劉婷潔,張學敏,林超群,李俊韜
?
基于化學動力學的生物質顆粒燃燒排放NO特性模擬與驗證
劉婷潔,張學敏※,林超群,李俊韜
(中國農業(yè)大學工學院,北京100083)
為研究生物質顆粒燃料燃燒NO排放規(guī)律及其生成機理,采用CFD和ChemKin聯(lián)合仿真,建立試驗鍋爐燃燒筒CFD網(wǎng)絡模型,應用ChemKin接口導入簡化的17組分58基元反應機理,建立ChemKin-PSR反應模擬網(wǎng)絡,選用Reaction Design C2_NOx詳細機理,對棉稈、玉米秸稈、木質3種生物質顆粒NO排放進行模擬。結果表明,NO生成量:棉稈>玉米秸稈>木質;NO排放量隨過量空氣系數(shù)的增加先增大后減小,在過量空氣系數(shù)為1.7附近達到峰值。將模擬結果與試驗結果進行比較,證明了模型和化學反應機理的正確性,為生物質燃料燃燒NO排放的預測與控制提供參考。
生物質;排放控制;燃料;NO;化學動力學;數(shù)值模擬
生物質能源因其對CO2零貢獻,且揮發(fā)分較煤高,N、S、灰分和固定炭含量較煤低[1],作為替代化石燃料的可持續(xù)能源,其應用日益廣泛[2-7]。但其巨大消耗量也會導致NO的排放劇增[8]。NO會傷害人的呼吸器官,造成酸雨,破壞臭氧層等。因此,針對生物質顆粒燃料的NO排放特性愈發(fā)成為研究熱點。
國內外對生物質燃料NO排放試驗研究工作開展較多,趙欣等[9]在生物質燃燒試驗平臺上研究了3種生物質固體燃料在不同負荷和進氣量下燃燒的NO排放,結果發(fā)現(xiàn),NO的排放量隨負荷增加而增加,隨進氣量增加而減少。Lunbo Duan等[10]研究了3種生物質單獨燃燒以及和煤混燒情況下NO的排放,結果表明,混燒時NO排放低于單獨燃燒生物質。Winter[11],張鶴豐[12],Maryori Díaz-Ramírez[13],Murari Mohon Roy[14],Evelyn Cardozo[15],Gerhard Stubenberger[16],Takero Nakahara[17]等均針對不同生物質燃料NO排放進行了試驗研究,然而試驗研究花費大、周期長,且不能直接解釋NO生成機理,因此,采用數(shù)值模擬方法研究生物質燃料燃燒NO排放規(guī)律及其生成機理顯得十分必要[18]。
國內外有關燃料燃燒過程中NO轉化機理的研究比較廣泛[19-25],而針對生物質燃料燃燒的并不多。本文采用CFD和ChemKin聯(lián)合仿真,對生物質顆粒燃料NO排放特性和機理進行研究。ChemKin是由美國Sandia國家實驗室開發(fā)的大型氣相化學反應動力學軟件,是燃燒領域普遍使用的模擬計算工具[26]。本文首先對所選燃燒器在Fluent中進行網(wǎng)絡建模,結合化學反應機理得到燃燒器溫度場和氣流速度場,然后根據(jù)相關參數(shù)在ChemKin中建立適當?shù)姆磻骶W(wǎng)絡模型,對3種生物質顆粒燃料燃燒的氣相反應進行模擬仿真,得到 NO的排放規(guī)律,并用試驗結果加以驗證。
1.1 Fluent建模及網(wǎng)格劃分
本文所采用的試驗裝置如圖1所示,燃料器選用Pellet Biocontrol 20型生物質燃料器。
試驗所用燃燒器是一種頂置喂料式成型顆粒燃燒器,其額定燃燒功率在木質燃料工質下標定為20 kW (滿載),通過風機來控制配風量。試驗中采用木質顆粒、玉米秸稈顆粒、棉稈顆粒3種燃料。表1為3種生物質的揮發(fā)分組分的摩爾(體積)分數(shù)[27]。試驗采用4 kg/h的入料速度進行燃燒試驗。風機入口風速控制為6、7、8 m/s,對應的空氣量為25.92、30.24、34.56 m3/h[28]。各燃料工業(yè)分析、每千克各燃料完全燃燒所需的理論空氣量TAV(theoretical air volume)和理論煙氣量如表2所示,具體計算可參考文獻[29]。
表1 生物質揮發(fā)分組分
注:數(shù)據(jù)來源文獻[27]。
Note: Data were cited from reference[27].
