沈 飛,劉 鵬,蔣雪松,邵小龍,萬忠民,宋 偉
?
基于電子鼻的花生有害霉菌種類識別及侵染程度定量檢測
沈 飛1,2,劉 鵬3,蔣雪松3,邵小龍1,2,萬忠民1,2,宋 偉1,2
(1. 南京財(cái)經(jīng)大學(xué)食品科學(xué)與工程學(xué)院,南京 210023; 2. 江蘇省現(xiàn)代糧食流通與安全協(xié)同創(chuàng)新中心,南京 210023; 3. 南京林業(yè)大學(xué)機(jī)械電子工程學(xué)院,南京 210037)
針對花生霉變傳統(tǒng)分析方法操作繁瑣、時(shí)效性差等不足,該研究擬利用電子鼻氣體傳感技術(shù)建立起花生有害霉菌污染的快速檢測方法。輻射滅菌花生籽粒分別接種5種谷物中常見有害霉菌(黃曲霉3.17、黃曲霉3.395 0、寄生曲霉3.395、寄生曲霉3.012 4和赭曲霉3.648 6),并于26 ℃、80%相對濕度條件下儲藏9 d至嚴(yán)重霉變。利用電子鼻氣體傳感器獲取不同儲藏時(shí)期(0、3、6、9 d)花生樣品的整體揮發(fā)性氣味信息。最后,結(jié)合多元統(tǒng)計(jì)分析方法對電子鼻傳感器響應(yīng)信號進(jìn)行特征提取,建立了花生中有害霉菌污染程度的定性定量分析模型。結(jié)果顯示,主成分分析法(principal component analysis,PCA)可成功區(qū)分不同霉菌侵染程度的花生樣品,線性判別分析(linear discriminant analysis,LDA)模型對樣品不同儲藏天數(shù)判別的準(zhǔn)確率均達(dá)到或接近100%?;ㄉ芯淇倲?shù)的偏最小二乘回歸分析(partial least squares regression,PLSR)模型的預(yù)測決定系數(shù)和預(yù)測相對均方根誤差分別達(dá)到0.814 5和0.244 0 lg(CFU/g)。結(jié)果表明,應(yīng)用電子鼻技術(shù)快速檢測儲藏期間花生霉變狀況具有一定可行性,可為利用氣味信息實(shí)現(xiàn)糧食霉菌污染的在線監(jiān)測提供理論參考。
農(nóng)作物;模型;特征提取;電子鼻;花生;有害霉菌;快速檢測
花生富含蛋白質(zhì)、油脂以及人體必需氨基酸等營養(yǎng)物質(zhì),深受消費(fèi)者喜愛。然而花生極易侵染黃曲霉、寄生曲霉、赭曲霉等有害霉菌而發(fā)霉[1-2],產(chǎn)生的黃曲霉毒素(aflatoxin,AFT)、赭曲霉毒素(ochratoxin,OT)等致癌物質(zhì),嚴(yán)重威脅人畜健康。目前,花生霉變的檢測方法主要有平板計(jì)數(shù)法、薄層色譜法(thin layer chromatography,TLC)[3]、高效液相色譜法(high performance liquid chromatography,HPLC)[4]和酶聯(lián)免疫吸附法(enzyme linked immunosorbent assay,ELISA)[5]等。雖然這些方法檢測精度較高,但存在操作繁瑣、時(shí)效性差、成本高,難以滿足現(xiàn)場快速檢測的需求。因此,尋找一種快速、準(zhǔn)確的霉變分析方法,對維護(hù)食品安全和消費(fèi)者身心健康具有重要意義。
目前霉變的相關(guān)快速檢測技術(shù)已有部分報(bào)道,如近紅外[6]、中紅外[7-8]、紫外熒光[9]、機(jī)器視覺[10]和電子鼻等。其中,電子鼻作為一種快速、無損的氣味檢測手段,無需對樣品進(jìn)行復(fù)雜的前處理,已廣泛用于水果[11]、飲料[12]、酒類[13]、肉類[14]等各類食品的質(zhì)量評估中,在糧食品質(zhì)[15]、蟲害[16]、新鮮度[17]和霉變程度[18]等方面也有了一些成功的應(yīng)用。在花生品質(zhì)分析方面,惠國華等[19]采用電子鼻和隨機(jī)共振數(shù)據(jù)分析方法對自然儲藏條件下紅皮花生的霉變程度進(jìn)行了快速預(yù)測。