萬 葉,郭春燕,李永民
(河北北方學(xué)院藥學(xué)系,河北張家口 075000)
帕金森病(Parkinson disease,PD)是僅次于阿爾茨海默病的第二大類神經(jīng)退行性疾病,其病變特征為黑質(zhì)紋狀體多巴胺(dopamine,DA)神經(jīng)元缺失,出現(xiàn)路易士小體?;颊吲R床表現(xiàn)為精神癥狀、自主神經(jīng)活動受阻和靜止性震顫等[1-2],嚴(yán)重影響生活質(zhì)量。目前PD的治療主要以DA替代為主,但不能阻止病程的進(jìn)展[2]。構(gòu)建更接近臨床PD特征的模型是抗PD新藥研發(fā)的重要手段。制備PD模型的藥物有6-羥多巴(6-hydroxydopamine,6-OHDA)、1-甲基-4-苯基-1,2,3,6-四氫吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)、魚藤酮和百草枯等[3-6]。6-OHDA不能透過血腦屏障,需直接腦內(nèi)給藥才能造成中樞神經(jīng)系統(tǒng)DA神經(jīng)元損傷,不能完全復(fù)制PD患者的腦病理變化,不能模擬早期PD癥狀[7-8]。MPTP雖可穿越血腦屏障,能模擬人和動物PD樣癥狀,但所形成的PD呈現(xiàn)急性或亞急性過程,不能模擬臨床PD的緩慢進(jìn)展性過程[7]。百草枯雖能模擬PD患者的病理和行為學(xué)方面的部分改變,但不易穿過血腦屏障[9]。魚藤酮具有極強(qiáng)的親脂性,能透過血腦屏障和細(xì)胞膜,魚藤酮致PD模型不僅行為學(xué)改變能接近臨床PD,而且其病理學(xué)特征也與臨床PD相似[10-11]。已有文獻(xiàn)報道,通過不同方式給予魚藤酮,可成功制備大鼠或小鼠PD模型[12-15]。另外,還可用其制備細(xì)胞模型。本文為探明PD的發(fā)病機(jī)制和新藥研發(fā)提供文獻(xiàn)基礎(chǔ)、科研思路及方法。
魚藤酮誘導(dǎo)PD的建模方法有體內(nèi)和體外方式。體內(nèi)動物模型給藥途徑有立體定位腦內(nèi)給藥、靜脈給藥、腹腔注射給藥、經(jīng)皮給藥、灌胃和皮膚接觸給藥等。體外多選PC12或SH-SY5Y細(xì)胞,也有體外培養(yǎng)大鼠腦切片的造模方法。
1.1.1 腦立體定位給藥
1985年,Heikkila等[16]采用腦立體定位方法用魚藤酮制備大鼠PD模型,造成大鼠DA黑質(zhì)紋狀體損傷。之后,Alam等[17]采用內(nèi)側(cè)前腦束立體定位給藥的方式,每只大鼠給予魚藤酮3 μg。與假手術(shù)組相比,PD模型大鼠自發(fā)活動顯著減少,強(qiáng)直癥狀顯著增強(qiáng),紋狀體DA水平顯著缺失。立體定位給予魚藤酮第50天時,同時聯(lián)合給左旋多巴和外周氨基酸脫羧酶抑制劑芐絲肼31 d,大鼠紋狀體DA水平升高,自主活動改善。Saravanan等[18]立體定位于大鼠黑質(zhì)密致部,采用更低劑量魚藤酮(每只2~12 ng)制備PD模型,連續(xù)觀察90 d,黑質(zhì)DA水平呈時間和劑量依賴性下降,但未影響受損側(cè)紋狀體5-羥色胺(5-hydroxytryptamine,5-HT)水平;黑質(zhì)部位谷氨酸水平呈劑量依賴性降低,酪氨酸羥化酶(tyrosine hydroxylase,TH)免疫反應(yīng)陽性細(xì)胞顯著減少,大鼠出現(xiàn)偏側(cè)(立體定位灌注側(cè))PD癥狀。立體定位給藥同樣適用于不能透過血腦屏障的藥物,且微量用藥即有效,能模擬臨床DA水平缺失,誘發(fā)PD癥狀。而低劑量給藥,短期內(nèi)5-HT含量不會發(fā)生明顯變化[19-20]。立體定位給藥量每只大鼠3 μg,給藥8周,大鼠不僅在行為上出現(xiàn)運動障礙,DA、谷胱甘肽(glutathione,GSH)和超氧化物歧化酶(superoxide dismutase,SOD)呈時間依賴性減少,5-HT水平在第8周也顯著降低,且死亡率低,模型成功率高,造模劑量較為適宜。該造模方式給藥微量,且一次性定位,有助于篩選治療PD的藥物。但立體定位給藥操作較難,需要一定的操作能力,定位的準(zhǔn)確性關(guān)乎實驗的成敗。
1.1.2 靜脈給藥
1997年,F(xiàn)errante等[21]靜脈灌注魚藤酮10~18 mg·kg-1連續(xù)給藥10 d,發(fā)現(xiàn)大鼠紋狀體和蒼白球損傷。2000年,Betarbet等[22]給大鼠靜脈注射魚藤酮,導(dǎo)致大鼠出現(xiàn)行為障礙,黑質(zhì)區(qū)域α-突觸核蛋白(alpha-synuclein,α-syn)的聚集。Fleming等[23]研究表明,魚藤酮導(dǎo)致大鼠運動遲緩,TH免疫活性降低,魚藤酮劑量依賴性地降低大鼠存活率,每天2 mg·kg-1,共28 d,成功造模,且存活率相對其他大劑量的存活率高。靜脈給藥操作簡單,藥物直接進(jìn)入體循環(huán),無吸收過程,藥效發(fā)揮迅速,但全身毒性較大。
