時(shí)霄寒 金鋼
外泌體在胰腺癌研究中的進(jìn)展
時(shí)霄寒 金鋼
外泌體(exosomes)是細(xì)胞主動(dòng)分泌的小囊泡,起源于內(nèi)涵體,直徑約為40~150 nm。結(jié)構(gòu)上,外泌體由脂質(zhì)雙層包裹細(xì)胞液而成,常含有線粒體、核糖體等細(xì)胞器。其囊液富含蛋白質(zhì)如熱休克蛋白、細(xì)胞信號(hào)蛋白等,以及核酸如信使RNA、小RNA、DNA等[1-4]。過(guò)去的十余年里,針對(duì)腫瘤,尤其胰腺癌外泌體的研究呈現(xiàn)爆炸式增長(zhǎng)。這些研究結(jié)果顯示,外泌體參與腫瘤的增生、血管生成、凋亡抑制,同時(shí)促進(jìn)上皮間質(zhì)轉(zhuǎn)化、侵襲及轉(zhuǎn)移、誘導(dǎo)免疫耐受及耐藥性形成[1,5]。本文綜述了外泌體在胰腺癌發(fā)生、發(fā)展中的重要作用,以及在腫瘤診斷、治療方面的潛在價(jià)值。
1.外泌體與胰腺癌細(xì)胞增殖:與其他上皮來(lái)源的腫瘤相比,胰腺癌的間質(zhì)成分更多[6]。胰腺星狀細(xì)胞(PSCs)是胰腺間質(zhì)中的重要組成成分,正常情況下處于休眠狀態(tài),主要分布于胰腺血管周?chē)鶾7]。在胰腺癌中,激活的PSCs釋放富含miR-21的外泌體,可以促進(jìn)腫瘤上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)化,增強(qiáng)腫瘤細(xì)胞的增殖能力,且促進(jìn)細(xì)胞間質(zhì)增生[8-9]。miR-21涉及多種腫瘤的發(fā)生和發(fā)展過(guò)程,有“原癌小RNA”之稱(chēng)。多項(xiàng)研究表明,miR-21過(guò)量表達(dá)與細(xì)胞增殖及侵襲力增強(qiáng)密切相關(guān),且外泌體中miR-21的水平越高,患者預(yù)后越差[10]。同時(shí),PSCs還會(huì)分泌大量炎癥因子如IL-6、IL-8、IL-15等,通過(guò)自分泌、旁分泌的途徑激活其他處于休眠狀態(tài)的PSCs,釋放更多腫瘤相關(guān)的外泌體,加速胰腺癌的進(jìn)展[11]。此外,還有研究表明,胰腺癌細(xì)胞也會(huì)通過(guò)釋放富含miR-155的外泌體,促進(jìn)細(xì)胞間質(zhì)的增生[12]。
2.外泌體與胰腺癌轉(zhuǎn)移:轉(zhuǎn)移是導(dǎo)致胰腺癌患者預(yù)后不良的重要因素。在多種腫瘤研究中均發(fā)現(xiàn)外泌體在轉(zhuǎn)移過(guò)程中起關(guān)鍵作用。有關(guān)乳腺癌的實(shí)驗(yàn)研究發(fā)現(xiàn),富含miR-200的外泌體可以促進(jìn)乳腺癌的肺部轉(zhuǎn)移,通過(guò)改變基因表達(dá)使遠(yuǎn)處組織細(xì)胞發(fā)生上皮間質(zhì)轉(zhuǎn)化,促進(jìn)腫瘤細(xì)胞的定植[13]。在胰腺癌小鼠模型中發(fā)現(xiàn),來(lái)源于胰腺癌的外泌體可以促進(jìn)肝細(xì)胞微環(huán)境的纖維化(屬于轉(zhuǎn)移前的改變),從而促進(jìn)轉(zhuǎn)移的發(fā)生。這個(gè)過(guò)程受多重機(jī)制的調(diào)節(jié),開(kāi)始于肝庫(kù)佛細(xì)胞吞噬胰腺癌細(xì)胞釋放的外泌體,其內(nèi)富含巨噬細(xì)胞移動(dòng)抑制因子(macrophage migration inhibitory factor,MIF)等細(xì)胞因子。