史文青等[20]應(yīng)用PEN3型電子鼻對新鮮與烘烤花生的揮發(fā)性物質(zhì)進(jìn)行了比較研究,確定烘烤后花生氣味成分變化主要體現(xiàn)在吡嗪類化合物。Wei等[21]研究表明帶殼與去殼花生儲藏期間的總酸、過氧化值含量與電子鼻響應(yīng)信號存在高度相關(guān)性,偏最小二乘回歸分析(partial least squares regression,PLSR)模型的決定系數(shù)2均大于0.80。Jensen等[22]采用電子鼻結(jié)合PLSR法對貯藏期花生中的自由基與己醛含量進(jìn)行了預(yù)測,結(jié)果顯示花生品質(zhì)與傳感器響應(yīng)信號存在較高相關(guān)性。諸多研究顯示,應(yīng)用電子鼻技術(shù)分析花生理化指標(biāo)的研究較多,針對花生霉變的報(bào)道不多,且主要集中在初步定性判別階段,未對花生受不同霉菌感染從而產(chǎn)生的差異開展深入研究,難以準(zhǔn)確及有效反映花生霉菌污染的狀況。
因此,本研究擬以接種不同種類有害霉菌的花生籽粒為研究對象,應(yīng)用電子鼻氣體傳感器陣列獲取不同儲藏階段(0、3、6、9 d)花生樣品的揮發(fā)性氣味信息,結(jié)合多元統(tǒng)計(jì)分析方法建立花生侵染單一霉菌及多種霉菌侵染程度的快速分析模型,并通過氣味信息預(yù)測花生中菌落總數(shù)含量,同時(shí)實(shí)現(xiàn)花生受霉菌污染程度的定性與定量分析,并對浸染不同霉菌的花生樣品的差異進(jìn)行了研究,進(jìn)一步驗(yàn)證電子鼻分析技術(shù)用于糧食霉變預(yù)警的可行性,為開發(fā)糧食檢測專用設(shè)備提供參考。
1.1 試驗(yàn)材料
1.1.1 試驗(yàn)樣品
花生,購于當(dāng)?shù)爻?,篩選外觀良好、形態(tài)大小一致、無異味的樣品,經(jīng)Co-60輻射(劑量:15 kGy)滅菌后裝入無菌塑料密封袋,置于4 ℃環(huán)境下,備用。
1.1.2 霉菌孢子懸浮液制備
5種花生中常見有害霉菌:黃曲霉(A)3.17、黃曲霉(A)3.395 0、寄生曲霉(A)3.395、寄生曲霉(A)3.012 4、赭曲霉(A)3.648 6,均購于中國北京北納創(chuàng)聯(lián)研究院。分別將霉菌置于馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養(yǎng)基上,于26 ℃、80%相對濕度(relative humidity,RH)條件下培養(yǎng)7 d。采用無菌水沖洗培養(yǎng)基表面菌絲,收集孢子懸浮液于50 mL錐形瓶中,參照GB/T4789.2-2010法[23]統(tǒng)計(jì)菌落總數(shù),并通過無菌水調(diào)整孢子濃度至1×105CFU/mL,4 ℃冷藏,備用。
1.2 試驗(yàn)方法
稱取120份滅菌花生樣品(50 g/份),置于直徑為120 mm的培養(yǎng)皿中,通過移液器分別將每粒花生表面接種10L的黃曲霉3.17孢子懸浮液,然后于26 ℃、80% RH培養(yǎng)箱中儲藏9 d,在第0、3、6、9天各取6份樣品進(jìn)行分析,并分別對其余4種孢子懸浮液進(jìn)行相同處理(總計(jì)4×6×5=120份樣品)。
采用Fox 3000型電子鼻(法國Alpha Mos公司)檢測樣品揮發(fā)性氣味信息,該儀器主要包括頂空全自動進(jìn)樣器、12根金屬氧化物傳感器與AlphaSoft軟件操作系統(tǒng)3部分。檢測原理:由于氣體與傳感器接觸發(fā)生氧化還原反應(yīng),改變傳感器導(dǎo)電材料的導(dǎo)電性,并以電阻變化值輸出信號,即通過相對電導(dǎo)率(/0)反映傳感器響應(yīng)信號的變化,其中和0分別為傳感器吸附樣品氣、零級氣體(經(jīng)活性炭和硅膠過濾后的空氣)后的電導(dǎo)率值[24]。為使花生中霉菌及其代謝產(chǎn)物分布更加均勻,采用粉碎機(jī)將樣品粉碎。檢測前需將樣品置于室溫下(23±1)℃,2 h后分別稱取每份樣品2.5 g,置于20 mL頂空瓶中,進(jìn)行電子鼻檢測。樣品重復(fù)測定3次,取平均值進(jìn)行分析?;ㄉ芯淇倲?shù)的測定方法同上。
