姚瑤 林堃 黃浩杰 李兆申
·綜述與講座·
TGF-β/Smad信號(hào)通路在胰腺癌上皮間質(zhì)轉(zhuǎn)化過(guò)程中的作用
姚瑤 林堃 黃浩杰 李兆申
胰腺導(dǎo)管腺癌( pancreatic ductal adenocarcinoma,PDAC)發(fā)病率逐年升高,早期診斷困難,5年生存率低,死亡率高,目前的治療效果仍不理想[1-3]。PDAC具有間質(zhì)比重大,乏血供的特征,癌周間質(zhì)與癌細(xì)胞相互作用促進(jìn)胰腺癌進(jìn)展[4],上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)在其中起著關(guān)鍵的作用。因此,眾多研究將腫瘤的治療針對(duì)誘導(dǎo)細(xì)胞發(fā)生EMT的關(guān)鍵因子轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor beta,TGF-β)。本文就TGF-β/Smad信號(hào)通路在胰腺癌EMT過(guò)程中的作用進(jìn)行綜述。
EMT的概念最早于1982年由Greenburg和Hay[5]提出,EMT是指在某些特殊的生理或病理?xiàng)l件下,上皮細(xì)胞失去了與基底膜的連接等上皮表型,極性消失,獲得較高的遷移與侵襲、抗凋亡和降解細(xì)胞外基質(zhì)(extracellular matrix,ECM)的能力等間質(zhì)表型,即轉(zhuǎn)變?yōu)榫哂谢顒?dòng)能力、能在ECM中移動(dòng)的間質(zhì)細(xì)胞的過(guò)程。它分為3種類型[6]:第一種是原腸胚胎時(shí)期,原始的上皮細(xì)胞發(fā)生EMT,參與多細(xì)胞生物胚胎發(fā)育和器官形成;第二種是內(nèi)皮或上皮轉(zhuǎn)化為組織成纖維細(xì)胞,參與組織的傷口愈合和器官纖維化等過(guò)程;第三種是上皮來(lái)源的細(xì)胞失去極性轉(zhuǎn)化為具有侵襲和遷移運(yùn)動(dòng)能力的腫瘤細(xì)胞。有研究認(rèn)為發(fā)生EMT的細(xì)胞能夠在類似于人體內(nèi)基底膜的基質(zhì)膠上生長(zhǎng)并穿透基質(zhì)膠,提示EMT可能是腫瘤細(xì)胞突破基底膜浸潤(rùn)性生長(zhǎng)的一個(gè)重要機(jī)制[7-8]。
目前發(fā)現(xiàn)EMT涉及的一些通路主要有TGF-β/Smad通路、Wnt/β-catenin通路、PI3K/AKT通路、Notch通路等。其中TGF-β在誘導(dǎo)EMT過(guò)程中的作用已經(jīng)比較明確,是誘導(dǎo)EMT的主要因子之一,主要通過(guò)Smad和非Smad信號(hào)通路誘導(dǎo)腫瘤細(xì)胞發(fā)生EMT,與腫瘤侵襲轉(zhuǎn)移密切相關(guān)[9-11]。
TGF-β是廣泛存在于細(xì)胞間且具有多種生物學(xué)效應(yīng)的細(xì)胞因子,對(duì)細(xì)胞及機(jī)體的發(fā)育、增殖、分化、凋亡、血管生成、間質(zhì)形成、代謝等功能起到關(guān)鍵作用[12]。機(jī)體多種細(xì)胞均可分泌非活性狀態(tài)的TGF-β。在體外,非活性狀態(tài)的TGF-β可通過(guò)酸處理活化;在體內(nèi),酸性環(huán)境可存在于骨折附近和正在愈合的傷口,蛋白本身的裂解作用也可活化TGF-β。一般在細(xì)胞分化活躍的組織常含有較高水平的TGF-β,如成骨細(xì)胞、腎臟、骨髓和胎肝的造血細(xì)胞。TGF-β通過(guò)與3個(gè)高親和性受體Ⅰ型受體(TβRⅠ)、Ⅱ型受體(TβRⅡ)、Ⅲ型受體(TβRⅢ)相結(jié)合,才能啟動(dòng)跨膜信號(hào),發(fā)揮生物學(xué)效應(yīng)。Smad蛋白是TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路的始動(dòng)因子。目前已發(fā)現(xiàn)至少9種Smad蛋白,從結(jié)構(gòu)和功能上分為3個(gè)亞型:受體調(diào)節(jié)性Smad,包括Smad1、2、3、5、8;共同介導(dǎo)性Smad,如Smad4;抑制性Smad,如Smad6、7等。