1.1.3 腹腔注射給藥
2002年,Alam等[24]報道,給大鼠腹腔注射魚藤酮1.5和2.5 mg·kg-1,連續(xù)給藥60 d,均能造成大鼠自主活動減少,紋狀體DA含量降低,TH免疫反應(yīng)性降低,并存在劑量依賴性。Bashkatova等[25]對腹腔注射魚藤酮1.5 mg·kg-1(連續(xù)10,20,30和60 d)大鼠額葉皮質(zhì)和紋狀體一氧化氮(nitric oxide,NO)和巴比妥酸反應(yīng)物質(zhì)(thiobarbituric acid reactive substances,TBARS)的水平進(jìn)行了觀察。研究發(fā)現(xiàn),第1~10天 NO和TBARS水平未升高;20 d之后,紋狀體NO和TBARS水平升高;30和60 d后,紋狀體和額葉皮質(zhì)NO和TBARS水平均升高,且表現(xiàn)出自發(fā)活動減少、僵直等行為癥狀。2009年,Canno和Drolet等[26]進(jìn)行了更長時間的觀察,給不同月齡(3,7和12~14個月)的雄性Lewis大鼠腹腔注射魚藤酮(每天2.75或3.0 mg·kg-1),各組大鼠均出現(xiàn)肌肉僵直、運動遲緩和姿勢反射喪失等病理特征,DA神經(jīng)元TH缺失,與之對應(yīng)的紋狀體DA水平降低,黑質(zhì)DA神經(jīng)元泛素化α-syn聚集。且不同月齡大鼠對魚藤酮的時間依賴性與劑量依賴性有差異。3月齡大鼠腹腔注射魚藤酮3.0 mg·kg-1,2 d時,約5%大鼠呈現(xiàn)PD癥狀(嚴(yán)重的運動性運動障礙,僵硬和體位不穩(wěn)定性),直至20 d呈現(xiàn)PD癥狀大鼠數(shù)量達(dá)到75%;7月齡和12~14月齡大鼠9 d時,就有>95%大鼠出現(xiàn)上述癥狀。7月齡大鼠劑量效應(yīng)更為明顯,腹腔注射魚藤酮2.75 mg·kg-19 d時出現(xiàn)PD癥狀的比例是腹腔注射魚藤酮3.0 mg·kg-1的1/2。因此,腹腔注射魚藤酮不僅劑量和連續(xù)給藥時間對模型結(jié)果有影響,還應(yīng)考慮大鼠月齡的因素。綜合文獻(xiàn)認(rèn)為,研究重點如是PD模型生物標(biāo)志物和退化機(jī)制,則選用3月齡大鼠,采用低劑量1.5 mg·kg-1造模,便于觀察發(fā)現(xiàn)PD疾病進(jìn)程中各項生化指標(biāo)的變化,且造模成功率與存活率高;研究重點如是藥物對PD是否具有保護(hù)作用,則采用2.5~2.75 mg·kg-1。腹腔注射操作方便,吸收面積大,所復(fù)制的PD模型更接近臨床PD患者的臨床癥狀,且此方法還能制備PD的胃腸功能障礙模型[27]。
1.1.4 皮下注射
Luo等[28]報道,慢性低劑量皮下注射魚藤酮(每天2.0~3.0 mg·kg-1),從第5~56 天,大鼠時間依賴性地出現(xiàn)運動功能和黑質(zhì)神經(jīng)元的損傷,出現(xiàn)類似臨床PD的癥狀。Feng等[29]報道,大鼠皮下注射魚藤酮造成α-syn廣泛分布于腦組織,特別是海馬、皮質(zhì)和紋狀體部位,而且選擇性地造成中腦黑質(zhì)和紋狀體TH陽性表達(dá)降低,神經(jīng)纖維缺失。Lin等[30]報道,大鼠皮下注射魚藤酮除了造成運動功能減退、α-syn聚集、黑質(zhì)和紋狀體TH陽性表達(dá)降低、DA轉(zhuǎn)運蛋白表達(dá)降低及DA D2受體蛋白表達(dá)升高外,還會造成藍(lán)斑核區(qū)去甲腎上腺素神經(jīng)元活性減弱。Ulusoy等[31]報道,魚藤酮選擇性地降低大鼠黑質(zhì)紋狀體DA水平,但不改變下丘腦DA水平。Lax等[32]研究了魚藤酮對大鼠體溫調(diào)節(jié)和運動功能的相關(guān)性,發(fā)現(xiàn)長期皮下注射魚藤酮造成體溫調(diào)控系統(tǒng)功能減弱,并且減弱程度和運動功能減弱成正相關(guān)。Binienda等[33]采用皮下低劑量(每天 1.0~2.0 mg·kg-1)注射魚藤酮,連續(xù)注射7 d后,魚藤酮組60%大鼠黑質(zhì)DA神經(jīng)元缺失,注射27 d,80%大鼠黑質(zhì)DA神經(jīng)元缺失,與溶媒組比較,注射7和27 d的大鼠感覺和運動神經(jīng)傳導(dǎo)速度顯著變慢,提示DA缺失與感覺和運動神經(jīng)傳導(dǎo)速度減慢存在相關(guān)性。Sharma等[34]給大鼠皮下注射魚藤酮2 mg·kg-1,1/d,連續(xù)28 d,發(fā)現(xiàn)紋狀體DA水平降低80%才表現(xiàn)出PD癥狀,提示PD癥狀出現(xiàn)前體內(nèi)已經(jīng)發(fā)生了一系列的生化指標(biāo)的變化。所以,PD的早期干預(yù)和治療非常重要。