1.3 數(shù)據(jù)分析
先運(yùn)用主成分分析(principal component analysis,PCA)提取電子鼻傳感器信號響應(yīng)值的主成分得分,分析樣品變化趨勢;再通過線性判別分析(linear discriminant analysis,LDA)對4個(gè)不同儲藏階段的樣品進(jìn)行區(qū)分;最后通過偏最小二乘回歸分析(partial least squares regression,PLSR)對樣品中菌落總數(shù)進(jìn)行預(yù)測分析。評估PLSR建模性能指標(biāo)有:模型決定系數(shù)(correlation coefficient of determination,2)、建模均方根誤差(root mean squared error of calibration,RMSEC)、預(yù)測均方根誤差(root mean squared error of prediction,RMSEP)、交互驗(yàn)證均方根誤差(root mean squared error of cross validation,RMSECV)和相對分析偏差(residual predictive deviation,RPD),其中RPD為預(yù)測集標(biāo)準(zhǔn)偏差與RMSEP的比值。以上分析均在Matlab 2014a中進(jìn)行。
2.1 電子鼻氣體傳感器響應(yīng)信號分析
圖1為受霉菌侵染花生樣品的12個(gè)不同型號電子鼻氣體傳感器響應(yīng)信號隨時(shí)間變化的響應(yīng)曲線圖。由圖1可知,各傳感器初始信號平穩(wěn),相對電導(dǎo)率(/0)值均為1,隨著傳感器表面吸附物質(zhì)增加,每個(gè)傳感器的響應(yīng)值均出現(xiàn)不同程度的變化,在13 s附近時(shí)達(dá)到峰值,隨后各傳感器響應(yīng)值逐漸趨于穩(wěn)定。除LY2/LG、LY2/gCT與LY2/AA外,其余9個(gè)傳感器的/0值變化較為明顯,其中T30/1和LY2/G最為突出。參考各傳感器的敏感物質(zhì)類型可知[25],T30/1對有機(jī)化合物較為敏感,LY2/G對胺類化合物與碳?xì)浠衔镙^為敏感,表明霉變花生中此類物質(zhì)含量可能較高。結(jié)果初步顯示,電子鼻各傳感器對侵染霉菌花生樣品的揮發(fā)性物質(zhì)有明顯響應(yīng),且不同傳感器的響應(yīng)信號峰值差異明顯。
2.2 花生樣品菌落總數(shù)與霉變程度劃分
依據(jù)相關(guān)研究,根據(jù)樣品中菌落總數(shù)高低將花生樣品分為健康(<2.7 lg(CFU/g))、霉變([2.7~4] lg(CFU/g))和重度霉變(>4 lg(CFU/g))3類[26]。由圖2可知,隨著儲藏時(shí)間的延長,各組花生中菌落總數(shù)不斷增加,樣品的霉變程度逐漸變大。圖2中5組樣品初期的菌落總數(shù)略有差異,但均為健康狀態(tài),可作為對照組。第3天時(shí),僅赭曲霉3.648 6組達(dá)到霉變狀態(tài)。第6天時(shí),除黃曲霉3.395 0組外,其余4組均達(dá)到霉變狀態(tài)。第9天時(shí),5組樣品均達(dá)到霉變狀態(tài),其中黃曲霉3.17與赭曲霉3.648 6組菌落數(shù)增長速度最快(>4 lg(CFU/g)),達(dá)到重度霉變程度。盡管不同霉菌的繁殖速率存在差異,但菌落總數(shù)整體呈上升趨勢,導(dǎo)致樣品中霉菌整體的新陳代謝活動越旺盛,致使花生中揮發(fā)性物質(zhì)更加復(fù)雜,傳感器響應(yīng)信號也隨之產(chǎn)生相應(yīng)變化,為基于氣味信息進(jìn)行霉變樣品的快速鑒別提供了可能。