表2 3種燃料的理論煙氣量
利用Fluent對燃燒筒結構進行三維建模、網(wǎng)格劃分(如圖2所示)及邊界條件設置。在Mesh中劃分三維模型的網(wǎng)格時,對流體區(qū)域分別選擇四面體和六面體混合網(wǎng)格,通過Sweep、Patch、Conforming、Sizing、Inflation等方法來進行劃分;在結構細小處,對網(wǎng)格進行加密以獲得較好的網(wǎng)格質量。最終網(wǎng)格數(shù)為362 782,節(jié)點數(shù)為65 584,平均網(wǎng)格畸變度為0.233,最大網(wǎng)格畸變度為0.81,網(wǎng)格質量較好。求解設置EDC渦耗散有限速率化學反應模型,使用詳細阿累尼烏斯化學動力學機理,燃燒過程湍流模擬采用Reynolds平均法(RANS)雙方程模型。組分輸運模型選用species transport,該模型可以由用戶自定義反應機理。
1.2 NOx化學機理的選取
NOx詳細排放機理選用ChemKin中Reaction Design發(fā)展的的C2_NOx機理。C2_NOx壓力相關機理包括99個反應組分和694個基元反應,在較寬反應域下詳細描述了碳氫化合物的氧化和NOx的機理。應用于CFD計算的化學反應機理要進行大量的簡化,反應機理的簡化要求對于給定的精度保證描述燃燒準確性,省略對燃燒過程沒有明顯影響的組分和基元反應,減少仿真運算量,因此采用敏感性分析法簡化得到17組分58基元反應機理(見表3)。
表3 17組分58基元反應機理
應用ChemKin接口將17組分骨架機理導入Fluent中,得到玉米秸稈在入口氣流速度為6 m/s時溫度場的模擬結果如圖3所示。
圖3表明整個溫度場最高溫度為1 320 K,略高于試驗測得燃燒器出口的爐膛測試平均溫度1 293 K[28],但在可接受范圍內,這與模型假設中忽略固定碳氣化等吸熱反應過程的模型設置有關。圖中所示的溫度場分布與實際情況相符,高溫區(qū)主要集中于火帽下方火焰峰面,這是因為火帽的存在使得該處的壓力較大,同時會產(chǎn)生的回流也會使局部溫度較高。將ChemKin中的反應機理導入Fluent中,求解計算得到的模擬結果在一定程度上體現(xiàn)了真實的燃燒情形。
1.3 ChemKin網(wǎng)絡模擬仿真
通過DSMOKE模塊導出CFD仿真結果的混合區(qū)體積和滯留時間參數(shù),依據(jù)Fluent仿真得到的結果,將參數(shù)輸入到ChemKin參數(shù)設置表中,作為機理反應模型的初始條件,具體參數(shù)見表4所示。問題類型選用Constrain Pressure and Solve Energy Equation (Default),化學當量比為1.0、壓力為1 atm、溫度為1 400 K。在ChemKin中建立簡化的理想均相反應器網(wǎng)絡,整個網(wǎng)絡結構如圖所示。圖中共有6個PSR(perfectly stirred reactor)反應器,編號為1~6,1個一維柱塞流反應器PFR(plug flow reactor)用來模擬排氣管道。反應器1到6分別對應于燃燒筒的6個反應區(qū)域,如圖4b所示,反應器1為入口區(qū)域,反應器2為固相混合區(qū),反應器3為氣相混合區(qū)域,反應器4為火帽上方燃燒區(qū)域,反應器5為火帽下方回流區(qū)域,反應器6為燃燒筒出口及其后方區(qū)域。
