張文豪,李建軍,楊德剛,楊明亮,杜良杰,高峰,劉長彬,李大鵬,胡安明,蔡暢
雙光子顯微鏡在小動(dòng)物活體光學(xué)成像中的研究進(jìn)展①
張文豪1,2a,3,4,李建軍1,2a,3,4,楊德剛1,2a,3,4,楊明亮1,2a,3,4,杜良杰1,2a,3,4,高峰1,2a,3,4,劉長彬1,2a,3,4,李大鵬1,2a,3,4,胡安明1,2b,蔡暢1,2a,3,4
雙光子顯微鏡結(jié)合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)。雙光子熒光顯微鏡具有光損傷小、漂白區(qū)域小、穿透能力強(qiáng)、高分辨率、熒光收集率高、圖像對(duì)比度高、可實(shí)現(xiàn)暗場(chǎng)成像、適合多標(biāo)記復(fù)合測(cè)量等多種特點(diǎn),可應(yīng)用于小動(dòng)物活體光學(xué)成像,在腫瘤免疫治療、基因治療、干細(xì)胞研究、藥物篩選與評(píng)價(jià)、活體脊髓損傷成像等領(lǐng)域研究中有廣泛應(yīng)用。
雙光子顯微鏡;活體光學(xué)成像;小動(dòng)物;綜述
[本文著錄格式] 張文豪,李建軍,楊德剛,等.雙光子顯微鏡在小動(dòng)物活體光學(xué)成像中的研究進(jìn)展[J].中國康復(fù)理論與實(shí)踐, 2017,23(1):37-41.
CITED AS:Zhang WH,Li JJ,Yang DG,et al.Research progress of two-photon microscopy in small animals in vivo imaging(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(1):37-41.
1931年,Maria G?ppert-Mayer在博士論文中第一次提出原子或分子雙光子激發(fā)的理論假設(shè)。20世紀(jì)60年代初,Kaiser、Garret以及Abella等利用當(dāng)時(shí)剛發(fā)明的激光技術(shù),在晶體中觀察到雙光子吸收現(xiàn)象。1976年,Berns第一次報(bào)道活細(xì)胞中的雙光子效應(yīng)。1990年Denk等將雙光子激發(fā)現(xiàn)象應(yīng)用到激光共聚焦掃描顯微鏡中,制造出雙光子激光共聚焦顯微鏡[1]。相對(duì)于其他成像技術(shù),如超聲(ultrasound)、計(jì)算機(jī)斷層(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)、正電子衍射斷層(positron-emission tomography, PET)、單光子衍射計(jì)算機(jī)斷層(single-photon-emission computed tomography,SPECT)等技術(shù),活體光學(xué)成像具有許多獨(dú)特的優(yōu)點(diǎn):操作簡便、結(jié)果直觀、測(cè)量快速、靈敏度高以及費(fèi)用低廉等[2],尤其是可在活體內(nèi)實(shí)現(xiàn)對(duì)分子事件的動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測(cè),并且能夠揭示生物分子相互作用過程的時(shí)間、空間關(guān)系[3-11]。
活體動(dòng)物光學(xué)成像(in vivo optical imaging)主要采用生物發(fā)光(bioluminescence)與熒光(fluorescence)兩種技術(shù)[12-15]。生物發(fā)光主要用熒光素酶(luciferase)基因標(biāo)記細(xì)胞或DNA,而熒光技術(shù)則采用熒光報(bào)告基團(tuán)(GFP、RFP、Cyt及dyes等)進(jìn)行標(biāo)記[16-18]。