這些細(xì)胞受細(xì)胞因子的刺激后又會(huì)產(chǎn)生致纖維化的細(xì)胞因子,誘導(dǎo)肝星狀細(xì)胞產(chǎn)生纖連蛋白,建立纖維化的微環(huán)境,促進(jìn)骨髓源性細(xì)胞進(jìn)入,為胰腺癌細(xì)胞的生長(zhǎng)及轉(zhuǎn)移創(chuàng)造了良好的環(huán)境[14]。此外,還有研究顯示來(lái)源于胰腺癌的富含CD44v6的外泌體,與胰腺癌淋巴結(jié)及肺組織的早期轉(zhuǎn)移相關(guān)[15]。
3.外泌體與胰腺癌耐藥性形成:鑒于外泌體在細(xì)胞之間信息傳遞的作用,其在胰腺癌化學(xué)藥物治療耐藥性形成中很可能也發(fā)揮重要作用。研究發(fā)現(xiàn),應(yīng)用過(guò)順鉑化療的肺癌患者,從其體內(nèi)分離出的外泌體可以將已產(chǎn)生的耐藥性轉(zhuǎn)遞給其他未接受過(guò)化療的細(xì)胞[16]。同樣,對(duì)多烯紫杉醇或阿霉素耐藥的乳腺癌細(xì)胞,從其培養(yǎng)液中分離出的外泌體,可以使對(duì)化療藥物敏感的人乳腺癌細(xì)胞系MCF-7也產(chǎn)生耐藥性[17]。另外,關(guān)于前列腺癌細(xì)胞系的實(shí)驗(yàn)研究發(fā)現(xiàn),外泌體介導(dǎo)的多重耐藥蛋白MDR-1的傳遞可能調(diào)控著對(duì)多烯紫杉醇的耐藥性[18]。因此,胰腺癌的耐藥性形成很可能也與外泌體關(guān)系密切,但仍需更多相關(guān)的實(shí)驗(yàn)研究證據(jù)加以證明。
4.外泌體與胰腺癌免疫耐受形成:巨噬細(xì)胞通常分為M1型(促炎型)和M2型(抗炎型)[19]。M1型主要分泌大量炎癥因子如IL-1、IL-6、IL-23和TNF,促進(jìn)炎癥反應(yīng),而M2型則分泌少量炎癥因子,阻止T細(xì)胞增殖,抑制炎癥反應(yīng)[20]。目前研究認(rèn)為,腫瘤細(xì)胞分泌的外泌體與巨噬細(xì)胞分化密切相關(guān)。實(shí)驗(yàn)結(jié)果顯示,腫瘤細(xì)胞分泌的外泌體含有大量的MFG-E8,其與誘導(dǎo)巨噬細(xì)胞吞噬作用密切相關(guān),而體外實(shí)驗(yàn)發(fā)現(xiàn),在培養(yǎng)液中加入MFG-E8會(huì)使骨髓源性巨噬細(xì)胞更傾向于分化成M2型[21-22]。免疫組化試驗(yàn)證實(shí),在胰腺癌侵襲的邊界,多為M2型巨噬細(xì)胞,并且其數(shù)量與周?chē)馨徒Y(jié)轉(zhuǎn)移程度及早期遠(yuǎn)處轉(zhuǎn)移呈正相關(guān),而與患者預(yù)后呈負(fù)相關(guān)[23-24]。但近期也有實(shí)驗(yàn)證據(jù)表明,由腫瘤外泌體引起的巨噬細(xì)胞極化與去極化可能并不像經(jīng)典的M1和M2型分類(lèi),而是形成一種適合腫瘤生長(zhǎng)的特殊類(lèi)型。例如,用惡性膠質(zhì)瘤細(xì)胞系來(lái)源的外泌體培養(yǎng)出的單核細(xì)胞既表達(dá)M2型的標(biāo)志物CD163,又大量分泌M1型主要分泌的細(xì)胞因子IL-6、MCP-1以及VEGF等[25]。越來(lái)越多的研究表明,中性粒細(xì)胞的水平與患者預(yù)后息息相關(guān),外周血中性粒細(xì)胞/淋巴細(xì)胞比值越高,患者預(yù)后越差[26]。通常認(rèn)為中性粒細(xì)胞屬于終末分化細(xì)胞,對(duì)腫瘤的發(fā)生和發(fā)展幾乎沒(méi)有作用,但現(xiàn)在研究發(fā)現(xiàn),它們與巨噬細(xì)胞一樣,可以轉(zhuǎn)變?yōu)榇龠M(jìn)腫瘤生長(zhǎng)的細(xì)胞表型,參與腫瘤的增生、血管生成、侵襲及免疫抑制等[27]。