表4 參數(shù)設置表
2.1 各反應器的NO分布
圖5a為在4 kg/h進料速度、過量空氣系數(shù)=1.5(25 m3/h)下的玉米秸稈組分輸入,各PSR反應器的CO、O2、CO2組分摩爾分數(shù)分布。O2含量在反應器1、2、3中一直處于高濃度水平,因為這些區(qū)域燃燒并不劇烈,O2消耗量較少,在區(qū)域3以后,燃燒反應充分,O2含量迅速下降,同時CO2量迅速增加,此時CO生成量在反應器中降到最低點。CO2和O2隨后保持水平,達到動態(tài)平衡,是燃燒穩(wěn)定的區(qū)域。
反應器網(wǎng)絡NO的含量變化如圖5b所示。在反應器1到3中,燃燒溫度較低,氣體揮發(fā)分的滯留時間較短,所以生成的NO量很少;而反應器4以后,燃燒充分,溫度升高,O2被大量的消耗,使得NO濃度大幅度上升,但因為溫度低于1500K,即熱力型NO的生成條件,又由于快速型NO的權重在3種NO中較低,所以此時主要是O2與生物質燃料中的N元素發(fā)生氧化反應生成燃料型NO。從該曲線圖中可以很好的預測NO生成的主要區(qū)域,為提出降低NO的措施提供了理論的依據(jù)。
a. CO、O2、CO2b. NO
2.2 不同燃料的NO排放對比
對玉米秸稈、棉稈顆粒燃料在進料量為4 kg/h、風量25 m3/h、過量空氣系數(shù)為1.5,木質風量30 m3/h、過量空氣系數(shù)為1.4三種工況下燃燒,對模擬煙氣管道PFR反應器中NO排放模擬結果處理,得到的結果如圖6所示。
對比3種顆粒燃料可以發(fā)現(xiàn),木質燃料NO達到峰值的距離最短,速度最快,而棉稈最慢。在生成量方面,因為燃燒溫度都在1 500 K以下,且空氣量充足,所以生成的NO主要是燃料型NO,3種顆粒燃料的N元素含量由高到低以此為棉稈、玉米秸稈、木質顆粒,因此棉稈的生成量大于玉米秸稈大于木質顆粒。三者的工業(yè)分析數(shù)據(jù)顯示,棉稈和玉米秸稈的灰分量較高[27],導致其NO達到峰值速度相對較慢,但從生成量的變化量上來看,三者增值僅為5e-6左右,并不明顯。
圖6的模擬結果與試驗結果[28]進行對比,如表5所示。對比試驗結果數(shù)據(jù),其中玉米秸稈和木質的結果較為一致,但棉稈的預測結果有6%的偏差,這可能同燃料N中具體的存在形式相關。在揮發(fā)分析出的過程中,揮發(fā)分氮主要以HCN和NH3形式析出,而本文參考Faravelli e的研究用HCN替代燃料中的揮發(fā)分N。
表5 3種生物質顆粒燃料NO排放模擬值與試驗值對比表
由表5可知,在相同的燃燒器負荷和相同空氣流速下3種燃料的NO平均排放值可以發(fā)現(xiàn),木質顆粒的NO排放最低,棉稈顆粒的最高,玉米秸稈顆粒介于二者之間。