相對(duì)于傳統(tǒng)的單光子成像,雙光子成像在生物厚組織,如活體腦組織成像中具有較高的空間分辨率、信噪比以及較低的組織損傷性等優(yōu)勢(shì)。近年來,雙光子熒光顯微鏡(two-photon fluorescence microscopy,TPM)在醫(yī)學(xué)領(lǐng)域得到廣泛應(yīng)用[19-21]。TPM使用紅外波段的超快激光作為光源,利用光學(xué)非線性效應(yīng)實(shí)現(xiàn)對(duì)樣品的三維、四維甚至實(shí)時(shí)監(jiān)測(cè)[22-23]。由于紅外光對(duì)生物組織的殺傷作用相對(duì)較小,因此可利用此技術(shù)對(duì)生物樣品進(jìn)行活體動(dòng)態(tài)觀察;同時(shí)由于長波長激光在組織中具有很高的穿透深度,雙光子熒光成像具有成像深度大的特點(diǎn)[24]。TPM對(duì)生物樣品成像具備光漂白性小、光毒性小、穿透性強(qiáng)等優(yōu)點(diǎn),一經(jīng)問世即很快應(yīng)用于活體動(dòng)物醫(yī)學(xué)領(lǐng)域的研究中,尤其適用于對(duì)小動(dòng)物模型(如斑馬魚、果蠅、小鼠、大鼠)進(jìn)行長時(shí)間內(nèi)反復(fù)多次動(dòng)態(tài)活體成像[25-30]。TPM已成為現(xiàn)代生命科學(xué)研究的重要工具,并帶來革命性的變化。本文重點(diǎn)綜述TPM在小動(dòng)物活體光學(xué)成像中的研究應(yīng)用。
傳統(tǒng)激光共聚焦顯微鏡有兩大局限。①光漂白現(xiàn)象:因?yàn)楣簿劢沟尼樋妆仨氉銐蛐?,以獲得高分辨率的圖像,而孔徑小又會(huì)擋掉很大部分從樣品發(fā)出的熒光,包括從焦平面發(fā)出的熒光,相應(yīng)的,激發(fā)光必須足夠強(qiáng),以獲得足夠的信噪比;而高強(qiáng)度的激光會(huì)使熒光染料在連續(xù)掃描過程中迅速褪色,熒光信號(hào)會(huì)隨著掃描進(jìn)程變得越來越弱。②光毒性作用:在激光照射下,許多熒光染料分子會(huì)產(chǎn)生諸如單態(tài)氧或自由基等細(xì)胞毒素,所以實(shí)驗(yàn)中要限制掃描時(shí)間和激發(fā)光的光功率密度,以保持樣品活性。光漂白和光毒現(xiàn)象很大程度限制了活性樣品的研究,尤其是動(dòng)態(tài)觀察活性樣品生長、發(fā)育過程的各個(gè)階段[31-32]。
熒光顯微技術(shù)的發(fā)展經(jīng)歷了從定性到定量、從二維到三維成像的過程,即從傳統(tǒng)熒光顯微鏡(fluorescence microscope, FM)到以單光子激光共焦掃描顯微鏡(single-photon laser con-focal scanning microscope,SPLCSM)為代表的空間分辨熒光顯微技術(shù)的發(fā)展。FM收集的是樣品的整體熒光,無法獲得準(zhǔn)確的定位和定量信息。該技術(shù)采用場(chǎng)光源,難以區(qū)分樣品內(nèi)不同部位的熒光信號(hào),也難以再現(xiàn)樣品內(nèi)熒光物質(zhì)的原有存在狀態(tài)。由于FM是二維成像,較厚樣品切片后無法觀察活體樣品內(nèi)熒光物質(zhì)的動(dòng)態(tài)變化過程。
雙光子激發(fā)的基本原理是[33-34],在高光子密度下,熒光分子可以同時(shí)吸收2個(gè)長波長的光子,在經(jīng)過很短時(shí)間,即所謂激發(fā)態(tài)壽命后,發(fā)射出一個(gè)波長較短的光子。其效果和使用一個(gè)波長為長波長一半的光子去激發(fā)熒光分子相同。由于雙光子激發(fā)需要很高的光子密度,為了不損傷細(xì)胞,TPM使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100 fs,而頻率可達(dá)80~100 MHz。
