• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      丙酮酸激酶M2在腫瘤及骨關(guān)節(jié)炎發(fā)病中的作用

      2017-01-13 04:47:09葉陳毅陳煒平趙翔陳臨煒李萬(wàn)里吳立東楊曉波
      浙江醫(yī)學(xué) 2017年22期
      關(guān)鍵詞:糖酵解激酶骨關(guān)節(jié)炎

      葉陳毅 陳煒平 趙翔 陳臨煒 李萬(wàn)里 吳立東 楊曉波

      ●綜 述

      丙酮酸激酶M2在腫瘤及骨關(guān)節(jié)炎發(fā)病中的作用

      葉陳毅 陳煒平 趙翔 陳臨煒 李萬(wàn)里 吳立東 楊曉波

      丙酮酸激酶(PK)是已知的糖酵解途徑尤其是腫瘤細(xì)胞糖代謝過(guò)程中極為關(guān)鍵的限速酶之一,丙酮酸激酶M2(PKM2)是PK的亞型。作為目前腫瘤領(lǐng)域研究最熱門(mén)的代謝激酶之一,PKM2在包括各種癌癥在內(nèi)的多種疾病的發(fā)生和發(fā)展中發(fā)揮重要作用。軟骨細(xì)胞糖酵解代謝異常及分子信號(hào)通路紊亂是骨關(guān)節(jié)炎病因機(jī)制研究的兩個(gè)最突出的難點(diǎn)。越來(lái)越多的研究表明,PKM2可入核參與組蛋白修飾過(guò)程,對(duì)軟骨細(xì)胞代謝及組蛋白修飾有顯著調(diào)控作用,進(jìn)而影響骨關(guān)節(jié)炎的發(fā)生和發(fā)展。本文將從基因轉(zhuǎn)錄調(diào)控、氧化應(yīng)激等方面綜述PKM2在腫瘤和骨關(guān)節(jié)炎發(fā)生、發(fā)展中的作用及相關(guān)機(jī)制,為腫瘤及骨關(guān)節(jié)炎的診治提供最新的參考依據(jù)。

      PKM2 丙酣酸激酶 糖酵解 腫瘤 骨關(guān)節(jié)炎

      丙酮酸激酶(PK)又稱磷酸丙酮酸激酶,是糖酵解途徑尤其是腫瘤細(xì)胞糖代謝過(guò)程中極為關(guān)鍵的限速酶之一,可催化磷酸烯醇式丙酮酸(PEP)和二磷酸腺苷(ADP)化學(xué)反應(yīng)生成三磷酸腺苷(ATP)和丙酮酸[1-3],是目前的研究熱點(diǎn)激酶之一。PK共有PKL、PKR、PKM1及PKM2四種亞型,其中 PKL和PKR由相同的基因PKLR編碼,而PKMl和PKM2由PKM基因編碼。PKM2在大部分核酸合成率高的組織中均有表達(dá),特別是具有增殖功能的細(xì)胞,如胚胎細(xì)胞及腫瘤細(xì)胞[2-3]。大量的研究證實(shí),PKM2在糖酵解的最后一個(gè)階段發(fā)揮關(guān)鍵作用,調(diào)節(jié)乳酸的合成,進(jìn)而影響細(xì)胞內(nèi)環(huán)境pH值及細(xì)胞功能[4-5]。PKM2主要有兩種存在形式:在正常細(xì)胞的細(xì)胞質(zhì)中,PKM2通常以四聚體形式存在,并作為代謝酶發(fā)揮作用;在腫瘤細(xì)胞中,PKM2主要以二聚體形式存在于細(xì)胞核中,并主要以蛋白激酶形式發(fā)揮作用。最新研究表明,PKM2是腫瘤細(xì)胞“瓦伯格效應(yīng)”的關(guān)鍵調(diào)控因子,多篇報(bào)道證實(shí)PKM2在多種癌細(xì)胞中呈高表達(dá),調(diào)控糖酵解代謝,與腫瘤發(fā)生、進(jìn)展有著密切關(guān)系[2-4]。此外,作為糖酵解過(guò)程的關(guān)鍵調(diào)節(jié)因子,PKM2對(duì)軟骨細(xì)胞代謝及后續(xù)骨關(guān)節(jié)炎的發(fā)生具有重要的潛在調(diào)節(jié)作用[6-8]。

