最高活性[16].Huang等[17-18]詳細(xì)研究了HAP的制備方法和催化劑預(yù)處理?xiàng)l件對(duì)RhOx/HAP催化分解N2O的影響.
負(fù)載型Pd催化劑在催化分解N2O中也有報(bào)道,但使用的大部分是常規(guī)的氧化物載體(Al2O3、CeO2等)[5,19],未見(jiàn)金屬磷酸鹽負(fù)載Pd催化分解N2O的報(bào)道.本文采用一系列金屬磷酸鹽,制備負(fù)載型PdOx催化劑,用于N2O分解.結(jié)果發(fā)現(xiàn)PdOx/HAP在PdOx/M-P-O系列催化劑中具有最高的活性、優(yōu)良的抗氧性能和穩(wěn)定性.采用XRD、TEM、XPS、ICP等對(duì)PdOx/HAP進(jìn)行了表征.
1.1 PdOx/M-P-O的制備
稱取1g Pd(NO3)2?2H2O(Pd≥39.5%)溶解于去離子水中并稀釋到100mL,即得濃度為0.004g/mL(以Pd計(jì))的前驅(qū)體溶液.將10mL稀釋后的溶液和3.96g金屬磷酸鹽M-P-O(Mg3(PO4)2?xH2O、AlPO4、Ca5(OH)(PO4)3、FePO4?xH2O、CoPO4、Zn3(PO4)2或LaPO4?xH2O)在瑪瑙研缽中混合,在紅外燈下研磨至干.將所得粉末放入陶瓷坩堝,再放入馬弗爐,以10℃/min升溫至500℃,焙燒3h.冷卻后取出樣品,得到理論負(fù)載量質(zhì)量分?jǐn)?shù)為1%的PdOx/M-P-O催化劑.
1.2 催化活性評(píng)價(jià)
使用石英棉將0.5g催化劑固定在U型石英管(內(nèi)徑6mm)中,并將U型石英管固定在高溫電爐中.反應(yīng)氣總流量為60mL/min,其中N2O占總氣體體積比為0.5%,其余為He.首先在25℃保持1h,持續(xù)通著0.5% N2O/He,再由25℃升溫至100℃(升溫速率10℃/min),在100℃保持31min,再在10min內(nèi)升溫到200℃并保持31min.200℃之后按25℃為“步長(zhǎng)”程序升溫至500℃,每一個(gè)溫度平臺(tái)保持31min.氣體采用安捷倫公司生產(chǎn)的氣相色譜儀7890A(TCD檢測(cè)器)分析,在每個(gè)保持31min的溫度平臺(tái)處.每隔10min對(duì)催化分解反應(yīng)后的氣體取樣并進(jìn)樣分析一次,取第三次進(jìn)樣分析所得峰面積計(jì)算轉(zhuǎn)化率.
考察H2預(yù)處理對(duì)PdOx/HAP活性影響時(shí),使用4% H2/He(流速: 40mL/min)在400℃下對(duì)催化劑進(jìn)行還原預(yù)處理2h.自然冷卻至室溫后再進(jìn)行活性測(cè)試.
1.3 表征
晶相結(jié)構(gòu)表征在MSAL XD2多晶X射線衍射儀上進(jìn)行,采用石墨單色器,Cu靶Kα射線,工作電壓40kV,工作電流40mA,掃描角度2θ=10°~70°,掃描速度4°/min.透射電鏡(TEM)照片在JEM-2100F場(chǎng)發(fā)射透射電子顯微鏡上攝取,工作電壓為200kV.采用Perkin-Elmer PHI 5000C ESCA型光電子能譜儀進(jìn)行XPS表征,以Mg Kα為發(fā)射源,電壓14kV,電流20mA,C 1s校正值為284.6eV.ICP分析采用Perkin-Elmer公司生產(chǎn)的Optima 8000等離子體發(fā)射光譜儀檢測(cè),使用王水加熱溶解Pd,稀釋定量分析.