皮下注射魚藤酮35 d后,DA水平降低80%,GSH和SOD顯著下降,脂質(zhì)過氧化水平升高60%,這些生化指標(biāo)的改變,可以作為運動功能顯著惡化的標(biāo)志物。在用藥物進(jìn)行治療時發(fā)現(xiàn),上述生化指標(biāo)的改善比運動功能的改善提前3周,據(jù)此進(jìn)一步推斷,生化指標(biāo)的改變是PD進(jìn)程惡化的早期信號。2016年,Sharma等[35]報道,大鼠皮下注射魚藤酮(每天1.5 mg·kg-1,連續(xù)28 d)導(dǎo)致了PD模型大鼠神經(jīng)遞質(zhì)(DA、去甲腎上腺素、5-HT、γ-氨基丁酸、谷氨酸、二羥苯乙酸、高香草酸和5-羥基吲哚乙酸)、生化指標(biāo)(過氧化脂質(zhì)、GSH和亞硝酸鹽)、神經(jīng)炎癥因子(腫瘤壞死因子α、白細(xì)胞介素1和白細(xì)胞介素6)發(fā)生變化及其運動功能也發(fā)生變化。低劑量皮下注射魚藤酮能模擬PD的疾病進(jìn)程變化和PD癥狀。目前多篇文獻(xiàn)報道了給大鼠皮下注射低劑量(1.5 mg·kg-1)魚藤酮的方法,大鼠均在第3周出現(xiàn)行為上的運動障礙,且能成功模擬PD的疾病進(jìn)程和PD癥狀,更符合慢性疾病的致病過程[36-38]。此法操作簡單,費用少,造模成功率高。但皮下注射會引起大鼠全身毒性,并非特異性地造成神經(jīng)系統(tǒng)DA神經(jīng)元退變,且死亡率高。
1.1.5 灌胃給藥
Inden等[39]采用給小鼠灌胃的方式成功模擬了PD動物模型。連續(xù)灌胃魚藤酮不同劑量(0.25,1.0,2.5,5.0,10和30 mg·kg-1)28 d。0.25~5.0 mg·kg-1劑量組的小鼠黑質(zhì)區(qū)TH未發(fā)生明顯變化,而10和30 mg·kg-1劑量組的小鼠黑質(zhì)區(qū)TH變化顯著。進(jìn)一步實驗表明,給小鼠持續(xù)灌胃給予魚藤酮30 mg·kg-1,7 d內(nèi)小鼠存活率為70%;直到28~56 d,小鼠存活率依舊為70%。而劑量增加為100mg·kg-1,連續(xù)給藥56 d小鼠存活率下降為15%。灌胃給予魚藤酮造成的DA系統(tǒng)受損程度、TH變化及運動功能減退等均存在時間依賴性和劑量依賴性。因此既要保證造模成功,又要保證存活率,應(yīng)采用慢性灌胃給藥方式造模,給予魚藤酮30 mg·kg-1,該劑量灌胃給藥有利于研究PD的疾病進(jìn)程和DA神經(jīng)退化機(jī)制[40]。但是,灌胃給藥不僅藥效較低,劑量控制不當(dāng),長期灌胃給藥仍會增加死亡率,影響實驗進(jìn)程[40]。
1.1.6 皮下埋置緩釋微球或微滲透泵給藥
黃君等[41]以聚乳酸-羥基乙酸共聚物(polylacticco-glycolic acid,PLGA)為載體,將魚藤酮制作成緩釋微球,采用皮下注射魚藤酮緩釋微球的方法制作PD大鼠模型。該法只需1次給藥,魚藤酮在大鼠體內(nèi)緩慢釋放,造成大鼠自主活動減少,黑質(zhì)致密帶內(nèi)TH免疫反應(yīng)顯著降低,黑質(zhì)內(nèi)絕大多數(shù)DA能神經(jīng)元受損,便能模擬PD進(jìn)程,但制劑過程繁瑣。如能將制劑商業(yè)化,則可為科研人員提供方便。Sherer等[42]采用皮下埋置微滲透泵,大鼠每日灌注魚藤酮2.0~3.0 mg·kg-1,成功復(fù)制了慢性攝入魚藤酮致PD模型。該法可引起嚙齒動物高選擇性的黑質(zhì)DA病變,黑質(zhì)神經(jīng)元α-syn聚集,但紋狀體神經(jīng)元、蒼白球神經(jīng)元和丘腦核未見病變。此類造模方法一次給藥,藥物在體內(nèi)持續(xù)釋放,較以往的多次給藥方法方便,將微滲透泵植入體內(nèi),可實現(xiàn)恒定速度持續(xù)釋放藥物,且能減少多次給藥引起的應(yīng)激反應(yīng),能模擬PD進(jìn)程,但微滲透泵價格貴,實驗成本較大。
1.1.7 接觸給藥
以上幾種給藥方式,不僅與人接觸魚藤酮的方式存在差異,而且控制不當(dāng)死亡率提高。我國學(xué)者采用模擬環(huán)境接觸的方式制備PD模型取得了成功。陳乃宏實驗室[43-44]將魚藤酮溶于橄欖油,置于無墊料鼠籠中,放入C57BL/6小鼠,鼠籠置于暗處,小鼠在含有魚藤酮的籠中自由活動2 h,給藥劑量分別為每只0.1和 0.2 mg·d-1。連續(xù)給藥2~6周,期間取材檢測中腦α-syn含量、TH陽性細(xì)胞數(shù)和小鼠爬桿能力。0.1 mg·d-1劑量組給藥后2周,模型組α-syn表達(dá)較對照組明顯增加,小鼠中腦TH陽性細(xì)胞數(shù)顯著減少,小鼠爬桿能力顯著降低;給藥4周后,模型成功率接近100%。0.2 mg·d-1劑量組造模成功時間縮短為2周,但給藥4周后死亡率較高。結(jié)果表明,采用低劑量0.1 mg·d-1接觸式給藥4周的造模方式能使小鼠產(chǎn)生PD的行為學(xué)改變和相應(yīng)的病理學(xué)變化,是有效的PD造模方式。該造模方式能模擬自然慢性進(jìn)行性病程,不僅避免了魚藤酮其他給藥方式所造成的外周毒性,而且模型的死亡率顯著降低,造模成功率提高,有助于研究PD發(fā)病機(jī)制和病程變化以及抗PD藥物的作用機(jī)制。