在體內(nèi)具有生物活性的TGF-β蛋白同轉(zhuǎn)化生長(zhǎng)因子結(jié)合蛋白(laetnt TGF-β binding portein,LTBP)結(jié)合后轉(zhuǎn)變?yōu)闊o(wú)活性狀態(tài),并分泌到ECM[13]。在ECM中通過(guò)蛋白酶分解等作用,TGF-β同LTBP解離恢復(fù)活性?;罨腡GF-β首先與TβRⅡ在細(xì)胞外結(jié)合,TβRⅡ通過(guò)調(diào)節(jié)TβRI胞質(zhì)區(qū)的GS結(jié)構(gòu)域的絲氨酸/蘇氨酸磷酸化激活TβRI,活化后的TβRI使下游的信號(hào)分子Smad2/3發(fā)生磷酸化,再進(jìn)一步與Smad4形成復(fù)合物進(jìn)入胞核,調(diào)節(jié)相應(yīng)靶基因轉(zhuǎn)錄,引起緊密連接蛋白、上皮生物標(biāo)志物E-cadherin等表達(dá)下調(diào),間質(zhì)生物標(biāo)志物蛋白表達(dá)上調(diào),使上皮來(lái)源的腫瘤細(xì)胞失去極性呈現(xiàn)纖維樣表型,黏附能力下降,細(xì)胞遷移和侵襲能力增強(qiáng)[14]。國(guó)內(nèi)外均有大量文獻(xiàn)報(bào)道,在肝臟、肺、腎臟、乳腺和胰腺等器官中,TGF-β/Smad信號(hào)通路可通過(guò)誘導(dǎo)EMT過(guò)程促進(jìn)腫瘤的發(fā)生和轉(zhuǎn)移[15-18]。
1.TGF-β信號(hào)通路在胰腺癌發(fā)展過(guò)程中的作用:近年來(lái)遺傳學(xué)及表觀遺傳學(xué)研究發(fā)現(xiàn),從正常胰腺導(dǎo)管上皮到上皮內(nèi)瘤變,以及最終進(jìn)展為胰腺癌的過(guò)程中存在一些表達(dá)顯著改變的基因如K-ras、p53、Smad4、p16等[19-21]。Smad4是TGF-β信號(hào)通路的關(guān)鍵分子,且TGF-β信號(hào)通路在胰腺癌的間質(zhì)形成、ECM沉積中起關(guān)鍵作用[22]。TGF-β1在腫瘤發(fā)生發(fā)展過(guò)程中具有兩面性,在胰腺癌早期TGF-β1可以使細(xì)胞停留在G1期抑制細(xì)胞增殖,發(fā)揮抑癌作用;當(dāng)胰腺癌進(jìn)展后,Smad4發(fā)生突變失活,TGF-β1依賴Smad4的抑癌作用被阻擋,此時(shí)腫瘤細(xì)胞自身分泌大量的TGF-β1使上皮細(xì)胞出現(xiàn)間質(zhì)化改變,進(jìn)而促進(jìn)胰腺癌生長(zhǎng)、侵襲及轉(zhuǎn)移[23-24]。
2.胰腺癌間質(zhì)的成分與特點(diǎn):間質(zhì)是腫瘤細(xì)胞間及其周圍的組織,包含成纖維細(xì)胞、星狀細(xì)胞、血管神經(jīng)、炎癥細(xì)胞、免疫細(xì)胞等多種成分[25],在胰腺癌發(fā)展過(guò)程中參與形成腫瘤細(xì)胞的微環(huán)境,間質(zhì)內(nèi)部各種成分之間及間質(zhì)與腫瘤細(xì)胞間均存在信號(hào)通路之間的相互作用,共同參與腫瘤發(fā)生、發(fā)展及藥物抵抗等過(guò)程[26-28]。多項(xiàng)研究證實(shí)上皮細(xì)胞是胰腺癌腫瘤間質(zhì)中纖維成分的重要來(lái)源之一,而TGF-β信號(hào)通路在EMT過(guò)程中起到了核心作用[29]。