      1 PKM2與腫瘤

      1.1 PKM2在腫瘤細(xì)胞中表達(dá)的調(diào)控 在腫瘤細(xì)胞中,調(diào)控PKM2基因轉(zhuǎn)錄水平的因子主要包括Sp1和Sp3。Sp1持續(xù)激活PKM2基因的轉(zhuǎn)錄,而Sp3作為轉(zhuǎn)錄抑制因子在缺氧條件下促進(jìn)PKM2基因的解離[9]。在缺氧條件下,缺氧誘導(dǎo)因子1(HIF-1)可與PKM2基因特定結(jié)合部位——缺氧反應(yīng)元件(HRE)結(jié)合,并進(jìn)一步引起PKM2的表達(dá)量增加[10]。此外,PKM2表達(dá)也受MYC調(diào)控:通過(guò)與位于PKM2的啟動(dòng)子中的MYC響應(yīng)元件結(jié)合直接調(diào)控[11];或通過(guò)激活編碼核不均一核糖核蛋白I(hnRNPI)、hnRNPA1和hnRNPA2的基因轉(zhuǎn)錄,間接調(diào)控PKM2的表達(dá)[12]。哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)與細(xì)胞生長(zhǎng)和增殖密切相關(guān),可調(diào)節(jié)細(xì)胞周期,基因轉(zhuǎn)錄、能量代謝和蛋白質(zhì)合成,并可激活HIF-1和MYC進(jìn)而刺激PKM2的表達(dá)[13]。Panasyuk等[14]的研究發(fā)現(xiàn),mTOR信號(hào)通路中AKT2可通過(guò)激活過(guò)氧化物酶體增殖物激活受體γ(PPARγ)的表達(dá),增加PKM2基因的轉(zhuǎn)錄,促進(jìn)人第10號(hào)染色體缺失的磷酸酶及張力蛋白同源基因(PTEN)缺陷小鼠肝臟中PKM2的表達(dá),抑制PTEN過(guò)表達(dá)小鼠成纖維細(xì)胞中PKM2的表達(dá)。另有研究表明,包括miR-326、miR-133在內(nèi)的多種MicroRNA對(duì)腫瘤細(xì)胞中PKM2的表達(dá)有潛在抑制作用[15-16]。

      1.2 PKM2是腫瘤細(xì)胞“瓦伯格效應(yīng)”的關(guān)鍵調(diào)控因子 德國(guó)諾貝爾獎(jiǎng)得主瓦伯格發(fā)現(xiàn)腫瘤組織中以糖酵解方式供能,糖酵解代謝顯著增強(qiáng),耗糖速度明顯高于非腫瘤細(xì)胞,并產(chǎn)生乳酸,促進(jìn)腫瘤細(xì)胞增殖,稱為“瓦伯格效應(yīng)”。越來(lái)越多的研究指出,PKM2是腫瘤細(xì)胞“瓦伯格效應(yīng)”的關(guān)鍵調(diào)控因子,PKM2已被發(fā)現(xiàn)在多種癌細(xì)胞中的表達(dá)明顯高于周圍正常組織,PKM2可調(diào)控糖酵解代謝,與腫瘤發(fā)生、進(jìn)展密切相關(guān)[17-18]。