2.3 PCA及載荷結(jié)果分析
PCA通過降維方式將原始變量的主要特性指標(biāo)提取出來,并保留原始數(shù)據(jù)的主要信息。圖3為侵染霉菌樣品不同儲藏時(shí)期的主成分得分及載荷圖。圖3中主成分1(PC1)和主成分2(PC2)的累積方差貢獻(xiàn)率為99.63%,可反映花生電子鼻揮發(fā)物圖譜的絕大部分信息,可以此為基礎(chǔ)進(jìn)行后續(xù)分析[27]。由圖3可知,PCA能較好的區(qū)分不同儲藏時(shí)期的花生樣品。0、3和6 d樣品的PCA得分呈線性變化,即隨著儲藏期的延長,霉變樣品逐漸沿軸負(fù)方向移動,其中第6天的樣品能完全區(qū)分于0、3 d的樣品,說明花生霉變后揮發(fā)性物質(zhì)的種類或含量存在顯著變化。另外,第9天的重度霉變樣品呈現(xiàn)反向移動,可能與霉菌生長后期代謝產(chǎn)生的大量揮發(fā)性次級代謝產(chǎn)物有關(guān)。上述變化不受侵染霉菌種類影響,即侵染5種霉菌的樣品呈現(xiàn)相同的規(guī)律,表明該霉變變化狀況信息在花生中具有一定普遍性。當(dāng)對單一霉菌在儲藏9 d進(jìn)行PCA時(shí)也存在類似變化規(guī)律。分析表明,花生不同儲藏時(shí)期產(chǎn)生的揮發(fā)性氣味存在差異,應(yīng)用PCA對花生霉變狀態(tài)進(jìn)行區(qū)分具有可行性。由載荷分析可知,各個(gè)傳感器在PCA中的貢獻(xiàn)大小存在明顯差異(圖3)。其中,T70/2、LY2/LG、P10/1、T30/1等傳感器的相對權(quán)重值較大,顯示被霉菌侵染的花生籽粒的揮發(fā)性組分變化可能主要與氮氧化合物、芳香族化合物和碳?xì)浠衔锏扔嘘P(guān),同時(shí)說明此類傳感器在有效鑒別霉變花生樣品中具有重要貢獻(xiàn),也為后續(xù)專用型電子鼻傳感器的開發(fā)提供了參考信息。
2.4 LDA結(jié)果分析
LDA是模式識別中一種特征提取與降維分析方法。本研究采用Fisher判別法,即利用投影技術(shù)將原始數(shù)據(jù)投影到最佳方向,以實(shí)現(xiàn)建模集與驗(yàn)證集的有效區(qū)分,判別結(jié)果如表1所示。依據(jù)儲藏時(shí)間及受霉菌感染程度的不同,將樣品分為4類(0,3,6,9 d)。由表1可知,LDA模型能較好的區(qū)分不同儲藏時(shí)期侵染單一霉菌樣品,建模集準(zhǔn)確率均為100%,驗(yàn)證集中僅赭曲霉3.648 6組中1個(gè)樣品被誤判,剩余4組樣品均能被成功區(qū)分。當(dāng)對侵染5種霉菌的樣品進(jìn)行綜合建模時(shí),準(zhǔn)確率均達(dá)到或接近100%。結(jié)果表明,感染不同程度的花生樣品可被完全區(qū)分。花生在儲藏霉變直到后期過程中,由于脂肪、蛋白質(zhì)等大量霉菌被快速分解,其代謝活動產(chǎn)生大量種類繁多的次級代謝產(chǎn)物(毒素、揮發(fā)性物質(zhì)等),導(dǎo)致樣品揮發(fā)性氣味特征與儲藏前期存在一定系統(tǒng)差異,為電子鼻氣體傳感器提供了判別基礎(chǔ)。
表1 侵染霉菌花生的LDA建模分析及驗(yàn)證結(jié)果
2.5 PLSR分析
以傳感器響應(yīng)值為自變量,花生中菌落總數(shù)(lg (CFU/g))為因變量,選取2/3樣品作為建模集,1/3樣品作為預(yù)測集,采用PLSR法對花生中總菌落數(shù)進(jìn)行預(yù)測。為消除噪聲、信號漂移等的影響,采用標(biāo)準(zhǔn)正態(tài)變換(standard normal variate,SNV)和Savitsky-Golay(15點(diǎn),2次多項(xiàng)式平滑過濾)法對傳感器響應(yīng)信號進(jìn)行預(yù)處理。