1.2.1 腦切片或DA神經(jīng)元
Testa等[45]建立了大鼠腦切片的培養(yǎng)方法,并用魚藤酮10~50 nmol·L-1作用于體外培養(yǎng)的大鼠腦片。結(jié)果表明,魚藤酮濃度和時間依賴性地造成黑質(zhì)致密度損傷,神經(jīng)元缺失,TH水平降低。Li等[46]將魚藤酮作用于原代培養(yǎng)的大鼠胚胎中腦DA神經(jīng)元,E3泛素化連接酶Parkin和黃素單氧化酶1顯著降低成功復(fù)制了PD模型。
1.2.2 PC12細(xì)胞或SH-SY5Y細(xì)胞
采用不同濃度的魚藤酮(0~1000 nmol·L-1)[47-49]作用于PC12細(xì)胞或SH-SY5Y細(xì)胞,可以成功復(fù)制PD細(xì)胞模型,魚藤酮濃度和時間依賴性地造成細(xì)胞凋亡和壞死。體外模型造模方法簡單,特別是隨著細(xì)胞培養(yǎng)技術(shù)和實時模擬人體生理環(huán)境的細(xì)胞培養(yǎng)儀器平臺的發(fā)展,使得體外造模方法成為研究PD發(fā)病機(jī)制和藥物保護(hù)機(jī)制及高通量篩選藥物的主要方式。
魚藤酮致PD模型的毒性機(jī)制是多因素的,如α-syn異常聚集、線粒體功能異常和活性氧產(chǎn)生增加、抗氧化防御系統(tǒng)受損及細(xì)胞凋亡等,或多因素綜合作用[12,14-15]。近年來研究發(fā)現(xiàn),細(xì)胞內(nèi)受損線粒體主要通過自噬途徑降解,自噬途徑的異常可阻礙受損線粒體的降解,從而導(dǎo)致PD發(fā)生。
α-syn最初于1988年由Maroteaux等[50]發(fā)現(xiàn),且確定其分布在神經(jīng)突觸前末梢和核周。在正常生理狀態(tài)下,α-syn無細(xì)胞毒性,參與DA的攝取調(diào)控、神經(jīng)的可塑性以及學(xué)習(xí)和記憶、維持突觸結(jié)構(gòu)、調(diào)節(jié)突觸膜的囊泡釋放和細(xì)胞黏附、維持細(xì)胞膜的結(jié)構(gòu)和穩(wěn)定性等[51]。當(dāng)有外界損傷刺激時,α-syn的錯誤折疊和寡聚態(tài)增多,會產(chǎn)生細(xì)胞毒性。多數(shù)學(xué)者研究表明,魚藤酮濃度和時間依賴性地造成細(xì)胞死亡,誘發(fā)α-syn聚集。研究表明,魚藤酮作用于SH-SY5Y細(xì)胞的半數(shù)致死濃度為100 nmol·L-1。還能造成α-syn過度磷酸化,磷酸化位點與129位絲氨酸特異性的高度磷酸化有關(guān),α-syn過度磷酸化進(jìn)而影響線粒體功能和活性氧水平[52-54]。
魚藤酮是線粒體呼吸鏈復(fù)合物拉的抑制劑[55-56],降低復(fù)合物Ⅰ的活性,破壞線粒體呼吸鏈的正常運轉(zhuǎn)[55],通過“滲透機(jī)制”使自由基產(chǎn)生增加,活性氧增加[56-58]?;钚匝跤忠鹁€粒體膜通透性轉(zhuǎn)換孔的打開,致使線粒體的ATP耗竭或ATP合成減少、功能衰退、膜電位下降,以及通透性增加[58-61],細(xì)胞色素c釋放。正常生理條件下,細(xì)胞色素c位于線粒體內(nèi)膜,不能通過外膜。但在線粒體功能衰退;其膜通透性增加,神經(jīng)元凋亡過程中,細(xì)胞色素c從線粒體釋放增加,胱天蛋白酶3和胱天蛋白酶9激活,胱天蛋白酶3斷裂[58-61],引起促凋亡蛋白Bax與抑制凋亡蛋白Bcl-2的比值增加[56]。抑制線粒體膜通透性開放和活性氧產(chǎn)生的物質(zhì),可能有助于PD的治療[61-62]。
抗氧化防御系統(tǒng)對人體預(yù)防疾病和延緩衰老起著至關(guān)重要的作用。正常情況下,人體自由基和活性氧的生成和清除處于動態(tài)平衡,病理條件或環(huán)境因素等的改變會打破原有的動態(tài)平衡。魚藤酮作為一種環(huán)境毒素,能破壞人體的抗氧化防御系統(tǒng)。已有眾多學(xué)者的實驗證實,魚藤酮能顯著降低超氧化物歧化酶、過氧化氫酶和還原型GSH活性,增加氧化型GSH含量,降低GSH與氧化性GSH比值;魚藤酮還能造成丙二醛顯著增加[54-63]