      在以PKM1基因取代PKM2后,糖酵解途徑異常的代謝指標(biāo)可完全逆轉(zhuǎn),提示PKM2可增強(qiáng)“瓦伯格效應(yīng)”,而PKM1沒(méi)有這一能力。研究證實(shí),表達(dá)PKM2的癌細(xì)胞無(wú)論在組織培養(yǎng)還是小鼠移植性實(shí)體瘤中生長(zhǎng)速度都顯著高于表達(dá)PKM1的癌細(xì)胞[19]。當(dāng)PKM2以二聚體形式存在于癌細(xì)胞中時(shí),PKM2的高表達(dá)導(dǎo)致用于大分子生物合成的葡萄糖合成代謝增強(qiáng)而用于產(chǎn)生能量的氧化代謝減弱,從而促進(jìn)癌細(xì)胞增殖和腫瘤生長(zhǎng)。

      最新研究表明,PKM2可能通過(guò)以下分子機(jī)制介導(dǎo)癌細(xì)胞中的瓦伯格效應(yīng)[10,20]:Luo 等[10]發(fā)現(xiàn),在肝癌Hep3B等細(xì)胞系中,PKM2可與細(xì)胞核中HIF-1α相互作用,刺激HIF-1靶基因LDHA、編碼葡萄糖轉(zhuǎn)運(yùn)蛋白1(SLC2A1)和PDK1的表達(dá),進(jìn)而導(dǎo)致糖酵解代謝異常增強(qiáng)。與之對(duì)比的是,PKM1在癌細(xì)胞中不能激活HIF-1的靶基因,這可能解釋了為什么PKM1不能調(diào)節(jié)瓦伯格效應(yīng)。此外,PKM2還可結(jié)合HIF-2α并促進(jìn)HIF-2介導(dǎo)的癌細(xì)胞反式激活[10]。除了其對(duì)代謝基因轉(zhuǎn)錄的作用外,PKM2還刺激HIF-1和HIF-2介導(dǎo)的VEGFA基因(編碼血管內(nèi)皮生長(zhǎng)因子)的表達(dá),從而促進(jìn)腫瘤血管生成[10]。因此,PKM2在促進(jìn)癌癥進(jìn)展中起到至關(guān)重要的作用。

      1.3 PKM2對(duì)腫瘤細(xì)胞基因轉(zhuǎn)錄的作用 PKM2以二聚體形式入核后,其代謝酶活性減弱,并通過(guò)來(lái)自PEP的高能磷酸作為磷酸鹽供體發(fā)揮蛋白激酶的作用。實(shí)驗(yàn)表明,在IL-3和凋亡信號(hào)刺激后,細(xì)胞核中可檢測(cè)到PKM2表達(dá)[21-22]。在細(xì)胞核中,PKM2通過(guò)其C-末端(殘基307-531)結(jié)合Oct-4,并增強(qiáng)Oct-4介導(dǎo)的基因轉(zhuǎn)錄[23-24]。核PKM2通過(guò)磷酸化Stat3,增強(qiáng)Stat3的轉(zhuǎn)錄活性,并導(dǎo)致MEK5的反式激活;MEK5的上調(diào)可進(jìn)一步促進(jìn)PKM2介導(dǎo)的細(xì)胞增殖[24]。但是,由于細(xì)胞質(zhì)中PKM2二聚體對(duì)PEP底物親和力低下,核內(nèi)PKM2二聚體如何使用PEP發(fā)揮蛋白激酶作用的機(jī)制尚不清楚。目前的研究顯示,四聚體和二聚體PKM2的Km分別為0.03mM和0.46mM或0.17mM和2.2mM,阻止胞質(zhì)PKM2二聚體結(jié)合PEP。此外,與胞質(zhì)PKM2二聚體不同的是,核二聚體PKM2具有不同的性質(zhì),可抵抗FBP誘導(dǎo)的四聚化[23]。上述性質(zhì)可增強(qiáng)核PKM2二聚體對(duì)PEP的親和力,從而發(fā)揮蛋白激酶作用。