TPM結(jié)合了SPLCSM和雙光子激發(fā)技術(shù)。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時(shí),物鏡的焦點(diǎn)處光子密度最高,雙光子激發(fā)只發(fā)生在物鏡焦點(diǎn)上;觀察標(biāo)本時(shí),只在焦平面上才有光漂白和光毒性。雙光子的吸收現(xiàn)象也是非線性效應(yīng),激發(fā)只發(fā)生在物鏡焦點(diǎn)上,所以TPM不需要共聚焦針孔,提高了成像亮度和信噪比[35]。
雙光子吸收率依賴于兩個(gè)入射光子在空間和時(shí)間上的重合程度。雙光子吸收截面很小,只有在具有很大光子流量的區(qū)域,熒光團(tuán)才會(huì)被激發(fā)。因此所用激光器多為鈦激光器,可以達(dá)到ps或fs級(jí)的掃描速度,且具有非常高的峰值功率和較低的平均功率,從而可以減小或消除光漂白和光毒作用帶來的不利影響。而在一個(gè)很小的范圍提供高密度光子,保證了雙光子的同時(shí)激發(fā)。
雙光子激發(fā)過程如下。在激光照射下,基態(tài)熒光原子或分子同時(shí)吸收兩個(gè)光子而成激發(fā)態(tài)。如還原型煙酰胺腺嘌嶺二核苷酸(nicotinamide adenine dinucleotide H,NADH)酶,在單光子激發(fā)時(shí),在350 nm光的激發(fā)下產(chǎn)生450 nm熒光;而在雙光子激發(fā)時(shí),可采用溫和的紅外或近紅外光,如750 nm激光下得到450 nm熒光。這既避免了紫外光對(duì)樣品的傷害和使用紫外光學(xué)元件的許多限制,又可延長對(duì)活體生物樣品的觀察時(shí)間,為研究氨基酸、蛋白質(zhì)和神經(jīng)遞質(zhì)等提供了獨(dú)特而重要的方法[33-34]。
SPLCSM在FM技術(shù)基礎(chǔ)上加裝激光掃描,可在連續(xù)、固定范圍內(nèi)進(jìn)行小功率掃描,記錄動(dòng)態(tài)變化,共軛聚焦裝置可獲得清晰圖像[36]。光路中兩個(gè)共焦小孔的設(shè)置消除了焦平面以外雜散光的干擾,提高了分辨率和成像質(zhì)量。該技術(shù)實(shí)現(xiàn)了熒光物質(zhì)在亞細(xì)胞水平的定位,可無損傷地對(duì)較厚樣品逐層連續(xù)掃描,并重構(gòu)其組織或細(xì)胞的三維立體結(jié)構(gòu)。雖然SPLCSM克服了FM技術(shù)的部分不足,但仍有一定的不足:①激光能光漂白熒光物質(zhì),共焦小孔在阻擋焦平面外雜散光的同時(shí)亦阻擋了部分本應(yīng)該接收到的來自焦平面的光;為了獲得足夠的信噪比,需要很強(qiáng)的激發(fā)光,熒光信號(hào)也會(huì)隨著掃描進(jìn)程而變得越來越弱;②許多熒光染料分子在激光照射下會(huì)產(chǎn)生細(xì)胞毒素,限制了掃描時(shí)間和激光光源的強(qiáng)度;③由于細(xì)胞成分散射,短波長的激發(fā)光不易穿透標(biāo)本。
將雙光子技術(shù)與各種顯微鏡技術(shù)相結(jié)合,在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用中更能發(fā)揮其潛力。與SPLCSM相比,TPM具有以下優(yōu)點(diǎn):①具有高空間局域性和高分辨率;②雙光子熒光遠(yuǎn)離激發(fā)波長,避免了激發(fā)光對(duì)熒光探測(cè)的影響,能實(shí)現(xiàn)暗場(chǎng)成像,散射產(chǎn)生的背景噪聲小,圖像對(duì)比度高;③焦點(diǎn)以外不發(fā)生漂白現(xiàn)象;④可用紅外或近紅外激光作為光源,紅外光在生物組織中穿透力強(qiáng),能對(duì)生物組織的深層成像觀察。
近年來,隨著活體光學(xué)成像設(shè)備的進(jìn)展以及轉(zhuǎn)基因動(dòng)物研究的興起,國內(nèi)外科研機(jī)構(gòu)已經(jīng)將小動(dòng)物活體光學(xué)成像技術(shù)廣泛應(yīng)用于腫瘤免疫治療、基因治療、干細(xì)胞研究、藥物篩選與評(píng)價(jià)、活體脊髓損傷成像等領(lǐng)域,并取得許多成果[37-39]。