魚藤酮作用于SH-SY5Y細(xì)胞和SN-N-MC細(xì)胞會造成細(xì)胞周期調(diào)節(jié)異常和細(xì)胞凋亡甚至死亡[63-65]。魚藤酮<0.25 μmol·L-1刺激細(xì)胞,細(xì)胞周期阻滯在G1/S期,G2/M期細(xì)胞數(shù)量變化不明顯;而魚藤酮高濃度如 2 μmol·L-1刺激細(xì)胞,細(xì)胞周期阻滯在G2/M期,G2/M期之后不發(fā)生細(xì)胞分裂,而是出現(xiàn)核內(nèi)復(fù)制[66-68]。魚藤酮能使細(xì)胞中G2/M期關(guān)鍵調(diào)控分子細(xì)胞分裂周期蛋白2(cell division cycle protein 2,Cdc2)在細(xì)胞漿中的表達(dá)明顯增高,且能造成Cdc2顆粒聚集;然而,細(xì)胞中的Cdc2總蛋白中Cdc2活性是降低的[66]。有學(xué)者認(rèn)為,引起的G2/M期明顯阻滯可能和Cdc2活性降低、Cdc2表達(dá)升高相關(guān)[66-67]。魚藤酮立體定位給予SD大鼠,致大鼠DA神經(jīng)元受損,受損神經(jīng)元G1期標(biāo)志性蛋白D型細(xì)胞周期蛋白表達(dá)升高,G2/M關(guān)鍵調(diào)控分子Cdc2表達(dá)增高,凋亡分子胱天蛋白酶3活化增加,細(xì)胞周期調(diào)控分子E2F1免疫活性增強(qiáng)[66]。有學(xué)者認(rèn)為,Cdc2異常表達(dá)是從細(xì)胞周期阻滯到細(xì)胞死亡的一個過渡期,Cdc2表達(dá)異常,可能參與了胱天蛋白酶3和9依賴的細(xì)胞凋亡。魚藤酮引起DA神經(jīng)元細(xì)胞周期異??赡軈⑴c細(xì)胞凋亡過程[66-68]。
自噬是細(xì)胞內(nèi)一種依賴溶酶體的物質(zhì)降解途徑,也是細(xì)胞在外界環(huán)境刺激以及生理病理調(diào)控下的自我保護(hù)過程,自噬不足或過度自噬都會導(dǎo)致細(xì)胞死亡,這也是許多疾病的重要致病機(jī)制。魚藤酮作用于SH-SY5Y細(xì)胞和PC12細(xì)胞會造成細(xì)胞線粒體損傷,線粒體損傷是誘導(dǎo)PD的一個原因。Jang等[69]研究表明,魚藤酮誘導(dǎo)SH-SY5Y細(xì)胞降低了其生存能力,增加了活性氧的水平,并誘導(dǎo)細(xì)胞凋亡和α-syn表達(dá),且增強(qiáng)了mTOR表達(dá)和抑制Beclin-1表達(dá),說明魚藤酮抑制了自噬系統(tǒng)。Dadakhujaev等[70]建立了SH-SY5Y細(xì)胞系,超表達(dá)突變的α-syn誘導(dǎo)了一些蛋白質(zhì)聚集和細(xì)胞死亡。而自噬的激活則阻斷了魚藤酮誘導(dǎo)的細(xì)胞死亡且減輕了α-syn變異表達(dá)細(xì)胞的線粒體膜電位損傷和魚藤酮誘導(dǎo)的活性氧累積,說明自噬對魚藤酮誘導(dǎo)的細(xì)胞毒性蛋白質(zhì)聚集體起到清除作用。細(xì)胞內(nèi)的受損線粒體主要通過自噬途徑降解,因此,自噬途徑的異常可阻礙受損線粒體的降解,從而導(dǎo)致PD發(fā)生。自噬主要的研究方法如電鏡觀察細(xì)胞超微結(jié)構(gòu)、Western蛋白印跡法檢測自噬相關(guān)蛋白、細(xì)胞免疫熒光檢測自噬斑等,均已廣泛應(yīng)用于細(xì)胞自噬的研究[71-74]。
綜上所述,魚藤酮產(chǎn)生的毒性機(jī)制與目前對PD病理機(jī)制認(rèn)識相近。無論是體內(nèi)還是體外,魚藤酮都能再現(xiàn)人類PD的病理學(xué)特征。近年來,在魚藤酮誘導(dǎo)PD模型的方法、毒性機(jī)制的研究方面都有了新的進(jìn)展。梳理文獻(xiàn)發(fā)現(xiàn),相同給藥方式劑量不同,造模成功所需時間不同;不同給藥方式,急、慢性造模所需劑量不同,造成的病理變化和毒性機(jī)制亦存在差異。不同給藥方式、不同劑量的造模各有優(yōu)缺點,其生化指標(biāo)、行為學(xué)變化、神經(jīng)病理特征及毒性機(jī)制均有所不同,給藥方式及劑量的不同都會影響實驗結(jié)果,建立一個穩(wěn)定、死亡率低、成模率高的模型是科研亟待解決的問題。相比之下,慢性暴露的接觸式給藥方式能更好地模擬人類PD自然慢性進(jìn)行性的發(fā)病進(jìn)程,為PD病理機(jī)制研究提供了依據(jù),對于研究病程變化以及藥物的作用機(jī)制有十分重要的意義。
[1] Lindstr?m JC, WyllerNG, Halvorsen MM,Hartberg S,Lundqvist C.Psychometric properties of a Norwegian adaption of the barratt impulsive?ness scale-11 in a sample of Parkinson patients,headache patients,and controls[J].Brain Behav,2016,7(1):e00605.
[2] Lee SH,Lim S.Clinical effectiveness of acupunc?ture on Parkinson disease:a PRISMA-compliant systematic review and meta-analysis[J].Medicine(Baltimore),2017,96(3):e5836.