      核PKM2可調(diào)節(jié)Src介導(dǎo)的β-catenin磷酸化的過(guò)程并與β-catenin相互作用。β-catenin磷酸化后通過(guò)K433與PKM2結(jié)合;導(dǎo)致細(xì)胞周期蛋白D1(CCND1)和MYC啟動(dòng)子兩種蛋白質(zhì)的募集,以及上述兩種基因的反式激活[25]。Yang等[25]的研究指出:PKM2介導(dǎo)的表觀遺傳學(xué)變化對(duì)于EGF誘導(dǎo)的細(xì)胞周期蛋白D1和c-Myc的表達(dá)以及EGF誘導(dǎo)的腦腫瘤發(fā)生至關(guān)重要。病理生理學(xué)研究顯示,組蛋白H3磷酸化修飾在腫瘤尤其是膠質(zhì)瘤發(fā)生中發(fā)揮重要作用,并與腫瘤預(yù)后密切相關(guān);PKM2可與組蛋白H3結(jié)合增加其磷酸化修飾;也可抑制組蛋白脫乙?;?(HDAC3)活性進(jìn)而導(dǎo)致組蛋白H3乙?;礁淖僛17,25-28]。

      2 PKM2與骨關(guān)節(jié)炎(OA)

      2.1 OA與糖代謝 關(guān)節(jié)軟骨的主要成分為細(xì)胞外基質(zhì)(ECM)及軟骨細(xì)胞。ECM作為軟骨細(xì)胞周圍獨(dú)特的環(huán)境為軟骨細(xì)胞提供結(jié)構(gòu)和營(yíng)養(yǎng)等支持,并維持軟骨細(xì)胞的功能。現(xiàn)有研究表明,機(jī)械磨損等一系列有害因素可破壞ECM的動(dòng)態(tài)平衡,阻礙其合成,增加其降解,抑制軟骨細(xì)胞功能,進(jìn)而導(dǎo)致OA等關(guān)節(jié)疾患的發(fā)生。低氧微環(huán)境是軟骨細(xì)胞生存的一個(gè)顯著特點(diǎn),尤其在OA的發(fā)生、發(fā)展中,低氧微環(huán)境發(fā)揮重要作用。一方面,大量研究提示局部缺氧微環(huán)境可有效提高骨髓間充質(zhì)干細(xì)胞(BMSCs)的定向成軟骨分化能力[29-30]。Kanichai等[31]的研究結(jié)果顯示,在低氧微環(huán)境下誘導(dǎo)大鼠BMSCs成軟骨分化過(guò)程中,低氧組與正常氧分壓組相比,Ⅱ型膠原(Col-Ⅱ)及蛋白多糖的表達(dá)水平顯著上升。其進(jìn)一步的研究提示,低氧微環(huán)境可通過(guò)上調(diào)p-Akt及p-p38進(jìn)而增加SOX9基因的表達(dá),促進(jìn)BMSCs定向成軟骨分化。Malladi等[32]敲除HIF-α基因后發(fā)現(xiàn),缺氧微環(huán)境對(duì)小鼠干細(xì)胞定向成軟骨分化作用消失,提示HIF-α是缺氧微環(huán)境刺激干細(xì)胞成軟骨分化過(guò)程中的關(guān)鍵調(diào)控基因。另一方面,在缺氧微環(huán)境中,糖酵解代謝的紊亂將導(dǎo)致軟骨細(xì)胞功能障礙,影響細(xì)胞活性及分泌膠原能力。

      2.2 OA與氧化應(yīng)激 氧化應(yīng)激反應(yīng)是指機(jī)體在各種有害刺激作用下,機(jī)體抗氧化體系破壞,導(dǎo)致活性氧自由基(ROS)相對(duì)增多的過(guò)程。ROS可通過(guò)類脂、蛋白質(zhì)、糖和DNA等大分子反應(yīng)從而引起基因突變、受體敏感性改變、酶活性降低和細(xì)胞膜損害,最終損傷細(xì)胞和組織。氧化應(yīng)激反應(yīng)通過(guò)ROS給機(jī)體造成負(fù)面影響,被認(rèn)為是癌癥、炎癥等多種疾病及病理狀態(tài)發(fā)生的重要因素。此外與0A等慢性退行性變的發(fā)生有直接聯(lián)系[33]。Regan等[34]的研究結(jié)果提示,STR/ort小鼠關(guān)節(jié)軟骨以及OA患者關(guān)節(jié)軟骨標(biāo)本中,其胞外超氧化物歧化酶3(SOD3)的表達(dá)水平較正常軟骨組織顯著下降,而OA組標(biāo)本中 ROS的生成顯著增多。此外,Surapaneni等[35]的研究結(jié)果顯示,OA患者血液中脂質(zhì)過(guò)氧化反應(yīng)的產(chǎn)物丙醛(MDA)含量較健康對(duì)照組標(biāo)本明顯增加,而作為機(jī)體調(diào)節(jié)的結(jié)果,OA患者關(guān)節(jié)液中SOD的活性明顯增高[35-36]。以上結(jié)果提示,氧化應(yīng)激反應(yīng)與OA的發(fā)生、發(fā)展密切相關(guān)。