這是因為,在1 400 K溫度下HCN向NO的轉化路徑是:HCN+M?H+CN+M、HCN+OH?CN+H2O、CN+O?NO+C、HCN+OH?HOCN+H、HNCO+O2?NCO+HO2、NCO+O?NO+CO、HNC+O?NH+CO等一系列反應。CO主要通過反應NCO+O?NO+CO影響NO生成,從平衡常數(shù)判斷,較低的CO濃度可促進反應向正方向進行;H2主要通過反應H2+OH?H2O+H產(chǎn)生H基作用于CH2+NO?H+HNCO,使得NO的上升;N元素含量高以及高溫也會導致高NO生成[8]。通過分析棉稈的輸入組分,CO相對含量低,H2相對含量高,在自身元素分析中N的質量分數(shù)是三者中最高,而且與玉米秸稈顆粒相比較,棉稈顆粒的燃燒溫度1 283 K要高于玉米秸稈的燃燒溫度1 259 K,因此棉稈NO的排放量是3種燃料中最高的。
2.3 不同風量的NO排放對比
對于玉米秸稈,在4 kg/h進料速度的工況下,設置不同的過量空氣系數(shù)(空氣質量流率),范圍為1.3~2.0,步長為0.1,得到反應網(wǎng)絡系統(tǒng)出口處NO的分布。如圖7所示,隨著當量比的增加,NO的排放出現(xiàn)較快增長,在過量空氣系數(shù)1.7附近,模型模擬值出現(xiàn)最高排放,隨后NO的排放隨過量空氣系數(shù)的增加開始下降,過量空氣系數(shù)的變化帶來燃料過程中氧濃度的變化,在≤1.7前對NO的生成有較明顯促進,這之后對NO的影響不顯著,同時過量空氣的稀釋效應一定程度降低了NO的體積分數(shù),但對NO的絕對生成量無貢獻。
將模擬結果與已有試驗結果[28]進行對比,如表6所示,對于測定試驗數(shù)據(jù),模擬結果偏差均不大。
表6 3種過量空氣系數(shù)下NO排放模擬值與試驗值對比表
過量空氣系數(shù)是通過進氣量增加而增大的,當從1.5變?yōu)?.7時,燃燒更加充分,O2隨進氣量而增多;再繼續(xù)增大進氣量,空氣流速增加使得混合氣體在爐膛內的滯留時間變短,同時對NO有所稀釋,因而其濃度降低。
需要說明的是,不管模擬結果或是試驗數(shù)據(jù)NO排放值均較高,這除了與燃料自身性質有關外,燃燒器的結構對其排放也有很大影響。張永亮[30]對包括本文研究的PB-20型燃燒器在內的3種燃燒器排放進行了測試,結果表明本文選用的燃燒器NO結果較高。燃燒器結構會影響燃燒參數(shù),從而影響排放。利用本文機理結果,可針對不同的燃燒器進行模擬研究其排放,從而大大縮減燃燒器的設計和改進過程。這部分相關原理和模擬研究應成為今后研究方向。
1)根據(jù)Fluent對燃燒筒仿真結果在ChemKin中建立了PSR等離子體管流反應器模型, 對NO排放的化學過程進行反應動力學模擬。
2)結果顯示各反應器NO濃度分布與溫度分布和CO、O2、CO2各組分分布有直接關系,NO主要生成在反應器4之后,且為燃料型NO。
3)將不同生物質成型燃料NO排放的模擬結果與試驗結果進行對比,兩者得出相同的變化趨勢,棉稈成型顆粒的結果有6%的偏差,玉米秸稈和木質的結果較為符合。
4)不同過量空氣系數(shù)下的玉米秸稈模擬結果表明:在過量空氣系數(shù)為1.7附近時,燃燒產(chǎn)生的NO排放最高,體積分數(shù)為290×10-6;模擬結果與試驗結果較為吻合。
5)驗證了選用Reaction Design的C2_NOx機理進行CFD和ChemKin聯(lián)合仿真,可實現(xiàn)生物質顆粒燃料NO排放預測,并具有較好的精確性。
[1] 羅娟,侯書林,趙立欣,等. 生物質顆粒燃料燃燒設備的研究進展[J]. 可再生能源,2009,27(12):90-95.