3.1 活體監(jiān)測(cè)腫瘤的生長與轉(zhuǎn)移
傳統(tǒng)腫瘤研究方法主要局限于肉眼觀察、處死動(dòng)物后進(jìn)行大體解剖或組織學(xué)觀察等,無法動(dòng)態(tài)觀察整個(gè)腫瘤事件。利用TPM研究腫瘤細(xì)胞凋亡具有獨(dú)特優(yōu)點(diǎn),可避免由于處死動(dòng)物而造成的組間差異,節(jié)省動(dòng)物成本,并能動(dòng)態(tài)監(jiān)測(cè)腫瘤在體內(nèi)的生長和轉(zhuǎn)移,使分子水平的研究能在更接近活體的環(huán)境中進(jìn)行,可以作為細(xì)胞分析的完整應(yīng)用工具[40-41]。
實(shí)時(shí)進(jìn)行高清晰度熒光成像,TPM低光漂白和光毒性掃描和檢測(cè)技術(shù)最大限度地減少光對(duì)活細(xì)胞的傷害;能直接快速地測(cè)量各種癌癥模型中腫瘤的生長和轉(zhuǎn)移,并可對(duì)癌癥治療中癌細(xì)胞的變化進(jìn)行實(shí)時(shí)觀測(cè)和評(píng)估;活體生物發(fā)光成像能夠無創(chuàng)傷地定量檢測(cè)小鼠整體原位瘤、轉(zhuǎn)移瘤及自發(fā)瘤。
3.2 監(jiān)測(cè)基因治療中基因的表達(dá)
基因治療包括在體內(nèi)將一個(gè)或多個(gè)感興趣基因及其產(chǎn)物安全而有效的傳遞到靶細(xì)胞。可應(yīng)用熒光素酶基因作為報(bào)告基因用于載體的構(gòu)建,觀察目的基因是否能夠在試驗(yàn)動(dòng)物體內(nèi)持續(xù)高效和組織特異性表達(dá)[42]。這種非侵入方式具有容易準(zhǔn)備、低毒性及輕微免疫反應(yīng)的優(yōu)點(diǎn)。熒光素酶基因也可以插入脂質(zhì)體包裹的DNA分子中,用來觀察以脂質(zhì)體為載體的DNA運(yùn)輸和基因治療情況。
基因表達(dá)研究目的基因何時(shí)、何種刺激下表達(dá)。將熒光素酶基因插入目的基因啟動(dòng)子下游,并穩(wěn)定整合于實(shí)驗(yàn)動(dòng)物染色體中,形成轉(zhuǎn)基因動(dòng)物模型[43]。利用其表達(dá)的熒光素酶與底物作用,產(chǎn)生生物發(fā)光,反應(yīng)目的基因的表達(dá)情況,從而實(shí)現(xiàn)對(duì)目的基因的研究。
3.3 干細(xì)胞應(yīng)用研究
干細(xì)胞光學(xué)標(biāo)記的常用方法有:①利用螢火蟲熒光素酶(Firefly Luciferase)作為報(bào)告基因,通過轉(zhuǎn)基因技術(shù)體外轉(zhuǎn)染干細(xì)胞;②通過親脂性熒光染料直接標(biāo)記干細(xì)胞;③從已構(gòu)建好的生物發(fā)光轉(zhuǎn)基因動(dòng)物中提取干細(xì)胞,所提取干細(xì)胞即具備生物發(fā)光特性。
總體來說,應(yīng)用TPM成像技術(shù)進(jìn)行干細(xì)胞研究主要集中于以下幾個(gè)方面:①監(jiān)測(cè)干細(xì)胞的移植、存活和增殖;②示蹤干細(xì)胞在體內(nèi)的分布和遷移;③多能誘導(dǎo)干細(xì)胞、腫瘤干細(xì)胞等新興研究[44-50]。
3.4 藥物的篩選與評(píng)價(jià)