      2.3 PKM2與OA的潛在關(guān)聯(lián) PKM2與氧化應(yīng)激反應(yīng)密切相關(guān)。研究顯示,在過(guò)氧化氫、二酰胺和缺氧等引起的氧化應(yīng)激反應(yīng)中,肺癌細(xì)胞中PKM2被氧化[37]。在A549細(xì)胞中,半胱氨酸氧化可導(dǎo)致PKM2亞基關(guān)聯(lián),引起PKM2活性降低,進(jìn)而通過(guò)磷酸戊糖途徑(PPP)導(dǎo)致葡萄糖-6-磷酸的積累[37]。PPP是引起NADPH減少的關(guān)鍵來(lái)源。PKM2氧化可進(jìn)一步通過(guò)激活PPP抑制ROS的合成,進(jìn)而促進(jìn)腫瘤生長(zhǎng)[38]。在酵母中,活性較低的PKM2引起PEP積累,反過(guò)來(lái)又提供一個(gè)負(fù)反饋循環(huán),抑制上游磷酸丙糖異構(gòu)酶(TPI)從而激活PPP。PKM2-PEP-TPI負(fù)反饋循環(huán)可有效阻止酵母及人類細(xì)胞中的ROS 積聚[39]。

      軟骨細(xì)胞的功能維持以及ECM的合成主要依賴于軟骨細(xì)胞的ATP代謝平衡及能量?jī)?chǔ)備,糖酵解代謝異常將導(dǎo)致細(xì)胞功能失調(diào),甚至軟骨細(xì)胞肥大化改變。PKM2作為糖酵解代謝的關(guān)鍵酶,在軟骨細(xì)胞能量代謝紊亂這一過(guò)程中扮演重要角色,并由此參與骨關(guān)節(jié)炎的發(fā)病[40]。Calamia等[41]的研究發(fā)現(xiàn),將正常人源軟骨細(xì)胞培養(yǎng)后分別給予硫酸軟骨素和硫酸氨基葡萄糖后,PKM2的蛋白水平均顯著降低。此外,組蛋白乙?;揎椝脚cOA的發(fā)生密切相關(guān)。越來(lái)越多細(xì)胞實(shí)驗(yàn)及動(dòng)物實(shí)驗(yàn)結(jié)果提示,去乙酰化酶抑制劑(HDACIs)可有效防止OA的發(fā)生和發(fā)展,將來(lái)有可能應(yīng)用于OA的臨床治療。Yang等[25,42]發(fā)表在Cell期刊上的文章提示,細(xì)胞核中的PKM2可以在組蛋白 H3的特殊位點(diǎn)T11處標(biāo)記其磷酸基團(tuán),進(jìn)而調(diào)控基因轉(zhuǎn)錄及乙?;揎椝?。目前對(duì)于PKM2入核后的組蛋白修飾功能研究已變得越來(lái)越熱門(mén)。SOX-9在軟骨以及髓核組織中高表達(dá),對(duì)軟骨細(xì)胞增殖分化有重要調(diào)控作用[25,43-45]。Kim、Fujita等[46-47]多位學(xué)者報(bào)道,OA患者的軟骨細(xì)胞SOX-9激活子區(qū)域乙?;揎椝斤@著異常,提示SOX-9啟動(dòng)子區(qū)域乙酰化水平與OA發(fā)生相關(guān)。以上研究提示,PKM2作為氧化應(yīng)激及組蛋白修飾的重要調(diào)控因子,可能在OA的發(fā)生中發(fā)揮重要調(diào)控作用。