Luo Juan, Hou Shulin, Zhao Lixin, et al. The research progress of pellet burning equipments[J]. Renewable Energy Resources, 2009, 27(12): 90-95. (in Chinese with English abstract)
[2] 田紅,廖正祝. 農業(yè)生物質燃燒特性及燃燒動力學[J]. 農業(yè)工程學報,2013,29(10):203-212.
Tian Hong, Liao Zhengzhu. Combustion characteristics and combustion kinetics of agriculture biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 203-212. (in Chinese with English abstract)
[3] 張永亮,趙立欣,姚宗路,等. 生物質固體成型燃料燃燒顆粒物的數(shù)量和質量分布特性[J]. 農業(yè)工程學報,2013,29(19):185-192.
Zhang Yongliang, Zhao Lixin, Yao Zonglu, et al. Distribution characteristics of number and mass for particulate emission of biomass solid fuel combustion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(19): 185-192. (in Chinese with English abstract)
[4] Matti Parikka. Global biomass fuel resources[J]. Biomass and bioenergy, 2004, 27(6): 613-620.
[5] 陳漢平,李斌,楊海平,等. 生物質燃燒技術現(xiàn)狀與展望[J]. 工業(yè)鍋爐,2009(5):1-7.
Chen Hanping, Li Bin, Yang Haiping, et al. Status and prospect of biomass combustion technology[J]. Industrial Boiler, 2009(5): 1-7. (in Chinese with English abstract)
[6] Demirbas A. Combustion characteristics of different biomass fuels[J]. Progress in Energy and Combustion Science, 2004, 30(2): 219-230.
[7] 姚宗路,吳同杰,趙立欣,等. 生物質成型燃料燃燒揮發(fā)性有機物排放特性試驗[J]. 農業(yè)機械學報,2015,45(10):135-240.
Yao Zonglu, Wu Tongjie, Zhao Lixin, et al. Emission characteristic of VOCs from biomass molding fuel combustion[J]. Transactions of the Chinese Satiety for Agricultural Machinery, 2015, 45(10): 135-240. (in Chinese with English abstract)
[8] Williams A, Jones J M, Ma L, et al. Pollutants from the combustion of solid biomass fuels[J]. Progress in Energy and Combustion Science, 2012(38): 113-137.
[9] 趙欣,李慧,胡乃濤,等. 生物質固體成型燃料燃燒的NO和CO排放研究[J]. 環(huán)境工程,2015,33(10):50-54.
Zhao Xin, Li Hui, Hu Naitao, et al. Research on the combustion emissions of no and co from biomass solid fuel[J]. Environmental Engineering, 2015, 33(10): 50-54. (in Chinese with English abstract)
[10] Lunbo Duan, Yuanqiang Duan, Changsui Zhao, et al. NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor[J]. Fuel, 2015, 150(15): 8-13.
[11] Winter F, Wartha C, Hofbauer H, et al. NO and N2O formation during the combustion of wood, straw, malt waste and peat[J]. Bioresour Technol, 1999, 70(1): 39-49.
[12] 張鶴豐. 中國農作物秸稈燃燒排放氣態(tài)、顆粒態(tài)污染物排放特征的實驗室模擬[D]. 上海:復旦大學,2009.
Zhang Hefeng. A Laboratory Study on Emission Characteristics of Gaseous and Particulate Pollutants Emitted from Agricultural Crop Residue Burning in China[D]. Shanghai: Fudan University, 2009. (in Chinese with English abstract)
[13] Maryori Díaz-Ramírez, Fernando Sebastián, Javier Royo, et al. Influencing factors on NOxemission level during grate conversion of three pelletized energy crops[J]. Appl Energy, 2014, 115(4): 360-373.
[14] Murari Mohon Roy, Kenny W. Corscadden. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove[J]. Applied Energy, 2012, 99: 206-212.
