• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      牛糞好氧和蚯蚓堆肥腐熟料成型基質(zhì)塊制備及育苗試驗(yàn)

      2017-01-09 05:32:35楊龍?jiān)?/span>袁巧霞劉志剛曹紅亮
      關(guān)鍵詞:草炭膨脹劑牛糞

      楊龍?jiān)上?,劉志剛,曹紅亮,羅 帥

      ?

      牛糞好氧和蚯蚓堆肥腐熟料成型基質(zhì)塊制備及育苗試驗(yàn)

      楊龍?jiān)?,袁巧霞※,劉志剛,曹紅亮,羅 帥

      (華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)

      為優(yōu)化蔬菜育苗成型基質(zhì)的配方,提高成型基質(zhì)蔬菜育苗效果,分別以牛糞好氧堆肥腐熟料和牛糞蚯蚓堆肥腐熟料為主料,草炭為輔料,吸水樹脂為膨脹劑,木醋液為調(diào)節(jié)劑,黃瓜為指示植物,研究不同配方對成型基質(zhì)塊成型及育苗效果的影響,并對各目標(biāo)指標(biāo)進(jìn)行綜合評價(jià),以確定較佳的成型育苗基質(zhì)配方。試驗(yàn)結(jié)果表明:牛糞好氧堆肥腐熟料制成的成型基質(zhì)塊在膨脹性能、抗跌碎性及育苗期間破損情況優(yōu)于牛糞蚯蚓堆肥腐熟料制成的成型基質(zhì)塊,但其pH值、EC值較高,使其存活率和莖粗株高等育苗特性與牛糞蚯蚓堆肥腐熟料相比較差。2種腐熟料基質(zhì)配方可采取不同的調(diào)節(jié)方法改善其特性,蚯蚓堆肥腐熟料中添加適量秸稈類纖維狀物質(zhì)可以減小其成型基質(zhì)塊的跌碎率和破損率,牛糞好氧堆肥腐熟料中添加硫磺粉可以調(diào)節(jié)pH值。從基質(zhì)塊質(zhì)量綜合指數(shù)來看,既適合成型又有利于育苗效果的配方為:腐熟料和輔料的體積比為3:2~4:3;成型基質(zhì)塊中膨脹劑的含量以該試驗(yàn)中最小添加量27 mL左右最為合適,與總物料(腐熟料和輔料混合后的物料)的比值為5.5 mL/L;木醋液在2種腐熟料中的添加量不同,在牛糞好氧腐熟料中,木醋液添加量約為8.5 mL/L,而牛糞蚯蚓腐熟料中則為18 mL/L,此時(shí)兩種腐熟料成型基質(zhì)塊的跌碎率均小于5%,破損率均小于20%和小于40%,幼苗存活率分別大于40%和大于70%,全株干質(zhì)量全部大于100 mg。該研究結(jié)果可為蔬菜有機(jī)栽培成型基質(zhì)的開發(fā)及其品質(zhì)改善提供理論依據(jù),具有重要意義。