      綜上所述,PKM2可通過(guò)對(duì)腫瘤細(xì)胞糖代謝以及基因轉(zhuǎn)錄的調(diào)控影響腫瘤的發(fā)生、發(fā)展及預(yù)后。此外,PKM2作為一個(gè)關(guān)鍵性糖酵解代謝激酶可影響軟骨細(xì)胞膠原分泌能力及細(xì)胞活性,在OA的發(fā)生中發(fā)揮重要調(diào)控作用。研究PKM2與腫瘤及OA的關(guān)系可能會(huì)從新的角度揭示腫瘤和OA的發(fā)病機(jī)制并為其治療提供新的藥物作用靶點(diǎn)。

      [1]BrandiJ,CecconiD,Cordani M,et al.The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1,GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition[J].Free Radic BiolMed,2016,101:305-316.

      [2]Camarillo J M,Ullery J C,Rose K L,et al.Electrophilic Modification of PKM2 by 4-Hydroxynonenaland 4-Oxononenal Results in Protein Cross-Linking and Kinase Inhibition[J].Chem Res Toxicol,2017,30(2):635-641.

      [3]Dayton T L,Jacks T,Vander Heiden M G.PKM2,cancer metabolism,and the road ahead[J].EMBO Rep,2016,17(12):1721-1730.

      [4]Cheng K Y,Hao M.Mammalian Target of Rapamycin(mTOR)Regulates Transforming Growth Factor-beta1(TGF-beta1)-Induced Epithelial-Mesenchymal Transition via Decreased Pyruvate Kinase M2 (PKM2)Expression in Cervical Cancer Cells[J].Med SciMonit,2017,23:2017-2028.

      [5]Deng J,Lu S,Liu H,et al.Homocysteine Activates B Cells via Regulating PKM2-DependentMetabolic Reprogramming[J].J Immunol,2017,198(1):170-183.

      [6]Fan F,Wu H,Liu Z,et al.Nuclear PKM2 expression,an independent risk factor for ER after curative resection of hepatocellular carcinoma[J].Biomed Pharmacother,2016,84:1858-1864.

      [7]Guo C Y,Yan C,Luo L,et al.Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells[J].Oncol Rep,2017,37(4):2161-2166.

      [8]Guo M,Zhao X,Yuan X,et al.MiR-let-7a inhibits cell proliferation,migration,and invasion by down-regulating PKM2 in cervicalcancer[J].Oncotarget,2017,8(17):28226-28236.

      [9]Discher D J,Bishopric N H,Wu X,et al.Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element[J].The Journal of biologicalchemistry,1998,273(40):26087-26093.

      [10]Luo W,Hu H,Chang R,et al.Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J].Cell,2011,145(5):732:744.

      [11]Kim J W,Zeller KI,Wang Y,et al.Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays[J].Molecular and cellular biology,2004,24(13):5923-5936.

      [12]David C J,Chen M,Assanah M,et al.HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer[J].Nature,2010,463(7279):364-368.

      [13]Sun Q,Chen X,Ma J,et al.Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(10):4129-4134.

      [14]Panasyuk G,Espeillac C,Chauvin C,et al.PPARgamma contributes to PKM2 and HK2 expression in fatty liver[J].Nature communications,2012,3:672.

      [15]Kefas B,Comeau L,Erdle N,et al.Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survivalofglioma cells[J].Neuro-oncology,2010,12(11):1102-1112.

      [16]Wong T S,Liu X B,Chung-Wai Ho A,et al.Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling[J].Internationaljournalof cancer,2008,123(2):251-257.

      [17]Zhu H,Luo H,Zhu X,et al.Pyruvate kinase M2(PKM2)expression correlates with prognosis in solid cancers:a meta-analysis[J].Oncotarget,2017,8(1):1628-1640.