由表2知,PLSR法可較好的預(yù)測花生中的菌落總數(shù)。建模集中,侵染單一霉菌組模型的建模決定系數(shù)(R2)高于0.90,建模均方根誤差(RMSEC)低于0.20 lg(CFU/g),且所有模型的偏差(Bias)均小于0.000 4。其中寄生曲霉3.395組的模型結(jié)果最優(yōu),R2值為0.971 2,RMSEC值為0.072 2 lg(CFU/g)。然而將全部樣品進(jìn)行綜合建模時(shí),精度略有降低,R2值為0.820 6。驗(yàn)證集中,對侵染單一霉菌組進(jìn)行留一交互驗(yàn)證時(shí),交互驗(yàn)證均方根誤差(RMSECV)均低于0.30,同樣寄生曲霉3.395組的誤差最小,而黃曲霉3.17侵染組的RMSECV值最大,為0.248 6 lg(CFU/g)。對單一霉菌進(jìn)行預(yù)測時(shí),除黃曲霉3.395 0侵染組外,其余4組模型的預(yù)測決定系數(shù)R2和RPD值分別大于0.90、3.0,說明該模型具有一定定量分析的潛力[28]。此外,僅有黃曲霉3.17侵染組的RMSEP值偏大,為0.206 2 lg(CFU/g),其余4組均低于0.20。由于各傳感器對氣味的靈敏性存在差異(圖1),且侵染5種霉菌花生的揮發(fā)性成分不一致,導(dǎo)致電子鼻對花生中不同霉菌菌落數(shù)的預(yù)測誤差不同。綜上對比,寄生曲霉3.395侵染組預(yù)測模型相比剩余4組結(jié)果最優(yōu),R2、RMSECV與RPD值分別為0.943 6、0.100 2 lg(CFU/g)和4.09。由圖4可知,5種霉菌侵染組綜合模型的預(yù)測精度稍低,R2和RMSEP值分別為0.814 5、0.244 0 lg(CFU/g),明顯低于單一霉菌侵染組模型。結(jié)果顯示所有模型的RPD值均大于2.0,說明這些模型可用于定性分析目的,通過電子鼻預(yù)測花生中菌落總數(shù),判斷花生是否霉變具有可行性。然而受限于電子鼻系統(tǒng)傳感器性能及數(shù)量的影響,導(dǎo)致其對侵染不同霉菌樣品菌落數(shù)的整體預(yù)測精度仍有待提升。分析可知,表2顯示各模型中參與分析的潛在變量(latent variables,LVs)均≤5,后續(xù)分析可通過優(yōu)化潛在變量數(shù)來提升模型精度,此外,進(jìn)一步研究應(yīng)當(dāng)通過優(yōu)化樣品預(yù)處理步驟、擴(kuò)大樣品數(shù)量及采用自然霉變的樣品等方式,達(dá)到驗(yàn)證和改善模型性能的目的[29-30]。
表2 花生中霉菌總數(shù)PLSR模型預(yù)測分析結(jié)果
注:R2為建模決定系數(shù);R2為預(yù)測決定系數(shù);RMSEC為建模均方根誤差;RMSEP為預(yù)測均方根誤差;RMSECV為交互驗(yàn)證均方根誤差;RPD為相對分析偏差。
Note:R2is represents correlation coefficient of determination in calibration;R2is represents correlation coefficient of determination in prediction; RMSEC is represents root mean squared error of calibration; RMSEP is represents root mean squared error of prediction; RMSECV is represents root mean squared error of cross validation; RPD is represents residual predictive deviation.