[15] Evelyn Cardozo, Catharina Erlich, Lucio Alejo, et al. Combustion of agricultural residues: An experimental study for small-scale applications[J]. Fuel, 2014, 115: 778-787.
[16] Gerhard Stubenberger, Robert Scharler, Selma Zahirovic, et al. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models[J]. Fuel, 2008, 87: 793-806.
[17] Takero Nakahara, Hui Yan, Hiroyuki Ito. Study on one-dimensional steady combustion of highly densified biomass briquette (bio-coke) in air flow[J]. Proceedings of the Combustion Institute, 2015, 35: 2415-2422.
[18] Capucine Dupont, Guillaume Boissonnet, Jean-Marie Seiler. Study about the kinetic processes of biomass steam gasification[J]. Fuel, 2007, 86: 32-40.
[19] 徐德厚,周月桂,金旭東,等. O2/CO2氣氛下甲烷燃燒中NOx轉化過程的CHEMKIN模擬[J]. 鍋爐技術,2015,46(3):75-79.
Xu Dehou, Zhou Yuegui, Jin Xudong, et al. The fate of NH3in CH4combustion under O2/CO2atmosphere with CHEMKIN modeling[J]. Boiler Technology, 2015, 46(3): 75-79. (in Chinese with English abstract)
[20] 叢晶,周月桂,徐德厚,等. O2/CO2氣氛下煤粉燃燒中NOx轉化機理的CHEMKIN模擬[J]. 鍋爐技術,2015,46(5):63-67.
Cong Jing, Zhou Yuegui, Xu Dehou, et al. NOxconversion for pulverized coal combustion in O2/CO2environments with CHEMKIN modeling[J]. Boiler Technology, 2015, 46(5): 63-67. (in Chinese with English abstract)
[21] 趙然,劉豪,胡翰,等. O2/CO2氣氛下甲烷火焰中NO均相反應機理研究[J]. 中國電機工程學報,2009(20):52-59.
Zhao Ran, Liu Hao, Hu Han, et al. Homogeneous reaction mechanism research on NO in CH4flame under O2/CO2atmosphere[J]. Proceedings of the CSEE, 2009(20): 52-59. (in Chinese with English abstract)
[22] Hirotatsu Watanabe, Jun-ichiro Yamamoto, Ken Okazaki, et al. NOxformation and reduction mechanisms in staged O2/CO2combustion[J]. Combustion and Flame, 2011, 158(7): 1255-1263.
[23] Okazaki K, Ando T. NOxreduction mechanism in coal combustion with recycled CO2[J]. Energy, 1996, 22(2): 207-215.
[24] Zhao Ran, Liu Hao, Hu Han, Zhong Xiaojiao, et al. Experimental and modeling study of NO emission under high CO2concentration[J]. Science China, 2010, 53(12): 3275-3283.
[25] Vincent Fichet, Mohamed Kanniche, Pierre Plion, et al. A reactor network model for predicting NOxemissions in gas turbines[J]. Fuel, 2010, 89: 2202-2210.
[26] 董剛,蔣勇,陳義良,等. 大型氣相化學動力學軟件包 CHEMKIN及其在燃燒中的應用[J]. 火災科學,2000,9(1):27-33.
Dong Gang, Jiang Yong, Chen Yiliang, et al. A large-scale gas-phase chemical kinetics software package CHEMKIN and its application in combustion problems[J]. Fire Safety Science, 2000, 9(1): 27-33. (in Chinese with English abstract)
[27] Demirbas A. Biorefineries: current activities and future developments energy convers[J]. Manage, 2009, 50(11): 2782-2801.
[28] 趙欣. 生物質成型燃料氣態(tài)排放物特性研究[D]. 北京:中國農業(yè)大學,2015.
Zhao Xin. Research on the Gaseous Emissions Characteristics of Biomass Briquette Fuel[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[29] 李鑫華. 生物質顆粒燃料燃燒爐的優(yōu)化設計[D]. 北京:北京工業(yè)大學,2011.