      糞;堆肥;基質(zhì);壓縮成型;育苗;蚯蚓

      0 引 言

      中國20世紀(jì)80年代初開始利用塑料穴盤、護(hù)根缽代替土坨、泥缽、紙缽進(jìn)行育苗移栽,90年代以來利用塑料花盆代替瓦盆用于觀賞花卉、苗木培育和美化銷售,目前塑料缽和塑料盆的年產(chǎn)銷量數(shù)以億計(jì),塑料穴盤的年更新量在4 000萬張左右[1-2],但塑料育苗穴盤難降解,對環(huán)境造成嚴(yán)重污染,并且回收再利用的成本高[3-4]。另一方面,草炭是沼澤中死亡植物殘?bào)w轉(zhuǎn)化積累形成的有機(jī)礦產(chǎn)資源,其有機(jī)質(zhì)和纖維含量豐富,疏松多孔,通氣透水性好,是良好的作物栽培基質(zhì),被廣泛的應(yīng)用于農(nóng)業(yè)生產(chǎn)[5],但由于其不可再生,以及大量的開采對生態(tài)環(huán)境也造成不可逆轉(zhuǎn)的影響[6-9]。近年來國內(nèi)外學(xué)者采用發(fā)酵方法處理各種有機(jī)廢棄物,以期替代草炭作為育苗和栽培基質(zhì)原料,且多數(shù)是作為散體基質(zhì)育苗使用[10-15]。若將牛糞等有機(jī)廢棄物腐熟處理后經(jīng)過適當(dāng)調(diào)配,壓縮成基質(zhì)塊,使其在育苗期間能保持固有的形狀,移栽后基質(zhì)料仍能作為有機(jī)肥進(jìn)一步利用,則不僅替代塑料穴盤,減少其對環(huán)境的污染,還可將幼苗和基質(zhì)可一同移栽大田,且移栽時(shí)不傷根、不傷苗、無緩苗期[16-18],同時(shí)還可以部分替代草炭作為育苗基質(zhì),減少草炭用量,保存寶貴的自然資源。

      國內(nèi)一些學(xué)者對成型基質(zhì)塊的原料和工藝進(jìn)行了探討,但鮮有對基質(zhì)塊特性及育苗效果進(jìn)行綜合評價(jià)[19-20]。本試驗(yàn)的主要目的是對以2種不同的牛糞腐熟料為主要材料,草炭和木醋液為輔料,吸水樹脂為膨脹劑的成型基質(zhì)塊成型特性和育苗效果進(jìn)行綜合評價(jià),為牛糞等畜禽糞便的高效利用和推廣提供參考。

      1 試驗(yàn)材料與方法

      1.1 試驗(yàn)材料

      本試驗(yàn)分為2組試驗(yàn),組①的主體原料牛糞取自湖北省武漢市江夏區(qū)東征畜牧養(yǎng)殖有限公司,調(diào)理料稻草取自華中農(nóng)業(yè)大學(xué)周邊農(nóng)戶的農(nóng)田,經(jīng)晾干預(yù)處理后粉碎至長度小于5 cm。將調(diào)理料稻草和鮮牛糞按質(zhì)量比1:4均勻混合,堆漚腐熟風(fēng)干后粉碎過4 mm篩網(wǎng)備用。組②中的主體原料牛糞蚯蚓堆肥腐熟料取自湖北省黃岡市某牛糞蚯蚓養(yǎng)殖場,風(fēng)干后過5 mm的篩網(wǎng),保存?zhèn)溆谩?組試驗(yàn)中的其他配料均相同,包括草炭(加拿大進(jìn)口,購于市場,其pH值為5.95,EC值0.22 mS/cm)、高吸水樹脂(一種交聯(lián)型丙烯酸/丙烯酸鈉聚合物,吸水倍率為200,購于市場)、木醋液(取自湖北藍(lán)焰生態(tài)能源有限公司)。兩組試驗(yàn)中的黃瓜種子均購買于市場(新津研四號,永安燕豐種業(yè)有限公司生產(chǎn))。

      1.2 試驗(yàn)設(shè)備

      1)基質(zhì)成型模具。成型模具自行設(shè)計(jì)制造,主要由底座、套筒和頂桿三部分組成(圖1)。底座是脫模機(jī)構(gòu),便于成型基質(zhì)塊的脫模,底座上有一個(gè)小凸臺(tái),用于形成基質(zhì)塊的育種小孔。套筒作為基質(zhì)成型的行程腔,固定在底座之上,其內(nèi)壁經(jīng)過拋光處理,以減小脫模時(shí)基質(zhì)塊與內(nèi)壁間的摩擦。頂桿是壓縮成型過程中的一個(gè)導(dǎo)向與傳力機(jī)構(gòu),在外動(dòng)力作用下從套筒頂部由上至下均勻穩(wěn)定地加載在基質(zhì)之上,實(shí)現(xiàn)散體基質(zhì)的壓縮成型。