3.TGF-β/Smad信號(hào)通路參與胰腺癌EMT并促進(jìn)腫瘤發(fā)展:在胰腺癌間質(zhì)形成過(guò)程中,間質(zhì)與胰腺癌細(xì)胞的相互作用稱為促結(jié)締組織增生反應(yīng)(desmoplastic reaction,DR)。腫瘤細(xì)胞通過(guò)旁分泌方式分泌的配體可以激活間質(zhì)中TGF-β信號(hào)通路,促進(jìn)ECM沉淀。國(guó)內(nèi)外均有文獻(xiàn)報(bào)道TGF-β信號(hào)通路參與間質(zhì)的起源[30-32]。目前認(rèn)為胰腺癌間質(zhì)有多種來(lái)源,主要包括已存在的間質(zhì)細(xì)胞、間充質(zhì)干細(xì)胞轉(zhuǎn)分化、EMT、腫瘤干細(xì)胞分化而來(lái)。體外實(shí)驗(yàn)發(fā)現(xiàn)TGF-β可以誘導(dǎo)纖維母細(xì)胞表達(dá)成纖維細(xì)胞標(biāo)志物并且使其具有成纖維細(xì)胞的形態(tài)特征,還可以通過(guò)活化癌周的間質(zhì)細(xì)胞,促進(jìn)腫瘤細(xì)胞募集間質(zhì)細(xì)胞形成腫瘤血管[33]。有學(xué)者報(bào)道在胰腺癌細(xì)胞株及手術(shù)切除的胰腺癌組織中發(fā)現(xiàn)EMT現(xiàn)象的存在[34]。大量的信號(hào)通路包括TGF-β、Wnt、Hh、PDGF等都參與胰腺癌間質(zhì)形成過(guò)程并促進(jìn)腫瘤的進(jìn)展。Sannino等[35]發(fā)現(xiàn)胰腺癌細(xì)胞中上皮細(xì)胞標(biāo)記物β-catenin的協(xié)同因子BCL9L表達(dá)水平升高,并通過(guò)TGF-β信號(hào)通路誘導(dǎo)EMT,從而導(dǎo)致胰腺癌的進(jìn)展,而敲除該基因可抑制腫瘤細(xì)胞的生長(zhǎng)和肝轉(zhuǎn)移。Thakur等[36]發(fā)現(xiàn)p53的一種同源蛋白Tap73在胰腺癌中過(guò)表達(dá),并促進(jìn)胰腺癌的發(fā)展,在小鼠胰腺癌模型中發(fā)現(xiàn)Tap73缺失增加了EMT程度,進(jìn)一步證明了Tap73的缺失可通過(guò)上調(diào)Bgn、Sma及Smad等TGF-β信號(hào)通路的關(guān)鍵蛋白的表達(dá)水平和活性從而促進(jìn)EMT的發(fā)生,導(dǎo)致腫瘤發(fā)展。Zhao等[37]研究發(fā)現(xiàn)一種抑制腫瘤生長(zhǎng)的因子miRNA-34a及其下游靶基因Sirt1和Notch1通過(guò)調(diào)節(jié)EMT相關(guān)基因表達(dá)參與EMT過(guò)程,從而促進(jìn)慢性胰腺炎向胰腺癌的發(fā)展。Lin等[38]認(rèn)為鈣調(diào)蛋白家族成員之一Tagln2在胰腺癌的增殖和侵襲過(guò)程中起重要的調(diào)節(jié)作用,TGF-β/Smad信號(hào)通路可通過(guò)Smad受體磷酸化誘導(dǎo)Tagln2在胰腺細(xì)胞的高表達(dá),從而促進(jìn)胰腺癌的轉(zhuǎn)移。
胰腺癌具有間質(zhì)比例高、成分多等特征,在腫瘤發(fā)展過(guò)程中由于基因累積突變,間質(zhì)與腫瘤細(xì)胞相互作用,不斷改變腫瘤微環(huán)境以利于腫瘤生長(zhǎng)。TGF-β1信號(hào)通路參與了由正常胰腺導(dǎo)管上皮轉(zhuǎn)變?yōu)橐认侔┑倪^(guò)程。近年來(lái)學(xué)者們熱衷研究的TGF-β/Smad信號(hào)通路為探索胰腺癌侵襲轉(zhuǎn)移機(jī)制、尋找新的診斷分子標(biāo)記物和治療靶點(diǎn)提供了很有前景的研究方向。但由于TGF-β/Smad信號(hào)通路調(diào)控機(jī)制復(fù)雜,涉及相關(guān)基因數(shù)量眾多,眾多研究報(bào)道的結(jié)果仍眾說(shuō)紛紜。因此,還需要更多、更加深入的關(guān)于TGF-β/Smad信號(hào)通路介導(dǎo)胰腺癌EMT作用機(jī)制的研究,從而進(jìn)一步闡明胰腺癌發(fā)生發(fā)展的機(jī)制,為胰腺癌侵襲轉(zhuǎn)移的分子干預(yù)提供潛在的作用靶點(diǎn),以期在基因水平實(shí)現(xiàn)治療目的。
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016.[J].CA Cancer J Clin, 2016, 66(2): 7-30.DOI: 10.3322/caac.21332.