圖1顯示PdOx/M-P-O(M=Mg, Al, Ca, Fe, Co, Zn, La)催化分解N2O的活性曲線.可見(jiàn)大部分催化劑沒(méi)有活性,只有PdOx/HAP有活性,其t50(達(dá)到50%的反應(yīng)物轉(zhuǎn)化率所需的溫度)為333℃.這表明不同的磷酸鹽載體對(duì)于PdOx/M-P-O催化分解N2O有很大的影響.
圖2(見(jiàn)第733~734頁(yè))羅列PdOx/M-P-O經(jīng)過(guò)催化測(cè)試后的XRD圖,并用載體的XRD數(shù)據(jù)進(jìn)行對(duì)比.PdOx/M-P-O系列催化劑的XRD譜圖上沒(méi)有Pd(PDF#46-1211)或PdO(PDF#46-1043)的衍射峰,這可能是由于Pd的負(fù)載量很低(理論負(fù)載量1.0%),以及PdOx高度分散到這些載體上.
采用ICP測(cè)量了Pd的含量.PdOx/M-P-O(Mg、Al、Ca、Fe、Co、Zn、La)中Pd的質(zhì)量分?jǐn)?shù)分別為1.04%,1.00%,1.00%,1.02%,1.10%,1.10%,1.00%,接近理論負(fù)載量1%.
鑒于PdOx/M-P-O系列催化劑中只有PdOx/HAP表現(xiàn)出明顯催化活性,我們只針對(duì)PdOx/HAP進(jìn)行表征.PdOx/HAP的典型TEM照片見(jiàn)圖3.照片上呈現(xiàn)的是一些具有不同形貌(顆粒、棒)的HAP載體,而PdOx很難分辨,因?yàn)樗鼈兒康停腋叨确稚⒃谳d體上.
圖4顯示反應(yīng)后PdOx/HAP的XPS譜圖.Pd 3d的譜圖(圖4(a))中分為兩個(gè)主峰,即Pd 3d3/2及處于較低結(jié)合能的Pd 3d5/2.選取Pd 3d5/2進(jìn)行分析.Pd 3d5/2分峰為335~336和337~337.6eV,分別對(duì)應(yīng)于Pd0及Pd2+[20-23].從分峰結(jié)果可知,PdOx/HAP的Pd物種主要是Pd2+(由峰面積算得相對(duì)比率為92%),即PdO.這是因?yàn)镻dOx/HAP是Pd(NO3)2浸漬在HAP載體上,再通過(guò)500℃通空氣焙燒分解產(chǎn)生的.Perez-Ramirez等發(fā)現(xiàn)在含鈷水滑石負(fù)載的Pd催化劑對(duì)于N2O分解的活性物種是PdO[24].
圖4(b)是PdOx/HAP的O 1s的XPS譜圖.分成3個(gè)峰,在532.3~532.8eV處的峰歸為非橋氧(P-O)[25-26],而在533.3~533.5eV處的峰歸為橋氧(P-O-P)[25,27],在531.0~531.8eV處的峰歸為羥基(-OH)[28-29].PdOx/HAP中羥基峰面積占所有含氧物種峰面積的相對(duì)比率為48.1%,結(jié)果與我們前文中報(bào)道的RhOx/HAP的XPS結(jié)果基本相同[16],符合HAP表面含有大量的羥基的事實(shí)[16,30].
從圖5可見(jiàn)PdOx/HAP的抗水抗氧性能測(cè)試結(jié)果.在反應(yīng)體系中加入5%或者25%的O2略微降低催化劑的活性.加入10%、15%或者20%的O2和加入5%或者25%的O2產(chǎn)生的效果幾乎一樣,未在圖中顯示.而加入2%H2O對(duì)活性有明顯的抑制作用,使t50從不加入任何共存氣體時(shí)的325℃上升到375℃.同時(shí)加入5%O2和2%H2O對(duì)于活性的抑制作用和只加入2% H2O的影響相仿.Konsolakis等[23]發(fā)現(xiàn)H2O的加入能抑制Pd/Al2O3在N2O分解中的活性,認(rèn)為H2O會(huì)與N2O競(jìng)爭(zhēng)吸附在催化劑的活性位上,導(dǎo)致活性的降低.測(cè)試PdOx/HAP催化分解N2O的穩(wěn)定性.反應(yīng)溫度為360℃時(shí),轉(zhuǎn)化率在反應(yīng)初期由80%提高到85%,然后基本維持在85%~90%(圖6).