而這種轉(zhuǎn)變很可能與巨噬細(xì)胞釋放的富含白三烯的外泌體有關(guān),但具體的機(jī)制仍有待研究[28]。此外,T細(xì)胞免疫也與患者預(yù)后密切相關(guān)。CD4+輔助性T細(xì)胞和CD8+毒性T細(xì)胞水平越高,患者預(yù)后越好,而CD4+調(diào)節(jié)性T細(xì)胞水平越高,患者預(yù)后越差[29]?,F(xiàn)在有很多體內(nèi)實(shí)驗(yàn)結(jié)果均證實(shí),腫瘤外泌體可以促進(jìn)CD4+調(diào)節(jié)性T細(xì)胞增殖[30]。IL-2是調(diào)節(jié)包括CD8+T細(xì)胞、CD4+T細(xì)胞、NK細(xì)胞增殖、分化等免疫細(xì)胞的重要因子。IL-2可以促進(jìn)CD4+輔助性T細(xì)胞的增殖,但對(duì)CD4+調(diào)節(jié)性T細(xì)胞作用不明顯,而TGF-β可以抑制IL-2的作用,并對(duì)維持CD4+調(diào)節(jié)性T細(xì)胞的表型有重要作用[31]。雖然目前還不能完全證實(shí)胰腺癌細(xì)胞分泌的外泌體中包含TGF-β,但可以肯定的是,這些外泌體能促進(jìn)固有免疫細(xì)胞產(chǎn)生TGF-β,這可能在腫瘤免疫耐受的維持中起重要作用[14]。在腫瘤微環(huán)境中,CD4+調(diào)節(jié)性T細(xì)胞會(huì)分泌外泌體,抑制Th1反應(yīng)并參與免疫耐受反應(yīng)[32]。
1.外泌體作為診斷標(biāo)志物:外泌體是由細(xì)胞主動(dòng)分泌產(chǎn)生的囊泡,可以反映來(lái)源細(xì)胞的生理、病理狀態(tài)[33]。而且可以通過(guò)近乎無(wú)創(chuàng)的方式從人體體液中獲取,如唾液、血漿、尿液、乳汁等,這些特點(diǎn)使它迅速成為胰腺癌新興的診斷標(biāo)志物之一[34]。近期研究發(fā)現(xiàn),在胰腺癌患者的體液中可以檢測(cè)出磷脂酰肌醇蛋白聚糖1(glypican-1,GPC1)陽(yáng)性外泌體。根據(jù)外泌體的GPC1水平,可以很好地將胰腺癌患者與健康人及慢性胰腺炎患者相區(qū)分,而且其靈敏度及特異性均可達(dá)到100%。在胰腺癌小鼠模型實(shí)驗(yàn)中發(fā)現(xiàn),GPC1陽(yáng)性外泌體數(shù)量的增加速度與腫瘤負(fù)荷的增長(zhǎng)速度相一致,甚至可以在影像學(xué)檢測(cè)出可見(jiàn)腫瘤前,即發(fā)生與癌變相對(duì)應(yīng)的數(shù)量增加。但由于GPC1陽(yáng)性外泌體在乳腺癌、結(jié)直腸癌等腫瘤中也會(huì)增多,而使其難以成為胰腺癌早期診斷的標(biāo)志物。目前GPC1在腫瘤發(fā)生和發(fā)展中的作用尚不清楚,更多關(guān)于GPC1與胰腺癌的研究值得期待[35]。