      2)液壓萬能材料試驗(yàn)機(jī)。本試驗(yàn)所用液壓萬能材料試驗(yàn)機(jī)型號為WE-100B,加載在頂桿上給基質(zhì)成型提供壓力。

      1.3 試驗(yàn)設(shè)計(jì)

      1.3.1 散體基質(zhì)壓縮成型試驗(yàn)

      將待成型的散體基質(zhì)裝入套筒內(nèi),啟動(dòng)萬能材料試驗(yàn)機(jī)開始加壓,通過前期探索試驗(yàn)確定試驗(yàn)①中壓力分別為20 kN(基質(zhì)塊直徑50 mm)、15 kN(基質(zhì)塊直徑40 mm),并保壓5 min,冷卻脫模后,將成型基質(zhì)塊室內(nèi)保存;試驗(yàn)②中壓力分別為15 kN(基質(zhì)塊直徑50 mm)、10 kN(基質(zhì)塊直徑40 mm),其他成型過程同試驗(yàn)①,混合物料的含水率控制在25%左右。

      試驗(yàn)①和試驗(yàn)②的基質(zhì)成型配方和各配方的化學(xué)性質(zhì)如下表1和表2所示。

      表1 牛糞好氧堆肥腐熟料和牛糞蚯蚓堆肥腐熟料成型基質(zhì)配方

      注:表中腐熟料占比表示腐熟料占腐熟料和草炭總體積的比值(不包含吸水樹脂和木醋液的體積,因?yàn)檫@兩者體積很?。?。

      Notes: Compost ratios were the ratio of cow dung compost and earthworm compost to compost and peat (without the water absorption resin and wood vinegar liquid, because the volume of these were very small).

      表2 不同配方的化學(xué)性質(zhì)

      注:表中同一列中不同字母表示在Duncan 多重比較下(<0.05)差異顯著。=3,下同。

      Notes: Means followed by the different letter in the same column differed significantly according to Duncan’s multiple range test (=0.05).=3, same as below.

      1.3.2 成型基質(zhì)塊育苗試驗(yàn)

      將黃瓜種子置于55 ℃溫水中浸泡20 min后用自來水將種子洗凈,將種子轉(zhuǎn)移至濕潤的紗布上,放入托盤,將托盤置于30 ℃的黑暗培養(yǎng)箱中。每隔6 h噴灑適量的水至紗布上,待70%的種子發(fā)芽,選擇其中長勢相近的種子播入不同配方成型基質(zhì)塊小孔中后覆蓋散體基質(zhì),每種配方12塊基質(zhì)裝入同一塑料盤中(塑料盤底部為4 mm網(wǎng)眼的全鏤空結(jié)構(gòu),防止灌溉水堆積在盤中使成型基質(zhì)塊破損),并用自來水微噴灌溉基質(zhì)(減小灌溉水對成型基質(zhì)塊的沖刷力),直至澆透。整個(gè)苗期內(nèi)不另施肥,每天微噴灌溉(微噴灌溉水對基質(zhì)塊的機(jī)械沖刷力最小,有利于基質(zhì)塊不破損),整個(gè)育苗試驗(yàn)為期18 d。

      1.4 測試指標(biāo)

      1.4.1 成型基質(zhì)塊的特性指標(biāo)

      本研究針對基質(zhì)塊使用的實(shí)際情況,重點(diǎn)考察如下試驗(yàn)指標(biāo):

      1)跌碎率

      跌碎率能夠反映成型基質(zhì)塊的機(jī)械強(qiáng)度以及承受抗破碎的能力。將預(yù)先稱重過的成型基質(zhì)塊從40 cm高度自由落體摔落到水泥地面上,重復(fù)5次,再稱質(zhì)量,摔落后基質(zhì)塊損失的質(zhì)量與原質(zhì)量的百分比則定義為跌碎率[21]。

      2)膨脹系數(shù)