本文采用電子鼻氣體傳感器陣列對不同儲藏時(shí)期侵染霉菌的花生的氣味信息進(jìn)行了檢測,并結(jié)合多元統(tǒng)計(jì)分析方法建立了不同霉變程度樣品的定性定量分析模型。PCA及載荷分析結(jié)果顯示侵染5種霉菌花生樣品的傳感器響應(yīng)信號在儲藏期間存在一定變化規(guī)律,且不同儲藏時(shí)期的樣品均能得到有效區(qū)分,霉菌侵染花生引起的揮發(fā)性成分變化可能主要在于芳香族化合物、氮氧化合物和碳?xì)浠衔锏任镔|(zhì);運(yùn)用線性判別分析分別對侵染單一霉菌的花生樣品及全部樣品進(jìn)行建模,準(zhǔn)確率均達(dá)到或接近100%;偏最小二回歸模型對花生籽粒中菌落總數(shù)預(yù)測精度較高,5種感染霉菌花生樣品綜合模型的預(yù)測決定系數(shù)為0.814 5,預(yù)測均方根誤差為0.244 0 lg(CFU/g)。上述試驗(yàn)表明,電子鼻技術(shù)作為一種快速、高效的氣味信息檢測手段,用于花生儲藏期間霉變狀態(tài)的鑒別具有一定可行性,可為快速評估花生質(zhì)量安全提供參考。
[1] 李建輝. 花生中黃曲霉毒素的影響因子及脫毒技術(shù)研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2009.
Li Jianhui. Impact Factor and Detoxification of Aflatoxin in Peanuts[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese with English abstract)
[2] Afzali D, Fathirad F, Ghaseminezhad S. Determination of trace amounts ofA in different food samples based on gold nanoparticles modified carbon paste electrode[J]. Journal of Food Science and Tenhnology, 2016, 53(1): 909-914.
[3] Kamika I, Takoya L L. Natural occurrence ofB1in peanut collected from kinshasa, democratic republic of congo[J]. Food Control, 2011, 22(11): 1760-1764.
[4] Iqbal S Z, Asi M R, Zuber M, et al. Aflatoxins contamination in peanut and peanut products commercially available in retail markets of Punjab, Pakistan[J]. Food Control, 2013, 32(1): 83-86.
[5] Shukla S. Estimation of aflatoxins in peanut or maize by enzyme linked immunosorbent assay[J]. Bangladesh Journal of Pharmacology, 2016, 11(3): 628-631.
[6] Jiang Jinbao, Qiao Xiaojun, He Ruyan. Use of near-infrared hyperspectral images to identify moldy peanuts[J]. Journal of Food Engineering, 2016, 169: 284-290.
[7] Celiker H K, Mallikarjunan P K, Kaaya A. Characterization of invasion of genuson peanut seeds using FTIR-PAS[J]. Food Analytical Methods, 2016, 9(1): 105-113.
[8] Celiker H K, Mallikarjunan P K, Schmale D, et al. Discrimination of moldy peanuts with reference to aflatoxin using FTIR-ATR system[J]. Food Control, 2014, 44: 64-71.
[9] 王葉群,楊增玲,張紹英,等. 用于污染黃曲霉毒素花生分選的熒光信號研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):187-192.
Wang Yequn, Yang Zengling, Zhang Shaoying, et al. Fluorescent signal characteristics for sorting of peanut contaminated by[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 187-192. (in Chinese with English abstract).
[10] Wang J, Yang W W, Walker L T, et al. Identification of peanut pods with three or more kernels by machine vision and neural network[J]. International Journal of Food Engineering, 2014, 10(1): 97-102.