還有學(xué)者檢測(cè)了胰腺癌患者外泌體中的小RNA,發(fā)現(xiàn)其中miR-21和miR-17-5-P對(duì)于胰腺癌的診斷有良好的靈敏度,但由于它們?cè)诙喾N腫瘤中都有表達(dá),因此缺乏較好的特異性,也難以成為胰腺癌診斷的標(biāo)志物[36]。近年來(lái),有學(xué)者采用胰腺癌外泌體與血漿游離小RNA聯(lián)合檢測(cè)的方法診斷胰腺癌,單獨(dú)檢測(cè)胰腺癌外泌體標(biāo)志物時(shí),其敏感性為97%,血漿游離小RNA為71%,而聯(lián)合檢測(cè)時(shí),敏感性可以達(dá)到100%,且特異性無(wú)降低,這種聯(lián)合檢測(cè)的結(jié)果可以將胰腺癌與正常胰腺、胰腺良性腫瘤及慢性胰腺炎相鑒別。這種聯(lián)合檢測(cè)方法集合了兩種檢測(cè)手段的優(yōu)勢(shì),價(jià)格低、創(chuàng)傷小、僅需要不到2 ml血漿,可能是對(duì)胰腺癌早期診斷的重大突破,值得進(jìn)行大規(guī)模臨床研究[37]。外泌體也為胰腺癌個(gè)體化治療提供了可能。以表皮細(xì)胞生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)靶向治療為例,很多胰腺癌患者的腫瘤細(xì)胞都表達(dá)EGFR,且可以在外泌體中檢測(cè)到[38]。近年來(lái)研究發(fā)現(xiàn),如果在胰腺癌患者的外泌體中檢測(cè)到K-ras基因突變,就認(rèn)為該患者對(duì)EGFR靶向治療不敏感[2]。
2.外泌體與胰腺癌治療:近年來(lái)利用外泌體作為給藥途徑成為研究熱點(diǎn),通過(guò)外泌體給藥可以更準(zhǔn)確地到達(dá)作用部位、更好地發(fā)揮藥物的藥理作用。在體外實(shí)驗(yàn)中發(fā)現(xiàn),胰腺癌細(xì)胞可以主動(dòng)攝取人工置入的外泌體,有效誘導(dǎo)細(xì)胞毒性反應(yīng)[39]。將紫杉醇導(dǎo)入外泌體,再將此外泌體放入前列腺癌細(xì)胞的培養(yǎng)液中,其發(fā)揮的細(xì)胞毒性作用要強(qiáng)于單純將紫杉醇加入培養(yǎng)液中[40]。同樣,在胰腺癌的細(xì)胞實(shí)驗(yàn)中也有類(lèi)似的結(jié)果[41]。但這種方法的療效與使用白蛋白紫杉醇的療效或其他化療方式的療效相比,優(yōu)劣尚不明確,還需要更多的研究加以證實(shí)。還有學(xué)者嘗試通過(guò)阻斷外泌體介導(dǎo)的細(xì)胞間信息交流來(lái)增強(qiáng)胰腺癌的治療效果。體外實(shí)驗(yàn)證實(shí),在培養(yǎng)液中加入肝素,可以抑制細(xì)胞攝取外泌體[42]。但近期實(shí)驗(yàn)結(jié)果顯示,無(wú)論是單用吉西他濱組還是吉西他濱與依諾肝素聯(lián)用組,與單用依諾肝素組相比,在無(wú)病生存率和總體生存率上均未見(jiàn)有統(tǒng)計(jì)學(xué)的差別[43]。此外,有學(xué)者提出使用外泌體作為免疫療法的媒介,誘導(dǎo)產(chǎn)生腫瘤免疫反應(yīng)。雖然目前取得的進(jìn)展有限,但仍是一個(gè)胰腺癌治療的新方向[44]。
外泌體在胰腺癌細(xì)胞增殖、轉(zhuǎn)移、耐藥性、免疫調(diào)節(jié)、診斷及治療等多個(gè)方面均發(fā)揮了重要作用。但從目前眾多的相關(guān)研究來(lái)看,其中很多通路與機(jī)制仍不甚清楚,尚未能形成比較明確的研究結(jié)果。繼續(xù)對(duì)胰腺癌外泌體進(jìn)行深度研究,能幫助我們更好地了解胰腺癌的生物學(xué)行為,有助于早日解決“胰腺癌”難題,同時(shí)也為更快地找到胰腺癌新的診斷標(biāo)記物和新的治療方式提供了可能。
[1] Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review[J]. Cancer Metastasis Rev, 2013,32(3-4):623-642. DOI: 10.1007/s10555-013-9441-9.