[3]Park HY,Ryu YK,Go J,Son E,Kim KS,Kim MR.Palmitoyl serotonin inhibits L-dopa-induced abnormal involuntary movements in the mouse Parkinson model[J].Exp Neurobiol,2016,25(4):174-184.
[4] Komnig D,Imgrund S,Reich A,Gründer S,F(xiàn)alkenburger BH.ASIC1 A deficient mice show unaltered neurodegeneration in the subacute MPTP model of Parkinson disease[J].PLoS One,2016,11(11):e0165235.
[5]Gao L,Zhao G,F(xiàn)ang JS,Yuan TY,Liu AL,Du GH.Discovery of the neuroprotective effects of alvespi?mycin by computational prioritization of potential anti-Parkinson agents[J].FEBS J,2014,281(4):1110-1122.
[6] Filograna R,Godena VK,Sanchez-Martinez A,F(xiàn)errari E,Casella L,Beltramini M,et al.Superoxide dismutase(SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity:implica?tions for Parkinson disease[J].J Biol Chem,2016,291(17):9257-9267.
[7] Wang G,Zheng J.Comparison of two kinds of murine models of Parkinson′s disease:6-OHDA lesioned rats and MPTP induced mice[J].Acta Univ Med Nanjing(Nat Sci)〔南京醫(yī)科大學(xué)學(xué)報(自然科學(xué)版)〕,2010,30(3):383-385,419.
[8] Yu Y,Wang K,Jia J,Wang XM.Establishment and evaluation of the striatal 6-OHDA lesioned mice model of Parkinson′s disease[J].J Cap Med Univ(首都醫(yī)科大學(xué)學(xué)報),2015,36(2):255-261.
[9] Luo HQ,Yuan J,Xu MC,Zheng CH,Wang YJ,Wu LH,et al.Study on establishing of Parkinson′s disease model by oral administration paraquat and its evaluation[J].Prog Vet Med(動物醫(yī)學(xué)進(jìn)展),2015,36(9):88-92.
[10] Schmidt WJ,Alam M.Controversies on new animal models of Parkinson′s disease pro and con:the rotenone model of Parkinson′s disease(PD)[J].J Neural Transm Suppl,2006,(70):273-276.
[11] Johnson ME,Bobrovskaya L.An update on the rotenone models of Parkinson′s disease:their ability to reproduce the features of clinical disease and model gene-environment interactions[J].Neuro?toxicology,2015,46:101-116.
[12] Liu H,Ge XQ.Progresses on rotenone-induced parkinsonian animal models[J].Pharmacol Clin Chin Mater Med(中藥藥理與臨床),2006,22(5):60-63.
[13] Deng B,Wang YY,Wang MW.Rotenone with animal models of Parkinson′s disease[J].J Brain Nerv Dis(腦與神經(jīng)疾病雜志),2006,14(2):152-154.
[14]Li YY,Lan XJ,Zhu ZY,Pi RB.Study on establish?ing of Parkinson′s disease animal model by rote?none administration[J].Cent South Pharm(中南藥學(xué)),2007,5(1):52-56.
[15] Ma BC,Chen X.Study on establishing of Parkin?son′s disease animal model by rotenone adminis?tration and its mechanism of toxicity[J].Pharma?col Clin Chin Mater Med(中藥藥理與臨床),2013,29(1):164-169.
[16]Heikkila RE,Nicklas WJ,Vyas I,Duvoisin RC.Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic adminis?tration to rats:implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine tox?icity[J].Neurosci Lett,1985,62(3):389-394.
[17]Alam M,Mayerhofer A,Schmidt WJ.The neurobe?havioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA[J].Behav Brain Res,2004,151(1-2):117-124.
[18] Saravanan KS,Sindhu KM,Mohanakumar KP.Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson′s disease[J].Brain Res,2005,1049(2):147-155.
[19] Xiong N,Huang J,Zhang Z,Zhang Z,Xiong J,Liu X,et al.Stereotaxical infusion of rotenone:a reliable rodent model for Parkinson′s disease[J].PLoS One,2009,4(11):e7878.
[20] Klein A,Gidyk DC,Shriner AM,Colwell KL,Tatton NA,Tatton WG,et al.Dose-dependent loss of motor function after unilateral medial fore?brain bundle rotenone lesion in rats:a cautionary note[J].Behav Brain Res,2011,222(1):33-42.
[21]Ferrante RJ,Schulz JB,Kowall NW,Beal MF.Systemic administration ofrotenone produces selective damage in the striatum and globus pallidus,but not in the substantia nigra[J].Brain Res,1997,753(1):157-162.
[22]Betarbet R,Sherer TB,MacKenzie G,Garcia-Osuna M,Panov AV,Greenamyre JT.Chronic systemic pesticide exposure reproduces features of Parkinson′s disease[J].Nat Neurosci,2000,3(12):1301-1306.
[23] Fleming SM,Zhu C,F(xiàn)ernagut PO,Mehta A,DiCarlo CD,Seaman RL,et al.Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rote?none[J].Exp Neurol,2004,187(2):418-429.
[24] Alam M,Schmidt WJ.Rotenone destroys dopami?nergic neurons and induces parkinsonian symp?toms in rats[J].Behav Brain Res,2002,136(1):317-324.
[25]Bashkatova V,Alam M,Vanin A,Schmidt WJ.Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain[J].Exp Neurol,2004,186(2):235-241.
[26] Cannon JR, Tapias V, Na HM, Honick AS,Drolet RE,Greenamyre JT.A highly reproducible rotenone model of Parkinson′s disease[J].Neuro?biol Dis,2009,34(2):279-290.
[27] Sherer TB,Kim JH,Betarbet R,Greenamyre JT.Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alphasynuclein aggregation[J].Exp Neurol,2003,179(1):9-16.