[11] Ciptohadijoyo S, Litananda W S, Rivai M, et al. Electronic nose based on partition column integrated with gas sensor for fruit identification and classification[J]. Computers and Electronics in Agriculture, 2016, 121: 429-435.
[12] Jin Jiaojiao, Deng Shanggui, Ying Xiaoguo, et al. Study of herbal tea beverage discrimination method using electronic nose[J]. Journal of Food Measurement and Characterization, 2015, 9(1): 52-60.
[13] Liu Ming, Han Xiaomin, Tu Kang, et al. Application of electronic nose in Chinese spirits quality control and flavour assessment[J]. Food Control, 2012, 26(2): 564-570.
[14] Lippolis V, Ferrara M, Cercellieri S, et al. Rapid prediction ofA-producing strains ofon dry-cured meat by MOS-based electronic nose[J]. International Journal of Food Microbiology, 2016, 218: 71-77.
[15] Han H J, Dong H, Noh B S. Discrimination of rice volatile compounds under different milling degrees and storage time using an electronic nose[J]. Korean Journal of Food Science and Technology, 2016, 48(2): 187-191.
[16] Lampson B D, Han Y J, Khalilian A, et al. Development of a portable electronic nose for detection of pests and plant damage[J]. Computers and Electronics in Agriculture, 2014, 108: 87-94.
[17] Jiang Jinghao, Li Jian, Zheng Feixiang, et al. Rapid freshness analysis of mantis shrimps () by using electronic nose[J]. Journal of Food Measurement and Characterization, 2016, 10(1): 48-55.
[18] 殷勇,郝銀鳳,于慧春. 基于多特征融合的電子鼻鑒別玉米霉變程度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):254-260.
Yin Yong, Hao Yinfeng, Yu Huichun. Identification method for different moldy degrees of maize using electronic nose coupled with multi-features fusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 254-260. (in Chinese with English abstract).
[19] 惠國華,倪彧. 基于電子鼻系統(tǒng)的糧食霉變檢測方法研究[J]. 中國食品學(xué)報(bào),2011,11(5):162-168.
Hui Guohua, Ni Yu. Investigation of moldy grain detection method using electronic nose system[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(5): 162-168. (in Chinese with English abstract)
[20] 史文青,薛雅琳,何東平. 花生揮發(fā)性香味識別的研究[J]. 中國糧油學(xué)報(bào),2012,27(7):58-62.
Shi Wenqing, Xue Yalin, He Dongping. Study on identification of volatile flavor in peanut[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(7): 58-62. (in Chinese with English abstract).
[21] Wei Zhenbo, Wang Jun, Zhang Weilin. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods[J]. Food Chemistry, 2015, 177(15): 89-96.
[22] Jensen P N, Bertelsen G, Van Den Berg F. Monitoring oxidative quality of pork scratchings, peanuts, oatmeal and muesli by sensor array[J]. Journal of the Science of Food and Agriculture, 2005, 85(2): 206-212.
[23] Amalia B. Metal oxide sensors for electronic noses and their application to food analysis[J]. Sensors, 2010, 10(4): 3882-3910.
[24] GB/T4789.2 2010. 食品微生物學(xué)檢驗(yàn)菌落總數(shù)測定[S]. 中國標(biāo)準(zhǔn)出版社,2010.
[25] Xu Guojie, Liu Chunsheng, Liao Caili, et al. Rapid and accurate identification of adulterants via an electronic nose and DNA identification platform: identification of fake velvet antlers as an example[J]. Journal of Sensors, 2016, 2016(23): 1-7.
[26] Celikera H K, Mallikarjunan P K, Kaayab A. Mid-infrared spectroscopy for discrimination and classification of Aspergillus spp. contamination in peanuts[J]. Food Control, 2015, 52: 103-111.
[27] Philip R C N, Paul A T, John F M. Missing data methods in PCA and PLS: score calculations with incomplete observations[J]. Chemometrics and Intelligent Laboratory Systems, 1996, 35(1): 45-65.
[28] Herrmann S, Mayer J, Michel K, et al. Predictive capacity of visible-near infrared spectroscopy for quality parameter assessment of compost[J]. Journal of Near Infrared Spectroscopy, 2009, 17(5): 289-301.