[2] Kahlert C, Melo SA, Protopopov A, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer[J]. J Biol Chem, 2014,289(7): 3869-3875. DOI:10.1074/jbc.C113.532267.
[3] Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells[J]. Nat Commun, 2011,2: 282. DOI: 10.1038/ncomms1285.
[4] van den Boorn JG, Dassler J, Coch C, et al. Exosomes as nucleic acid nanocarriers[J]. Adv Drug Deliv Rev, 2013,65(3): 331-335. DOI: 10.1016/j.addr.2012.06.011.
[5] Yu DD, Wu Y, Shen HY, et al. Exosomes in development, metastasis and drug resistance of breast cancer[J]. Cancer Sci, 2015,106(8): 959-964. DOI: 10.1007/s10555-013-9441-9.
[6] Feig C, Gopinathan A, Neesse A, et al. The pancreas cancer microenvironment[J]. Clin Cancer Res, 2012,18(16): 4266-4276. DOI: 10.1158/1078-0432.CCR-11-3114.
[7] Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture[J]. Gut, 1998, 43(1): 128-133.
[8] Kikuta K, Masamune A, Watanabe T, et al. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells[J]. Biochem Biophys Res Commun, 2010,403(3-4): 380-384. DOI: 10.1016/j.bbrc.2010.11.040.
[9] Charrier A, Chen R, Chen L, et al. Connective tissue growth factor (CCN2) and microRNA-21 are components of a positive feedback loop in pancreatic stellate cells (PSC) during chronic pancreatitis and are exported in PSC-derived exosomes[J]. J Cell Commun Signal, 2014, 8(2): 147-156. DOI: 10.1007/s12079-014-0220-3.
[10] Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance[J]. Mol Cancer Ther,2009,8(5): 1067-1074. DOI: 10.1158/1535-7163.MCT-08-0592.
[11] Shek FW, Benyon RC, Walker FM, et al. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis[J]. Am J Pathol, 2002,160(5): 1787-1798.
[12] Pang W, Su J, Wang Y, et al. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts[J]. Cancer Sci, 2015,106(10):1362-1369. DOI: 10.1111/cas.12747.
[13] Le MT, Hamar P, Guo C, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis[J]. J Clin Invest, 2014, 124(12): 5109-5128. DOI: 10.1172/JCI75695.
[14] Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015,17(6): 816-826. DOI:10.1038/ncb3169.
[15] Jung T, Castellana D, Klingbeil P, et al. 2009. CD44v6 dependence of premetastatic niche preparation by exosomes[J]. Neoplasia, 2009, 11(10): 1093-1105.
[16] Xiao X, Yu S, Li S, et al. Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin[J]. PLoS One, 2014,9(2): e89534. DOI: 10.1371/journal.pone.0089534.
[17] Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs[J]. PLoS One, 2014,9(4): e95240. DOI: 10.1371/journal.pone.0095240.
[18] Corcoran C, Rani S, O′Brien K, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes[J]. PLoS One, 2012,7(12): e50999. DOI: 10.1371/journal.pone.0050999.
[19] Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment[J]. Trends Immunol, 2012,33(3): 119-126. DOI: 10.1016/j.it.2011.12.001.
[20] Huber S, Hoffmann R, Muskens F, et al. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-l2[J]. Blood, 2010,116(17): 3311-3320. DOI: 10.1182/blood-2010-02-271981.
[21] Webber J, Stone TC, Katilius E, et al. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform[J]. Mol Cell Proteomics, 2014, 13(4): 1050-1064. DOI: 10.1074/mcp.M113.032136.
[22] Soki FN, Koh AJ, Jones JD, et al. Polarization of prostate cancer-associated macrophages is induced by milk fat globule-eGF factor 8 (MFG-e8)-mediated efferocytosis[J]. J Biol Chem, 2014,289(35): 24560-24572. DOI: 10.1074/jbc.M114.571620.
[23] Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer[J]. J Surg Res, 2011,167(2): e211-9. DOI: 10.1016/j.jss.2009.05.026.
[24] Di Caro G, Cortese N, Castino GF, et al. 2015. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy[J]. Gut,2016,65(10):1710-1720. DOI: 10.1136/gutjnl-2015-309193.