      [18]Liang J,Cao R,Zhang Y,et al.PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis[J].Nature communications,2016,7:12431.

      [19]Christofk H R,Vander Heiden M G,Harris M H,et al.The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J].Nature,2008,452(7184):230-233.

      [20]Luo W,Semenza G L.Emerging roles of PKM2 in cell metabolism and cancer progression[J].Trends in endocrinology and metabolism:TEM,2012,23(11):560-566.

      [21]Hoshino A,Hirst J A,Fujii H.Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase[J].The Journal of biological chemistry,2007,282(24):17706-17711.

      [22]Stetak A,Veress R,Ovadi J,et al.Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death[J].Cancer research,2007,67(4):1602,1608.

      [23]Lee J,Kim H K,Han YM,et al.Pyruvate kinase isozyme type M2(PKM2)interacts and cooperates with Oct-4 in regulating transcription[J].The international journal of biochemistry&cell biology,2008,40(5):1043-1054.

      [24]Gao X,Wang H,Yang J J,et al.Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J].Molecular cell,2012,45(5):598-609.

      [25]Yang W,Xia Y,Hawke D,et al.PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis[J].Cell,2012,150(4):685-696.

      [26]Yan XL,Zhang XB,Ao R,et al.Effects of shRNA-Mediated Silencing of PKM2 Gene on Aerobic Glycolysis,Cell Migration,Cell Invasion,and Apoptosis in Colorectal Cancer Cells[J].J CellBiochem,2017,118(12):4792-4803.

      [27]Yuan S,Qiao T,Zhuang X,et al.Knockdown of the M2 Isoform of Pyruvate Kinase (PKM2)with shRNA Enhances the Effect of Docetaxel in Human NSCLC Cell Lines In Vitro[J].Yonsei Med J,2016,57(6):1312-1323.

      [28]Zhang H S,Zhang Z G,Zhou Z,et al.PKM2-mediated inhibition of autophagy facilitates Tat's inducing HIV-1 transactivation[J].Arch Biochem Biophys,2017,625-626:17-23.

      [29]Valorani M G,Montelatici E,Germani A,et al.Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials[J].Cellproliferation,2012,45(3):225-238.

      [30]Weijers E M,Van Den Broek L J,Waaijman T,et al.The influence of hypoxia and fibrinogen variants on the expansion and differentiation of adipose tissue-derived mesenchymal stem cells[J].Tissue engineering,Part A,2011,17(21-22):2675-2685.

      [31]Kanichai M,Ferguson D,Prendergast P J,et al.Hypoxia promotes chondrogenesis in rat mesenchymal stem cells:a role for AKT and hypoxia-inducible factor(HIF)-1alpha[J].Journal of cellular physiology,2008,216(3):708-715.

      [32]Malladi P,Xu Y,Chiou M,et al.Hypoxia inducible factor-1alpha deficiency affects chondrogenesis of adipose-derived adult stromalcells[J].Tissue engineering,2007,13(6):1159-1171.

      [33]彭勇,陳勇,鄔秀娣,等.HIF-1α及VEGF在類風(fēng)濕關(guān)節(jié)炎成纖維樣滑膜細(xì)胞中的表達(dá)及意義[J].浙江醫(yī)學(xué),2013,35(18):1628-1631,1643.

      [34]Regan E,Flannelly J,Bowler R,et al.Extracellular superoxide dismutase and oxidant damage in osteoarthritis[J].Arthritis and rheumatism,2005,52(11):3479-3491.

      [35]Surapaneni K M,Venkataramana G.Status of lipid peroxidation,glutathione,ascorbic acid,vitamin E and antioxidant enzymes in patients with osteoarthritis[J].Indian journal of medical sciences,2007,61(1):9-14.

      [36]Ostalowska A,Birkner E,Wiecha M,et al.Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint[J].Osteoarthritis and cartilage,2006,14(2):139-145.