對(duì)PdOx/HAP進(jìn)行多次循環(huán)測(cè)試,由圖7中可以看出,經(jīng)過(guò)一輪循環(huán)后PdOx/HAP的t50由323℃降低到316℃,經(jīng)過(guò)兩輪循環(huán)后其t50降低到302℃,驗(yàn)證了PdOx/HAP的催化活性在反應(yīng)過(guò)程中存在活化現(xiàn)象.又測(cè)試了PdOx/HAP在25%O2氣氛下的催化穩(wěn)定性.反應(yīng)溫度350℃時(shí),催化劑在反應(yīng)初期亦有活化現(xiàn)象,此后N2O的轉(zhuǎn)換率保持在80%以上.
固定反應(yīng)溫度,通過(guò)階段性的改變反應(yīng)氣的組分來(lái)研究O2或者H2O對(duì)活性的抑制作用是否可逆.選定的反應(yīng)溫度是350℃,在該反應(yīng)溫度下N2O轉(zhuǎn)換率在80%左右.由圖8可看出隨著5% O2混入反應(yīng)氣中,N2O的轉(zhuǎn)換率略微下降.切斷O2后,催化活性略微上升,說(shuō)明PdOx/HAP在催化分解N2O時(shí)具有好的抗氧性能.
同樣在350℃,隨著2% H2O的加入,N2O的轉(zhuǎn)化率由80%下降到40%左右,說(shuō)明H2O對(duì)于活性的抑制作用更明顯(圖9).切斷H2O后,活性基本恢復(fù).在隨后的反應(yīng)循環(huán)中重復(fù)著相似的過(guò)程,說(shuō)明H2O對(duì)活性有明顯抑制作用,但這種抑制作用是可逆的.類(lèi)似地,Konsolakis等[23]發(fā)現(xiàn)H2O對(duì)于Pd/Al2O3的催化活性有抑制作用,但隨著反應(yīng)氣氛中水汽的脫出,活性得到恢復(fù).
之前都是拿未經(jīng)預(yù)處理的PdOx/HAP進(jìn)行催化測(cè)試.后續(xù)我們對(duì)PdOx/HAP用4%的H2預(yù)處理后,再進(jìn)行催化分解N2O測(cè)試,發(fā)現(xiàn)活性有所提高,催化劑的t50從333℃降低到293℃(圖10).這說(shuō)明在實(shí)際應(yīng)用中,可以通過(guò)H2預(yù)處理進(jìn)一步提高催化劑的活性.
PdOx/M-P-O (M = Mg, Al, Ca, Fe, Co, Zn, La) 中,只有PdOx/HAP對(duì)于催化分解N2O有明顯的活性(t50= 333℃).PdOx/HAP具有豐富的羥基和堿性位[16],還有高度分散的PdOx物種,有利于該催化反應(yīng).XPS數(shù)據(jù)表明PdOx/HAP中的Pd主要呈現(xiàn)出的主要是Pd2+.共存的H2O對(duì)活性影響大于O2,但這種影響是可逆的.PdOx/HAP具有很好的抗氧性能.對(duì)PdOx/HAP進(jìn)行高溫H2預(yù)處理有望進(jìn)一步提高催化活性.
[1] KRAMLICH J C, LINAK W P. Nitrous-oxide behavior in the atmosphere, and in combustion and industrial-system [J].ProgEnergyCombust, 1994,20(2): 149-202.
[2] MARBAN G, KAPTEIJN F, MOULIJN J A. Fuel-gas injection to reduce N2O emissions from the combustion of coal in a fluidized bed [J].CombustionandFlame, 1996,107(1/2): 103-113.