[29] Saevels S, Lammertyn J, Berna A Z, et al. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples[J]. Postharvest Biology and Technology, 2003, 30(1): 3-14.
[30] Shen Fei, Ying Yibin, Li Bobin, et al. Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy[J]. Food Research International, 2011, 44(5): 1521-1527.
Recognition of harmful fungal species and quantitative detection of fungal contamination in peanuts based on electronic nose technology
Shen Fei1,2, Liu Peng3, Jiang Xuesong3, Shao Xiaolong1,2, Wan Zhongmin1,2, Song Wei1,2
(1.,,210023,; 2.,210023,; 3.,,210037,)
Current methods for fungi contamination determination in peanuts are usually labor-intensive and time-consuming. In this paper, a new method for rapid detection of the contamination by harmful fungi species in peanut kernels based on electronic nose (E-nose) technology was investigated. Peanut samples were firstly irradiated by Co-60 gamma radiation with a dose of 15 kGy to kill all fungi on or within kernels. After irradiation, clean and sterile peanuts were placed in moist chambers and inoculated with 5 different spore suspensions of, which were A.3.17, A.3.395 0, A.3.395, A.3.012 4 and A.3.648 6, the former 3 of which were aflatoxin (AFT) producer, and the latter one was ochratoxin (OT) producer. Spore suspensions were prepared by blending the 7-day old colonies cultured on potato dextrose agar (PDA) with ultrapure sterilized water. Initial spore concentration was about 5 log (CFU/mL), and then 10L spore suspension was dropped onto individual peanut sample by a pipette. All infected samples were stored at 26 ℃ and 80% relative humidity (RH) for 9 d until all peanut samples were covered with a mass of fungi. Subsequently, the E-nose (Fox 3000, Alpha Mos) was used for the collection of volatile odor information from peanut samples stored for 0, 3, 6 and 9 d, respectively. Finally, response signals of 12 E-nose sensors were extracted by multivariate statistical analysis method. Qualitative and quantitative models for the determination of harmful fungi contamination in peanuts were established. The principal component analysis (PCA) results showed that peanut samples with different storage days could be successfully discriminated for different fungal infection levels. Loading analysis of E-nose sensors indicated that the sensors of T70/2, LY2/LG, P10/1, T30/1 were found to be more sensitive than other sensors. These sensors might play an important role in the discrimination of samples, which provided a reference for the development of special-purpose sensor systems for peanut samples in future. The changes in volatile compounds of infected peanut samples could be mainly attributed to oxynitride, hydrocarbon and aromatic compounds. For the classification of peanut samples with different infection levels, the correct rate of 100%(or approaching) was obtained by linear discriminant analysis (LDA) models. The results also verified the possibility of discriminating peanuts infection by different fungi species. In addition, good correlation between E-nose signals and colony forming units in peanut samples was obtained by partial least squares regression (PLSR) analysis models. The coefficient of determination for the prediction set (R2) and the root mean square error of prediction (RMSEP) for the prediction models were 0.814 5 and 0.244 0 lg (CFU/g), respectively. Both LDA and PLSR methods were proven to be effective in the discrimination/ quantification of fungi contamination in peanuts. The results indicate that E-nose technology can be used as a feasible and reliable method for the determination of peanut quality during the storage, which can provide the theoretical reference for rapid detection of mold contamination during grain storage using volatile odor information.
crops; models; feature extraction; electronic nose; peanuts; harmful fungi; rapid detection
10.11975/j.issn.1002-6819.2016.24.040
TS255.7; S379
A
1002-6819(2016)-24-0297-06
2016-07-01
2016-11-20
國家自然科學(xué)基金青年基金(31301482);江蘇省青年自然科學(xué)基金(BK20131007);糧食公益性行業(yè)科研專項(xiàng)(201513002-5);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)(2014-124)
沈 飛,男,博士,副教授,碩士生導(dǎo)師,主要研究方向?yàn)榧Z食儲藏與品質(zhì)無損檢測。南京 南京財(cái)經(jīng)大學(xué)食品科學(xué)與工程學(xué)院,210023。Email:shenfei0808@163.com