[28]Luo C, Rajput AH, Akhtar S, Rajput A.Alphasynuclein and tyrosine hydroxylase expression in acute rotenone toxicity[J].Int J Mol Med,2007,19(3):517-521.
[29]Feng Y,Liang ZH,Wang T,Qiao X,Liu HJ,Sun SG.Alpha-synuclein redistributed and aggregated in rotenone-induced Parkinson′s disease rats[J].Neurosci Bull,2006,22(5):288-293.
[30]Lin CH,Huang JY,Ching CH,Chuang JI.Melatonin reduces the neuronal loss,downregulation of dopa?mine transporter,and upregulation of D2 receptor in rotenone-induced parkinsonian rats[J].J Pineal Res,2008,44(2):205-213.
[31] Ulusoy GK,Celik T,Kayir H,Gürsoy M,Isik AT,Uzbay TI.Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson′s disease[J].Brain Res Bull,2011,85(6):380-384.
[32]Lax P,Esquiva G,Esteve-Rudd J,Otalora BB,Madrid JA,Cuenca N.Circadian dysfunction in a rotenone-induced parkinsonian rodent model[J].Chronobiol Int,2012,29(2):147-156.
[33] Binienda ZK, Sarkar S, Mohammed-Saeed L,Gough B,Beaudoin MA,Ali SF,et al.Chronic exposure to rotenone,a dopaminergic toxin,results in peripheral neuropathy associated with dopaminergic damage[J].Neurosci Lett,2013,541:233-237.
[34] Sharma N,Nehru B.Beneficial Effect of vitamin E in rotenone induced model of PD:behavioural,neurochemical and biochemical study[J].Exp Neurobiol,2013,22(3):214-223.
[35] Sharma N,Jamwal S,Kumar P.Beneficial effect of antidepressants against rotenone induced parkin?sonism like symptoms in rats[J].Pathophysiology,2016,23(2):123-134.
[36] Zhang GH,Tao EX.The reproduction of the rote?none model of Parkinson′s disease in rats[J].Chin J Brain Dis Rehabil(Electron Ed)〔中華腦科疾病與康復(fù)雜志(電子版)〕,2013,3(4):248-252.
[37] Chai XX,Bao B,Ye C,Li HH,Zhu SP,Zeng MJ.Establishment of PD models in SD rats induced by rotenone[J].Shandong Med J(山東醫(yī)藥),2015,55(1):9-11,14.
[38]Feng Y,Liang ZH,Wang T,Qiao X,Sun L,Liu HJ,et al.The Parkinson disease model induced by rotenone in rats[J].Stroke Nerv Dis(卒中與神經(jīng)疾?。?,2004,11(6):374-377.
[39] Inden M,Kitamura Y,Takeuchi H,Yanagida T,Takata K,Kobayashi Y,et al.Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate,a chemical chaperone[J].J Neurochem,2007,101(6):1491-1504.
[40]Inden M,Kitamura Y,Abe M,Tamaki A,Takata K,Taniguchi T.Parkinsonian rotenone mouse model:reevaluation of long-term administration of rote?none in C57BL/6 mice[J].Biol Pharm Bull,2011,34(1):92-96.
[41]Huang J,Liu H,Gu W,Yan Z,Xu Z,Yang Y,et al.A delivery strategy for rotenone microspheres in an animal model of Parkinson′s disease[J].Biomate?rials,2006,27(6):937-946.
[42] Sherer TB,Kim JH,Betarbet R,Greenamyre JT.Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synu?clein aggregation[J].Exp Neurol,2003,179(1):9-16.
[43] Liu Y,Yuan YH,Sun JD,Chen MH.Establish?ment of mouse model of Parkinson′s disease by environment-contact administration of rotenone[A].Chinese Pharmacological Society Tonic Phar?macological Division.Proceedings of 2nd Chinese Pharmacological Society Tonic Pharmacological Division Seminar(第二屆中國藥理學(xué)會補(bǔ)益藥藥理專業(yè)委員會學(xué)術(shù)研討會)[C].Chengde:Chinese Pharmacological Society Tonic Pharmacological Divi?sion.2012:2.
[44] Liu Y,Sun JD,Song LK,Li J,Chu SF,Yuan YH,et al.Environment-contact administration of rote?none:a new rodent model of Parkinson′s disease[J].Behav Brain Res,2015,294:149-161.
[45]Testa CM,Sherer TB,Greenamyre JT.Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures[J].Brain Res Mol Brain Res,2005,134(1):109-118.
[46] Li B,Yuan Y,Zhang W,He W,Hu J,Chen N.Flavin-containing monooxygenase,a new clue of pathological proteins in the rotenone model of parkinsonism[J].Neurosci Lett,2014,566:11-16.
[47]Zhou Q,Liu C,Liu W,Zhang H,Zhang R,Liu J,et al.Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways,leading to neuronal apoptosis[J].Toxicol Sci,2015,143(1):81-96.
[48] Yuan YH,Yan WF,Sun JD,Huang JY,Mu Z,Chen NH.The molecular mechanism of rotenoneinduced α-synuclein aggregation:emphasizing the role of the calcium/GSK3β pathway[J].Toxicol Lett,2015,233(2):163-171.
[49] Goldstein DS,Sullivan P,Cooney A,Jinsmaa Y,Kopin IJ,Sharabi Y.Rotenone decreases intracel?lular aldehyde dehydrogenase activity: implica?tions for the pathogenesis of Parkinson′s disease[J].J Neurochem,2015,133(1):14-25.
[50] Maroteaux L,Campanelli JT,Scheller RH.Synu?clein:a neuron-specific protein localized to the nucleus and presynaptic nerve terminal[J].J Neu?rosci,1988,8(8):2804-2815.