      [37]Anastasiou D,Poulogiannis G,Asara J M,et al.Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J].Science(New York,N.Y.),2011,334(6060):1278-1283.

      [38]Kruger A,Gruning N M,Wamelink M M,et al.The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response[J].Antioxidants&redox signaling,2011,15(2):311-324.

      [39]Gruning N M,Rinnerthaler M,Bluemlein K,et al.Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells[J].Cellmetabolism,2011,14(3):415-427.

      [40]余華晨,吳立東,熊炎,等.脫氫表雄酮對(duì)兔骨關(guān)節(jié)炎軟骨和滑膜中MMP-3、TIMP-1和IL-1βmRNA表達(dá)的影響[J].浙江醫(yī)學(xué),2006,28(5):345-348.

      [41]Calamia V,Mateos J,Fernandez-Puente P,et al.A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine[J].Scientific reports,2014,4:5069.

      [42]Yang W,Zheng Y,Xia Y,et al.ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect[J].Nature cellbiology,2012,14(12):1295-1304.

      [43]Oh C D,Lu Y,Liang S,et al.Correction:SOX9 Regulates Multiple Genes in Chondrocytes,Including Genes Encoding ECM Proteins,ECM Modification Enzymes,Receptors,and Transporters[J].PloS one,2015,10(11):e0143156.

      [44]Tao K,Frisch J,Rey-Rico A,et al.Co-overexpression of TGF-beta and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells[J].Stem cell research&therapy,2016,7:20.

      [45]Lee S,Yoon D S,Paik S,et al.microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J].Stem cells and development,2014,23(15):1798-1808.

      [46]Kim KI,Park YS,Im G I.Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage[J].Journal of bone and mineral research:the official journal of the American Society for Bone and MineralResearch,2013,28(5):1050-1060.

      [47]Fujita N,Matsushita T,Ishida K,et al.Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions[J].Journal of orthopaedic research:official publication of the Orthopaedic Research Society,2011,29(4):511-515.

      10.12056/j.issn.1006-2785.2017.39.22.2017-2144

      浙江省自然科學(xué)基金一般項(xiàng)目(LY15H060009)

      310009 杭州,浙江大學(xué)醫(yī)學(xué)院附屬第二醫(yī)院骨科

      楊曉波,E-mail:978239643@qq.com

      2016-10-22)

      馬雯娜)

      猜你喜歡
      糖酵解激酶骨關(guān)節(jié)炎
      非編碼RNA在胃癌糖酵解中作用的研究進(jìn)展
      抗抑郁藥帕羅西汀或可用于治療骨關(guān)節(jié)炎
      中老年保健(2021年5期)2021-12-02 15:48:21
      蚓激酶對(duì)UUO大鼠腎組織NOX4、FAK、Src的影響
      膝骨關(guān)節(jié)炎如何防護(hù)?
      蚓激酶的藥理作用研究進(jìn)展
      糖酵解與動(dòng)脈粥樣硬化進(jìn)展
      放射對(duì)口腔鱗癌細(xì)胞DNA損傷和糖酵解的影響
      18F-FDG PET/CT中病灶糖酵解總量判斷局部晚期胰腺癌放射治療的預(yù)后價(jià)值
      黏著斑激酶和踝蛋白在黏著斑合成代謝中的作用
      原發(fā)性膝骨關(guān)節(jié)炎中醫(yī)治療研究進(jìn)展
      定边县| 曲松县| 资阳市| 江安县| 灵寿县| 遵义县| 遂平县| 海宁市| 德江县| 汪清县| 雷波县| 德化县| 阳春市| 资兴市| 乌兰县| 大同市| 五华县| 鄂伦春自治旗| 盐亭县| 靖州| 高邮市| 江孜县| 白玉县| 金沙县| 阳山县| 马鞍山市| 五台县| 万盛区| 安庆市| 福贡县| 乐业县| 连城县| 曲麻莱县| 泰顺县| 昌都县| 保山市| 盘山县| 策勒县| 清镇市| 三门峡市| 元江|