Li Xinhua. Biomass Pellet Fuel Combustion Furnace of Optimization Design[D]. Beijing: Beijing University of Technology, 2016. (in Chinese with English abstract)
[30] 張永亮. 生物質固體成型燃料顆粒物排放特性研究[D]. 北京:中國農業(yè)大學,2014.
Zhang Yongliang. Research on the Particulate Emission Characteristics of Biomass Solid Forming Fuel[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
Simulation and validation of NO emission characteristics of biomass pellet fuel combustion based on chemical kinetics
Liu Tingjie, Zhang Xuemin※, Lin Chaoqun, Li Juntao
(100083,)
In order to study NO emission laws and its formation mechanism of biomass pellet fuel combustion, a CFD (computational fluid dynamics) and Chemkin co-simulation method was used. The simulation was based on an experiment which was conducted on a biomass pellets combustion platform. Three kinds of biomass pellets, which were cotton stalk, corn stalk and wood, respectively, were chosen for the combustion test. Inlet air volume was controlled by changing the wind speed of the blower to study NO emissions under different conditions. Then a CFD model of the test boiler combustion cylinder was established and then divided into grids for the simulation, and a simplified chemical reaction mechanism composed of 17 components and 58 primitive reactions was imported using the interface to Chemkin and adopting the method of sensitivity analysis. The EDC (eddy dissipation concept) eddy dissipation finite rate chemical reaction model was set for Fluent solving process. The maximum temperature of 1320 K simulated by the Fluent was in good agreement with the experimental result of 1293 K, and the deviation was mainly caused by the model assumptions and settings, which signified that the simulated results to a certain extent could reflect the real combustion situation. Therefore, the results of the Fluent such as mixing zone volume and residence time could be used as inlet parameters for Chemkin. Then a Chemkin-PSR (perfectly stirred reactor) reaction simulation network was established, which was composed of 6 PSR reactors and one PFR (plug flow reactor) reactor, corresponding to the 6 reaction zones of the combustion cylinder and the exhaust pipe, respectively. The C2_NOxdetailed mechanism developed by Reaction Design was chosen for NO emissions simulation of 3 kinds of biomass pellet fuels. The simulation results showed that cotton stalk produced the most amount of NO, corn stalk took the second place, while wood had the lowest NO emission. Simulation of corn straw also indicated that NO emissions increased apparently with the excess air ratio in the beginning, and then gradually peaked when the excess air ratio reached 1.7. In addition, the NO concentration distribution and temperature distribution in the reactor had a direct relationship with the distribution of CO, O2, and CO2components. NO was mainly produced since Reactor 4. Finally the simulation results were compared with the experimental results. The deviation of cotton stalk was calculated to be 6%, which was the greatest of the 3 biomass pellets but still quite acceptable. Consequently, the correctness of the model and the chemical reaction mechanism has been proved, which provide a reference for the prediction and control of NO emissions of biomass fuel combustion. Besides, the shape and size of the combustor have big influence on NO emissions, so the study on that aspect should be given more attention. This paper gives the related chemical reaction mechanism, which is the basis of an accurate simulation.
biomass; emission control; fuels; NO; chemical kinetics; numerical simulation
10.11975/j.issn.1002-6819.2016.24.034
S216; X511
A
1002-6819(2016)-24-0255-06
2016-03-14
2016-11-10
中央高?;究蒲袠I(yè)務費專項資金(2015GX003);中國農業(yè)大學教育基金會“大北農教育基金”資助項目(1071-2413003)。
劉婷潔,女,河南洛陽人,主要從事生物燃料燃燒與排放方面的研究。北京 中國農業(yè)大學工學院,100083。Email:liutingjie@cau.edu.cn。
張學敏,男,內蒙古呼市人,副教授,博士,碩士生導師,主要從事生物質燃燒和排放方面的研究。北京 中國農業(yè)大學工學院,100083。Email:xuemin_zh@cau.edu.cn。