藥物先導(dǎo)化合物的篩選與評(píng)價(jià)通常處于藥物發(fā)現(xiàn)和開發(fā)的瓶頸位置,基于現(xiàn)代分子生物學(xué)、細(xì)胞生物學(xué)技術(shù)以及現(xiàn)代儀器自動(dòng)化技術(shù)產(chǎn)生的高通量篩選(high throughput screening, HTS)的快速發(fā)展,代表了現(xiàn)代發(fā)現(xiàn)藥物先導(dǎo)化合物的主要趨勢(shì)。HTS是指運(yùn)用自動(dòng)化篩選系統(tǒng),在短時(shí)間內(nèi)、在特定的篩選模型上,完成數(shù)以千計(jì)甚至萬計(jì)的樣品活性測(cè)試。TPM可提供靶基因在體內(nèi)的實(shí)時(shí)表達(dá)和對(duì)候選藥物的準(zhǔn)確反應(yīng),還可以用來評(píng)估候選藥物和其他化合物的毒性,為藥物在疾病中的作用機(jī)制及效用提供研究方法[50-51]。
3.5 小動(dòng)物活體脊髓成像
TPM能夠?qū)D(zhuǎn)基因熒光小鼠脊髓軸突、小膠質(zhì)細(xì)胞、鈣離子活性進(jìn)行活體成像;能在長時(shí)間內(nèi)觀察脊髓損傷后軸突退變與再生、小膠質(zhì)細(xì)胞聚集、鈣離子的動(dòng)態(tài)變化等脊髓損傷后細(xì)胞水平的活體成像,為理解和追蹤脊髓損傷的病理生理過程奠定重要的理論基礎(chǔ)[22,27,52-55]。Zhang等[56-57]應(yīng)用TPM進(jìn)行甲波尼龍對(duì)小鼠脊髓損傷效應(yīng)的活體成像研究,并且進(jìn)行了甲波尼龍治療脊髓損傷時(shí)間窗的探討性研究。
在過去二十多年里,TPM成像技術(shù)的應(yīng)用范圍迅速增加,使我們對(duì)活細(xì)胞生理、病理和藥理領(lǐng)域的認(rèn)識(shí)得到前所未有的進(jìn)步[58]。
盡管TPM的應(yīng)用越來越廣泛,但仍有一些問題需要解決:①只能對(duì)熒光成像;②由于使用紅外和近紅外光源,樣品可能會(huì)受到熱損傷;③受昂貴的超快激光器限制,TPM的價(jià)格和維護(hù)成本還比較高。
該技術(shù)下一步發(fā)展可能涉及紅外染料,因?yàn)槠浼ぐl(fā)光波長更長,并能減少組織對(duì)光的吸收和折射,從而實(shí)現(xiàn)更深層組織的成像。隨著激光成像技術(shù)、計(jì)算機(jī)成像技術(shù)、分子探針、熒光標(biāo)記技術(shù)、高靈敏度探測(cè)技術(shù)、計(jì)算機(jī)圖像處理等技術(shù)系統(tǒng)裝備,以及醫(yī)學(xué)應(yīng)用等方面的飛速發(fā)展,TPM技術(shù)會(huì)得到更大提升和更廣泛的應(yīng)用。TPM將不僅用于基礎(chǔ)研究和藥物研發(fā),也將可能會(huì)作為新技術(shù)擴(kuò)展到臨床檢驗(yàn)及藥物治療領(lǐng)域。
[1]Ellis-Davies GC.Two-photon microscopy for chemical neuroscience[J].ACS Chem Neurosci,2011,2(4):185-197.
[2]Iyer M,Berenji M,Templeton NS,et al.Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice[J].Mol Ther,2002,6(4):555-562.
[3]Danthi SN,Pandit SD,Li KC.A primer on molecular biology for imagers:VII.Molecular imaging probes[J].Acad Radiol, 2004,11(9):1047-1054.
[4]Franc BL,Acton PD,Mari C,et al.Small-animal SPECT and SPECT/CT:important tools for preclinical investigation[J].J Nucl Med,2008,49(10):1651-1663.
[5]Kamiya M.Novel bio-imaging tools based on the precise design of functional fluorescence probes[J].Yakugaku Zasshi, 2016,136(10):1355-1365.