[3] HABER J, NATTICH M, MACHEJ T. Alkali-metal promoted rhodium-on-alumina catalysts for nitrous oxide decomposition [J].ApplCatalB:Environ, 2008,77(3/4): 278-283.
[4] YAMADA K, KONDO S, SEGAWA K. Selective catalytic reduction of nitrous oxide over Fe-ZSM-5: the effect of ion-exchange level [J].MicroporMesoporMat, 2000,35-36(1): 227-234.
[5] DOI K, WU Y Y, TAKEDA R,etal. Catalytic decomposition of N2O in medical operating rooms over Rh/Al2O3, Pd/Al2O3, and Pt/Al2O3[J].ApplCatalB:Environ, 2001,35(1): 43-51.
[6] KUMAR S, VINU A, SUBERT J,etal. Catalytic N2O decomposition on Pr0.8Ba0.2MnO3type perovskite catalyst for industrial emission control [J].CatalToday, 2012,198(1): 125-132.
[7] KONSOLAKIS M, DROSOU C, YENTEKAKIS I V. Support mediated promotional effects of rare earth oxides (CeO2and La2O3) on N2O decomposition and N2O reduction by CO or C3H6over Pt/Al2O3structured catalysts [J].ApplCatalB:Environ, 2012,123-124(1): 405-413.
[8] TAKITA Y, SANO K, MURAYA T,etal. Oxidative dehydrogenation of iso-butane to iso-butene-II. Rare earth phosphate catalysts [J].ApplCatalA:Gen, 1998,170(1): 23-31.
[9] TAKITA Y, NINOMIYA M, MIYAKE H,etal. Catalytic decomposition of perfluorocarbons-Part II. Decomposition of CF4over AlPO4-rare earth phosphate catalysts [J].PhysChemChemPhys, 1999,1(18): 4501-4504.
[10] REN T, YAN L, ZHANG X M,etal. Selective oxidation of benzene to phenol with N2O by unsupported and supported FePO4catalysts [J].ApplCatalA:Gen, 2003,244(1): 11-17.
[11] WANG Y, YUAN Q, ZHANG Q H,etal. Characterizations of unsupported and supported rhodium-iron phosphate catalysts effective for oxidative carbonylation of methane [J].JPhysChemC, 2007,111(5): 2044-2053.
[12] MA Z, YIN H F, OVERBURY S H,etal. Metal phosphates as a new class of supports for gold nanocatalysts [J].CatalLett, 2008,126(1/2): 20-30.
[13] LI M J, WU Z L, OVERBURY S H. CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility on surface reactions [J].JCatal, 2011,278(1): 133-142.
[14] QIAN X S, QIN H M, MENG T,etal. Metal phosphate-supported Pt catalysts for CO oxidation [J].Materials, 2014,7(12): 8105-8130.
[15] JOHNSTONE R A W, LIU J Y, LU L,etal. Hydrogenation of alkenes over palladium and platinum metals supported on a variety of metal(IV) phosphates [J].JMolCatalA:Chem, 2003,191(2): 289-294.
[16] LIN Y, MENG T, MA Z. Catalytic decomposition of N2O over RhOxsupported on metal phosphates [J].JIndEngChem, 2015,28(1): 138-146.
[17] HUANG C Y, MA Z, XIE P F,etal. Hydroxyapatite-supported rhodium catalysts for N2O decomposition [J].JMolCatalA:Chem, 2015,400(1): 90-94.
[18] HUANG C Y, JIANG Y X, MA Z,etal. Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition [J].JMolCatalA:Chem, 2016,420(1): 73-81.
[19] PARRES-ESCLAPEZ S, ILLAN-GOMEZ M J, DE LECEA C S M,etal. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt [J].ApplCatalB:Environ, 2010,96(3/4): 370-378.
[20] LAMB R N, NGAMSOM B, TRIMM D L,etal. Surface characterisation of Pd-Ag/Al2O3catalysts for acetylene hydrogenation using an improved XPS procedure [J].ApplCatalA:Gen, 2004,268(1/2): 43-50.