[25] de Vrij J, Maas SL, Kwappenberg KM, et al. Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells[J]. Int J Cancer, 2015,137(7): 1630-1642. DOI: 10.1002/ijc.29521.
[26] Martin HL, Ohara K, Kiberu A, et al. Prognostic value of systemic inflammation-based markers in advanced pancreatic cancer[J]. Intern Med J, 2014,44(7): 676-682. DOI: 10.1111/imj.12453.
[27] Galdiero MR, Bonavita E, Barajon I, et al. Tumor associated macrophages and neutrophils in cancer[J]. Immunobiology, 2013,218(11): 1402-1410. DOI: 10.1016/j.imbio.2013.06.003.
[28] Esser J, Gehrmann U, D′Alexandri FL, et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration[J]. J Allergy Clin Immunol, 2010,126(5): 1032-1040 (40 e1-4).DOI:10.1016/j.jaci.2010.06.039.
[29] Ino Y, Yamazaki-Itoh R, Shimada K, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer[J]. Br J Cancer, 2013,108(4): 914-923. DOI: 10.1038/bjc.2013.32.
[30] Szajnik M, Czystowska M, Szczepanski MJ, et al. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg)[J]. PLoS One, 2010, 5(7): e11469. DOI: 10.1371/journal.pone.0011469.
[31] Boyman O, Kolios AG, Raeber ME. Modulation of T cell responses by IL-2 and IL-2 complexes[J]. Clin Exp Rheumatol, 2015, 33(4Suppl 92): 54-57. PMID: 26457438.
[32] Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells[J]. Immunity, 2014,41(1): 89-103. DOI: 10.1016/j.immuni.2014.05.019.
[33] Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological properties of extra-cellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015,4: 27066. DOI: 10.3402/jev.v4.27066.
[34] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles,and friends[J]. J Cell Biol, 2013, 200(4): 373-83. DOI: 10.1083/jcb.201211138.
[35] Melo SA, Luecke LB, Kahlert C, et al. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer[J]. Nature,2015,523(7559):177-182. DOI: 10.1038/nature14581.
[36] Que R, Ding G, Chen J, et al. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma[J]. World J Surg Oncol, 2013,11: 219. DOI: 10.1186/1477-7819-11-219.
[37] Bindhu M, Shijing Y, Uwe G, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity[J]. Int J Cancer, 2014,136(11): 2616-2627. DOI: 10.1002/ijc.29324.
[38] Oliveira-Cunha M, Newman WG, Siriwardena AK. Epidermal growth factor receptor in pancreatic cancer[J]. Cancers (Basel), 2011,3(2): 1513-1526. DOI: 10.3390/cancers3021513.
[39] Osterman CJ, Lynch JC, Leaf P, et al. Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function[J]. PLoS One, 2015,10(7): e0132845. DOI: 10.1371/journal.pone.0132845.
[40] Saari H, Lazaro-Ibanez E, Viitala T, et al. 2015. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells[J]. J Control Release, 2015,220(Pt B):727-737.DOI: 10.1016/j.jconrel.2015.09.031.
[41] Pascucci L, Cocce V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery[J]. J Control Release, 2014,192: 262-270. DOI: 10.1016/j.jconrel.2014.07.042.
[42] Cha DJ, Franklin JL, Dou Y, et al. 2015. KRAS-dependent sorting of miRNA to exosomes[J]. Elife,2015, 4:e07197. DOI: 10.7554/eLife.07197.
[43] Pelzer U, Opitz B, Deutschinoff G, et al. Efficacy of prophylactic low-molecular weight heparin for ambulatory patients with advanced pancreatic cancer: outcomes from the CONKO-004 trial[J]. J Clin Oncol, 2015,33(5): 2028-2034. DOI: 10.1200/JCO.2014.55.1481.
[44] Gehrmann U, Naslund TI, Hiltbrunner S, et al. Harnessing the exosome-induced immune response for cancer immunotherapy[J]. Semin Cancer Biol, 2014,28: 58-67. DOI: 10.1016/j.semcancer.2014.05.003.
(本文編輯:呂芳萍)
10.3760/cma.j.issn.1674-1935.2017.01.018
200433 上海,第二軍醫(yī)大學(xué)長(zhǎng)海醫(yī)院肝膽胰外科
金鋼,Email:jingang@sohu.com
2016-10-31)