[6]Ntziachristos V,Ripoll J,Wang LV,et al.Looking and listening to light:the evolution of whole-body photonic imaging[J].Nat Biotechnol,2005,23(3):313-320.
[7]Maggi A,Ciana P.Reporter mice and drug discovery and development[J].Nat Rev Drug Discov,2005,4(3):249-255.
[8]Zhou J,Yu Z,Zhao S,et al.Lentivirus-based DsRed-2-trans-fected pancreatic cancer cells for deep in vivo imaging of metastatic disease[J].J Surg Res,2009,157(1):63-70.
[9]Yang M,Baranov E,Moossa AR,et al.Visualizing gene expression by whole-body fluorescence imaging[J].Proc Natl Acad Sci U SA,2000,97(22):12278-12282.
[10]Chen X.Visualizing the location and the dynamics of gene expression in living animals through bioluminescence imaging[J].Methods Cell Biol,2013,113:39-49.
[11]Weissleder R.Scaling down imaging:molecular mapping of cancer in mice[J].Nat Rev Cancer,2002,2(1):11-18.
[12]Choy G,Choyke P,Libutti SK.Current advances in molecular imaging:noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research[J].Mol Imaging,2003,2 (4):303-312.
[13]Schaub FX,Reza MS,Flaveny CA,et al.Fluorophore-Nano-Luc BRET Reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis[J].Cancer Res,2015,75(23):5023-5033.
[14]Ray P.Multimodality molecular imaging of disease progression in living subjects[J].J Biosci,2011.36(3):499-504.
[15]Lee HW,Gangadaran P,Kalimuthu S,et al.Advances in molecular imaging strategies for in vivo tracking of immune cells[J].Biomed Res Int,2016,2016:1946585.
[16]Song G,Wu QP,Xu T,et al.Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones:Using erythropoietin as a model[J]. J Photochem Photobiol B,2015,153:311-316.
[17]Awais M,Voronina SG,Sutton R.An efficient method is required to transfect non-dividing cells with genetically encoded optical probes for molecular imaging[J].Anal Sci,2015,31 (4):293-298.
[18]Lee H,Kim YP.Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity[J].BMB Rep,2015,48(6):313-318.
[19]Saytashev I,Glenn R,Murashova GA,et al.Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood[J].Biomed Opt Express,2016,7(9):3449-3460.
[20]Ma Y,Shaik MA,Kim SH,et al.Wide-field optical mapping of neural activity and brain haemodynamics:considerations and novel approaches[J].Philos Trans R Soc Lond B Biol Sci, 2016,371(1705):20150360.
[21]Lepeltier M,Appaix F,Liao YY,et al.Carbazole-substituted iridium complex as a solid state emitter for two-photon intravital imaging[J].Inorg Chem,2016,55(19):9586-9595.
[22]Grutzendler J,Gan WB.Two-photon imaging of synaptic plasticity and pathology in the living mouse brain[J].NeuroRx, 2006,3(4):489-496.
[23]Sorbara CD,Wagner NE,Ladwig A,et al.Pervasive axonal transport deficits in multiple sclerosis models[J].Neuron, 2014,84(6):1183-1190.
[24]Theer P,Hasan MT,Denk W.Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier[J].Opt Lett,2003,28(12):1022-1024.
[25]Zhang P,Jiang XF,Nie X,et al.A two-photon fluorescent sensor revealing drug-induced liver injury via tracking gamma-glutamyltranspeptidase(GGT)level in vivo[J].Biomaterials, 2016,80:46-56.
[26]Sinha S,Liang L,Ho ET,et al.High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity[J].Proc NatlAcad Sci U SA,2013,110(46):18374-18379.
[27]Greenberg ML,Weinger JG,Matheu MP,et al.Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis[J]. Proc NatlAcad Sci U SA,2014,111(22):E2349-E2355.
[28]Jiang LW,Wang XF,Wu ZY,et al.Label-free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy[J]. J Microsc,2017,265(2):207-213.