[21] TZITZIOS V K, GEORGAKILAS V. Catalytic reduction of N2O over Ag-Pd/Al2O3bimetallic catalysts [J].Chemosphere, 2005,59(6): 887-891.
[22] DUMBUYA K, DENECKE R, STEINRUCK H P. Surface analysis of Pd/ZnO catalysts dispersed on micro-channeled Al-foils by XPS [J].ApplCatalA:Gen, 2008,348(2): 209-213.
[23] KONSOLAKIS M, YENTEKAKIS I V, PEKRIDIS G,etal. Insights into the role of SO2and H2O on the surface characteristics and de-N2O efficiency of Pd/Al2O3catalysts during N2O decomposition in the presence of CH4and O2excess [J].ApplCatalB:Environ, 2013,138-139(1): 191-198.
[24] PEREZ-RAMIREZ J, KAPTEIJN F, MOULIJN J A. High activity and stability of the Rh-free Co-based ex-hydrotalcite containing Pd in the catalytic decomposition of N2O [J].CatalLett, 1999,60(3): 133-138.
[25] BROW R K. An XPS study of oxygen bonding in zinc phosphate and zinc borophosphate glasses [J].JNon-CrystSolids, 1996,194(3): 267-273.
[26] GROSSEAU-POUSSARD J L, PANICAUD B, PEDRAZA F,etal. Iron oxidation under the influence of phosphate thin films [J].JApplPhys, 2003,94(1): 784-788.
[27] HAQUE P, AHMED I, PARSONS A,etal. Degradation properties and microstructural analysis of 40P2O5-24MgO-16CaO-16Na2O-4Fe2O3phosphate glass fibres [J].JNon-CrystSolids, 2013,375(3): 99-109.
[28] HERZING A A, CARLEY A F, EDWARDS J K,etal. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3supports: The effect of heat treatment temperature and atmosphere [J].ChemMater, 2008,20(4): 1492-1501.
[29] MURESAN L, CADIS A, PERHAITA I,etal. Morpho-structural and luminescence investigations on yttrium silicate based phosphors prepared with different precipitating agents [J].CentEurJChem, 2014,12(10): 1023-1031.
[30] TSUCHIDA T, KUBO J, YOSHIOKA T,etal. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst [J].JCatal, 2008,259(2): 183-189.
Catalytic Decomposition of N2O over Metal Phosphate-Supported Pd Catalysts
LIN Yi, MA Zhen
(DepartmentofEnvironmentalScienceandEngineering,FudanUniversity,Shanghai200433,China)
Commercial metal phosphates (M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La) were used as supports, and Pd(NO3)2was used a Pd precursor to prepare PdOx/M-P-O catalysts. The catalytic performance of these catalysts in N2O decomposition was tested. It was found that PdOx/Ca-P-O (also denoted as PdOx/HAP, HAP = hydroxyapatite) is the most active among these samples, achieving almost complete N2O conversion at 375℃, whereas other PdOx/M-P-O catalysts are virtually inactive. The co-fed O2in the reaction mixture (gas) influences the activity slightly, whereas the co-fed H2O vapor can greatly decrease the catalytic activity. The influence of O2and H2O is reversible, i.e., the activity restores when O2or H2O is retracted from the reaction mixture. PdOx/HAP exhibits good stability on stream, either in the absence or in the presence of O2. The catalytic activity can be further enhanced after PdOx/HAP is pretreated in 4% H2at 400℃. PdOx/HAP was characterized by XRD, TEM, XPS, and ICP.
N2O decomposition; palladium catalyst; hydroxyapatite; metal phosphate
0427-7104(2016)06-0732-07
2016-05-11
國(guó)家自然科學(xué)基金(21177028)
林 毅(1991—),男,碩士研究生;馬 臻,男,教授,通訊聯(lián)系人,E-mail: zhenma@fudan.edu.cn
O 643.3
A