[2] Li D, Xie K, Wolff R, et al. Pancreatic cancer[J].Lancet, 2004, 363(9414): 1049-1057.
[3] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2): 115-132.DOI: 10.3322/caac.21338.
[4] Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma[J].Mol Cancer Ther, 2007, 6(4): 1186-1197.
[5] Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J].J Cell Biol, 1982,95(1):333-339.
[6] Singh P, Wig JD, Srinivasan R, et al. A comprehensive examination of Smad4, Smad6 and Smad7 mRNA expression in pancreatic ductal adenocarcinoma[J].Indian J Cancer, 2011, 48(2): 170-174.DOI: 10.4103/0019-509X.82876.
[7] Singh P, Srinivasan R, Wig JD. Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment[J].Pancreas, 2011, 40(5): 644-652.DOI: 10.1097/MPA.0b013e31821ff741.
[8] Brunetti O, Russo A, Scarpa A, et al. MicroRNA in pancreatic adenocarcinoma: predictive/prognostic biomarkers or therapeutic targets?[J].Oncotarget, 2015, 6(27): 23323-23341.
[9] Padua D, Massague J. Roles of TGF-beta in metastasis[J].Cell Res, 2009, 19(1): 89-102.DOI: 10.1038/cr.2008.316.
[10] Garamszegi N, Garamszegi SP, Samavarchi-Tehrani P, et al. Extracellular matrix-induced transforming growth factor-beta receptor signaling dynamics[J].Oncogene, 2010, 29(16): 2368-2380.DOI: 10.1038/onc.2009.514.
[11] Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge[J].Front Med (Lausanne), 2015, 2: 59.DOI: 10.3389/fmed.2015.00059. eCollection 2015.
[12] Haddad A, Kowdley GC, Pawlik TM, et al. Hereditary pancreatic and hepatobiliary cancers[J].Int J Surg Oncol, 2011, 2011: 154673.DOI: 10.1155/2011/154673.
[13] Cowan RW, Maitra A. Genetic progression of pancreatic cancer[J].Cancer J, 2014, 20(1): 80-84.DOI: 10.1097/PPO.0000000000000011.
[14] Rustgi AK. Familial pancreatic cancer: genetic advances[J].Genes Dev, 2014, 28(1): 1-7.DOI: 10.1101/gad.228452.113.
[15] Singh P, Srinivasan R, Wig JD, et al. A study of Smad4, Smad6 and Smad7 in surgically resected samples of pancreatic ductal adenocarcinoma and their correlation with clinicopathological parameters and patient survival[J].BMC Res Notes, 2011, 4: 560.DOI: 10.1186/1756-0500-4-560.
[16] Birnbaum DJ, Mamessier E, Birnbaum D. The emerging role of the TGFbeta tumor suppressor pathway in pancreatic cancer[J].Cell Cycle, 2012, 11(4): 683-686.DOI: 10.4161/cc.11.4.19130.
[17] Leung L, Radulovich N, Zhu CQ, et al. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis[J].PLoS One, 2013, 8(12): e84366.DOI: 10.1371/journal.pone.0084366.
[18] Javle M, Li Y, Tan D, et al. Biomarkers of TGF-beta signaling pathway and prognosis of pancreatic cancer[J].PLoS One, 2014, 9(1): e85942. DOI: 10.1371/journal.pone.0085942.
[19] Lui PY, Jin DY, Stevenson NJ. MicroRNA: master controllers of intracellular signaling pathways[J].Cell Mol Life Sci, 2015, 72(18): 3531-3542.DOI: 10.1007/s00018-015-1940-0.