[29]Weinger JG,Greenberg ML,Matheu MP,et al.Two-photon imaging of cellular dynamics in the mouse spinal cord[J].J Vis Exp,2015(96):10.3791/52580.
[30]Alexander NS,Palczewska G,Stremplewski P,et al.Image registration and averaging of low laser power two-photon fluorescence images of mouse retina[J].Biomed Opt Express, 2016,7(7):2671-2691.
[31]Kaspler P,Lazic S,Forward S,et al.A ruthenium(ii)based photosensitizer and transferrin complexes enhance photo-physical properties,cell uptake,and photodynamic therapy safety and efficacy[J].Photochem Photobiol Sci,2016,15(4): 481-495.
[32]Turnbull L,Strauss MP,Liew AT,et al.Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy(f3D-SIM)[J].J Vis Exp,2014 (91):51469.
[33]Oheim M,Michael DJ,Geisbauer M,et al.Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches[J].Adv Drug Deliv Rev,2006,58 (7):788-808.
[34]Niesner R,Andresen V,Neumann J,et al.The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging[J].Biophys J, 2007,93(7):2519-2529.
[35]Schapper F,Gon?alves JT,Oheim M.Fluorescence imagingwith two-photon evanescent wave excitation[J].Eur Biophys J,2003,32(7):635-643.
[36]Paddock SW.Confocal laser scanning microscopy[J].Biotechniques,1999,27(5):992-996,998-1002,1004.
[37]Alencar H,Funovics MA,Figueiredo J,et al.Colonic adenocarcinomas:near-infrared microcatheter imaging of smart probes for early detection-study in mice[J].Radiology,2007, 244(1):232-238.
[38]Upadhyay R,Sheth RA,Weissleder R,et al.Quantitative real-time catheter-based fluorescence molecular imaging in mice[J].Radiology,2007,245(2):523-531.
[39]Gee MS,Upadhyay R,Bergquist H,et al.Human breast cancer tumor models:molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy[J].Radiology, 2008,248(3):925-935.
[40]Wu X,Chen G,Lu J,et al.Label-free detection of breast masses using multiphoton microscopy[J].PLoS One,2013,8 (6):e65933.
[41]Wu X,Chen G,Qiu J,et al.Visualization of basement membranes in normal breast and breast cancer tissues using multiphoton microscopy[J].Oncol Lett,2016,11(6):3785-3789.
[42]Guse K,Dias JD,Bauerschmitz GJ,et al.Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo[J]. Gene Ther,2007,14(11):902-911.
[43]Hinckley CA,Pfaff SL.Imaging spinal neuron ensembles active during locomotion with genetically encoded calcium indicators[J].Ann N YAcad Sci,2013,1279:71-79.
[44]Barbier V,Winkler IG,Wadley R,et al.Flow cytometry measurement of bone marrow perfusion in the mouse and sorting of progenitors and stems cells according to position relative to blood flow in vivo[J].Methods Mol Biol,2012,844:45-63.
[45]Tao W,Soonpaa MH,Field LJ,et al.Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy[J].Pediatr Cardiol,2012,33(6):929-937.
[46]Scott MK,Akinduro O,Lo Celso C.In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow[J].J Vis Exp,2014(91):e51683.
[47]Koroleva A,Deiwick A,Nguyen A,et al.Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique[J].PLoS One,2015,10(2):e0118164.
[48]Kandoth N,Kirejev V,Monti S,et al.Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles[J].Biomacromolecules,2014,15(5):1768-1776.
[49]Shimura T,Tanaka K,Toiyama Y,et al.In vivo optical pathology of paclitaxel efficacy on the peritoneal metastatic xenograft model of gastric cancer using two-photon laser scanning microscopy[J].Gastric Cancer,2015,18(1):109-118.
[50]Zhang Q,Tian X,Hu G,et al.Dual-functional analogous cis-platinum complex with high antitumor activities and two-photon bioimaging [J].Biochemistry,2015,54(13): 2177-2180.
[51]Ma X,Hui H,Shang W,et al.Recent advances in optical molecular imaging and its applications in targeted drug delivery[J].Curr Drug Targets,2015,16(6):542-548.