[51] Uversky VN.Neuropathology,biochemistry,and biophysics of alpha-synuclein aggregation[J].J Neu?rochem,2007,103(1):17-37.
[52] Chorfa A,Bétemps D,Morignat E,Lazizzera C,Hogeveen K,Andrieu T,et al.Specific pesticidedependent increases in α-synuclein levels in human neuroblastoma(SH-SY5Y)and melanoma(SK-MEL-2)cell lines[J].Toxicol Sci,2013,133(2):289-297.
[53] Perfeito R, Lázaro DF, Outeiro TF, Rego AC.Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dys?function in SH-SY5Y cells[J].Mol Cell Neurosci,2014,62:51-59.
[54]Almeida MF,Silva CM,D′Unhao AM,F(xiàn)errari MF.Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology[J].Arq Neuropsiquiatr,2016,74(9):737-744.
[55] Yuyun X,Jinjun Q,Minfang X,Jing Q,Juan X,Rui M,et al.Effects of low concentrations of rotenone upon mitohormesis in SH-SY5Y Cells[J].Dose Response,2012,11(2):270-280.
[56]Song JX,Choi MY,Wong KC,Chung WW,Sze SC,Ng TB,et al.Baicalein antagonizes rotenoneinduced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism[J].Chin Med,2012,7(1):1.
[57] Sapkota K,Kim S,Park SE,Kim SJ.Detoxified extract of Rhus verniciflua Stokes inhibits rotenoneinduced apoptosis in human dopaminergic cells,SH-SY5Y[J].Cell Mol Neurobiol,2011,31(2):213-223.
[58] Choi BS,Kim H,Lee HJ,Sapkota K,Park SE,Kim S,et al.Celastrol from"Thunder God Vine"protects SH-SY5Y cells through the preservation of mitochondrial function and inhibition of p38 MAPK in a rotenone model of Parkinson′s disease[J].Neurochem Res,2014,39(1):84-96.
[59] Zhang JY,Deng YN,Zhang M,Su H,Qu QM.SIRT3 Acts as a neuroprotective agent in rote?none-induced Parkinson cell model[J].Neuro?chem Res,2016,41(7):1761-1773.
[60]Abdelkader NF,Safar MM,Salem HA.Ursodeoxy?cholic acid ameliorates apoptotic cascade in the rote?none model of Parkinson′s disease:modulation of mitochondrialperturbations [J].MolNeurobiol,2016,53(2):810-817.
[61]Chiu CC,Yeh TH,Lai SC,Wu-Chou YH,Chen CH,Mochly-Rosen D,et al.Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenoneinduced cellular and animal models of parkinsonism[J].Exp Neurol,2015,263:244-253.
[62]Zhang Q,Zhang J,Jiang C,Qin J,Ke K,Ding F.Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rotenoneinduced SH-SY5Y cell injury[J].Neuroscience,2014,270:183-191.
[63] Qian JJ,Wang Y,Zhao KR,Wu JY,Zhang WF,Wang QF,et al.Protective effects of low concen?trations of rifampicin on rotenone-induced SH-SY5Y cells model of Parkinson′s disease[J].Jiangsu Med J(江蘇醫(yī)藥),2011,37(16):1889-1892.
[64] Han M,Zhang JY,Song CH,Liang C,F(xiàn)eng J,Yan GT.Leptin alleviates rotenone-induced injury of SH-SY5Y cells[J].Acad J Chin PLA Med Sch(解放軍醫(yī)學(xué)院學(xué)報),2014,35(2):170-173.
[65] Jiang WQ,Li AH.Protective effects of edaravone against rotenone-induced SH-SY5Y cell[J].Jiangsu Med J(江蘇醫(yī)藥),2014,40(12):1385-1387.
[66] Wang H,Chen Y,Chen J,Zhang Z,Lao W,Li X,et al.Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson′s disease models[J].PLoS One,2014,9(10):e109697.
[67] Wang H,Zhang Z,Huang J,Zhang P,Xiong N,Wang T.The contribution of Cdc2 in rotenone-induced G2/M arrest and caspase-3-dependent apoptosis[J].J Mol Neurosci,2014,53(1):31-40.
[68] Cabeza-Arvelaiz Y, Schiestl RH.Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and-untied toxicity mecha?nisms common to neurodegenerative diseases[J].PLoS One,2012,7(9):e44700.
[69]Jang W,Kim HJ,Li H,Jo KD,Lee MK,Yang HO.The neuroprotective effect of erythropoietin on rote?none-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy[J].Mol Neurobiol,2016,53(6):3812-3821.
[70]Dadakhujaev S, Noh HS, Jung EJ, Cha JY,Baek SM,Ha JH,et al.Autophagy protects the rotenone-induced cell death in alpha-synuclein overex?pressing SH-SY5Y cells[J].Neurosci Lett,2010,472(1):47-52.
[71]Song JX,Choi MY,Wong KC,Chung WW,Sze SC,Ng TB,et al.Baicalein antagonizes rotenoneinduced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism[J].Chin Med,2012,7(1):1.
[72]Zhang Q,Zhang J,Jiang C,Qin J,Ke K,Ding F.Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rote?none-induced SH-SY5Y cell injury[J].Neurosci?ence,2014,270:183-191.
[73]Jang W,Kim HJ,Li H,Jo KD,Lee MK,Song SH,et al.1,25-Dyhydroxyvitamin D3attenuates rote?none-induced neurotoxicity in SH-SY5Y cells through induction of autophagy[J].Biochem Biophys Res Commun,2014,451(1):142-147.
[74] Wu L,Luo N,Zhao HR,Gao Q,Lu J,Pan Y,et al.Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-Parkin pathway[J].Brain Res,2014,1549:52-62.