[20] Yang P, Zhang Y, Markowitz GJ, et al. TGF-beta-regulated MicroRNAs and their function in cancer biology[J].Methods Mol Biol, 2016, 1344: 325-339.DOI: 10.1007/978-1-4939-2966-5_21.
[21] Frampton AE, Giovannetti E, Jamieson NB, et al. A microRNA meta-signature for pancreatic ductal adenocarcinoma[J].Expert Rev Mol Diagn, 2014, 14(3): 267-271.DOI: 10.1586/14737159.2014.893192.
[22] Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J].JAMA, 2007, 297(17): 1901-1908.
[23] Ali S, Saleh H, Sethi S, et al. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer[J].Br J Cancer, 2012, 107(8): 1354-1360.DOI: 10.1038/bjc.2012.383.
[24] Erkan M, Michalski CW, Rieder S, et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma[J].Clin Gastroenterol Hepatol, 2008, 6(10): 1155-1161.DOI: 10.1016/j.cgh.2008.05.006.
[25] Gore J, Korc M. Pancreatic cancer stroma: friend or foe?[J].Cancer Cell, 2014, 25(6): 711-712.DOI: 10.1016/j.ccr.2014.05.026.
[26] Neesse A, Algul H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm[J].Gut, 2015, 64(9): 1476-1484.DOI: 10.1136/gutjnl-2015-309304.
[27] Provenzano PP, Hingorani SR. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer[J].Br J Cancer, 2013, 108(1): 1-8. DOI: 10.1038/bjc.2012.569.
[28] Hwang RF, Moore T, Arumugam T, et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression[J].Cancer Res, 2008, 68(3): 918-926.DOI: 10.1158/0008-5472.
[29] Izumchenko E, Chang X, Michailidi C, et al. The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors[J].Cancer Res, 2014, 74(14): 3995-4005. DOI: 10.1158/0008-5472.CAN-14-0110.
[30] Zhu Z, Xu Y, Zhao J, et al. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-beta signalling pathway[J].Br J Cancer, 2015, 112(8): 1367-1375.DOI: 10.1038/bjc.2015.102.
[31] Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression[J].PLoS One, 2009, 4(4): e4992.DOI: 10.1371/journal.pone.0004992.
[32] Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease[J].J Cell Biol, 2006, 172(7): 973-981.
[33] Chen J, Chen G, Yan Z, et al. TGF-beta1 and FGF2 stimulate the epithelial-mesenchymal transition of HERS cells through a MEK-dependent mechanism[J].J Cell Physiol, 2014, 229(11): 1647-1659.DOI: 10.1002/jcp.24610.
[34] Choi JH, Hwang YP, Kim HG, et al. Saponins from the roots of Platycodon grandiflorum suppresses TGFbeta1-induced epithelial-mesenchymal transition via repression of PI3K/Akt, ERK1/2 and Smad2/3 pathway in human lung carcinoma A549 cells[J].Nutr Cancer, 2014, 66(1): 140-151.DOI: 10.1080/01635581.2014.853087.
[35] Sannino G, Armbruster N, Bodenh?fer M, et al.Role of BCL9L in transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal-transition (EMT) and metastasis of pancreatic cancer[J].Oncotarget,2016,7(45):73725-73738. DOI: 10.18632/oncotarget.12455.
[36] Thakur AK, Nigri J, Lac S, et al.TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma[J].Cell Death Differ,2016,23(8): 1358-1370.DOI: 10.1038/cdd.2016.18.
[37] Zhao G, Cui J, Zhang JG, et al.SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells[J].Gene Ther, 2011,18(9):920-928.DOI: 10.1038/gt.2011.81.
[38] Lin H, Sun LH, Han W, et al.Knockdown of OCT4 suppresses the growth and invasion of pancreatic cancer cells through inhibition of the AKT pathway[J].Mol Med Rep, 2014,10(3):1335-1342.DOI: 10.3892/mmr.2014.2367.
(本文編輯:屠振興)
10.3760/cma.j.issn.1674-1935.2017.01.019
200433 上海,第二軍醫(yī)大學(xué)長(zhǎng)海醫(yī)院消化內(nèi)科
李兆申,Email: zhsli@81890.net;黃浩杰,Email:pea1920@hotmail.com
2016-04-12)