[52]Yang G,Pan F,Chang PC,et al.Transcranial two-photon imaging of synaptic structures in the cortex of awake head-restrained mice[J].Methods Mol Biol,2013,1010:35-43.
[53]Kerschensteiner M,Schwab ME,Lichtman JW,et al.In vivo imaging of axonal degeneration and regeneration in the injured spinal cord[J].Nat Med,2005,11(5):572-577.
[54]Di Maio A,Skuba A,Himes BT,et al.In vivo imaging of dorsal root regeneration:rapid immobilization and presynaptic differentiation at the CNS/PNS border[J].J Neurosci,2011,31 (12):4569-4582.
[55]Skuba A,Manire MA,Kim H,et al.Time-lapse in vivo imaging of dorsal root nerve regeneration in mice[J].Methods Mol Biol,2014,1162:219-232.
[56]Zhang Y,Zhang L,Shen J,et al.Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model[J].Spine (Phila Pa 1976),2014,39(8):E493-E499.
[57]Zhang Y,Zhang L,Ji X,et al.Two-photon microscopy as a tool to investigate the therapeutic time window of methylprednisolone in a mouse spinal cord injury model[J].Restor Neurol Neurosci,2015,33(3):291-300.
[58]Liston C,Gan WB.Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo[J].Proc NatlAcad Sci U SA,2011,108(38):16074-16079.
Research Progress of Two-photon Microscopy in SmallAnimals in Vivo Imaging(review)
ZHANG Wen-hao1,2a,3,4,LI Jian-jun1,2a,3,4,YANG De-gang1,2a,3,4,YANG Ming-liang1,2a,3,4,DU Liang-jie1,2a,3,4,GAO Feng1,2a,3,4,LIU Chang-bin1,2a,3,4,LI Da-peng1,2a,3,4,HU An-ming1,2b,CAI Chang1,2a,3,4
1.Capital Medical University School of Rehabilitation Medicine,Beijing 100068,China;2.a.Department of Spinal and Neural Function Reconstruction;b.Department of Neurosurgery,China Rehabilitation Research Center,Beijing Bo'ai Hospital,Beijing 100068,China;3.Center of Neural Injury and Repair,Beijing Institute for Brain Disorders,Beijing 100068,China;4.Beijing Key Laboratory of Neural Injury and Rehabilitation,Beijing 100068,China
LI Jian-jun.E-mail:crrc100@163.com
Two-photon microscopy is a new technique which combines laser scanning con-focal microscopy and two-photon excitation technique.Two-photon fluorescence microscopy has the advantages of little light damage,small bleaching area,strong penetrability,high resolution,high fluorescence collection efficiency,and high image contrast.It is suitable for dark field imaging and multi-labeled compound measurement,and has been widely used in small animals in vivo optical imaging,such as research for tumour,gene therapy,stem cells,drug development,spinal cord injury,etc.
two-photon microscopy;in vivo optical imaging;small animals;review
10.3969/j.issn.1006-9771.2017.01.09
R446.8
A
1006-9771(2017)01-0037-05
2016-10-19
2016-10-26)
1.國家自然科學(xué)基金項(xiàng)目(No.81272164);2.中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(No.2015CZ-6);3.中國康復(fù)研究中心課題(No.2012-1;No.2013-7)。
1.首都醫(yī)科大學(xué)康復(fù)醫(yī)學(xué)院,北京市100068;2.中國康復(fù)研究中心北京博愛醫(yī)院,a.脊柱脊髓神經(jīng)功能重建科;b.神經(jīng)外科,北京市100068;3.北京腦重大疾病研究院神經(jīng)損傷與修復(fù)研究所,北京市100068;4.北京市神經(jīng)損傷與康復(fù)重點(diǎn)實(shí)驗(yàn)室,北京市100068。作者簡介:張文豪(1991-),男,漢族,河南柘城縣人,碩士研究生,主要研究方向:脊柱脊髓損傷的康復(fù)與治療。通訊作者:李建軍(1962-),男,漢族,教授,主任醫(yī)師,博士研究生導(dǎo)師,主要研究方向:骨科及脊柱脊髓損傷的康復(fù)與治療。E-mail:crrc100@163.com。