      膨脹系數(shù)是基質(zhì)塊吸水后其體積與干基質(zhì)塊體積之比,能夠反映基質(zhì)塊通水透氣的能力大小。

      3)飽和含水率

      飽和含水率是基質(zhì)中全部孔隙被水分占據(jù)時(shí)所保持水分的最大容量比,是表征基質(zhì)塊吸水能力的重要指標(biāo),本研究采用環(huán)刀法來測定基質(zhì)塊的飽和含水率[22],其含水率采用質(zhì)量分?jǐn)?shù)表示。

      4)育苗期間破損率

      在成型基質(zhì)塊育苗期間應(yīng)保持原有形狀,以便能固定幼苗植株及移栽到大田中,育苗結(jié)束后人工轉(zhuǎn)移基質(zhì)塊,破損的基質(zhì)塊數(shù)量和育苗過程中澆水損壞的基質(zhì)塊數(shù)量之和與基質(zhì)塊總數(shù)量之比為育苗期間破損率。

      1.4.2 幼苗生長指標(biāo)測定

      幼苗生長指標(biāo)主要包括莖粗、株高、地上部和地下部的鮮質(zhì)量及干質(zhì)量,待播種18 d后,采用游標(biāo)卡尺測定幼苗的莖粗、株高,株高為自基質(zhì)塊表面至幼苗心葉頂端;莖粗的測量點(diǎn)為子葉下端。在幼苗18 d時(shí),采用0.0001 g精度的電子天平稱量洗凈并吸干水分的幼苗,即得到幼苗地上部和地下部鮮質(zhì)量;將幼苗地上部和地下部置于105 ℃下殺青15 min,80 ℃下烘干12 h至恒重,稱量幼苗地上部和地下部干質(zhì)量[23]。

      1.5 基質(zhì)塊質(zhì)量綜合評價(jià)

      1.5.1 基質(zhì)塊質(zhì)量綜合評價(jià)指標(biāo)體系

      已有的研究多從基質(zhì)塊的成型效果,或者單純從基質(zhì)塊育苗效果來衡量基質(zhì)塊質(zhì)量,鮮有將二者結(jié)合起來評價(jià)基質(zhì)塊質(zhì)量。本研究從基質(zhì)塊成型效果及育苗效果兩個(gè)層面構(gòu)建基質(zhì)塊質(zhì)量綜合評價(jià)指標(biāo)體系,采用變異系數(shù)法確定其權(quán)重(表3)[24]。

      表3 基質(zhì)塊質(zhì)量綜合評價(jià)指標(biāo)體系及量化標(biāo)準(zhǔn)

      1.5.2 評價(jià)指標(biāo)量化分析

      鑒于各指標(biāo)性質(zhì)不同,本研究采用[0,100]閉合區(qū)間實(shí)現(xiàn)指標(biāo)屬性分值到基質(zhì)塊質(zhì)量綜合評價(jià)分值之間的轉(zhuǎn)換,從而實(shí)現(xiàn)不同指標(biāo)對基質(zhì)塊質(zhì)量影響的定量描述(表3),分值高低表示各指標(biāo)對基質(zhì)塊質(zhì)量影響程度?;|(zhì)塊成型效果是評價(jià)基質(zhì)塊在運(yùn)輸、移栽、育苗過程中摔碎、破損的基礎(chǔ),是基質(zhì)塊育苗決定性因素;而基質(zhì)塊育苗效果則是農(nóng)業(yè)生產(chǎn)的直接評價(jià),其測算如下[25]

      式中為基質(zhì)塊質(zhì)量綜合評價(jià)分值;為因素編號;w為評價(jià)指標(biāo)權(quán)重;h為影響基質(zhì)塊成型效果和育苗效果的指標(biāo)分值,考慮到基質(zhì)塊成型效果和基質(zhì)塊育苗效果同樣重要,因此準(zhǔn)則層的指標(biāo)權(quán)重為0.5和0.5,即本公式中的系數(shù)為0.5。

      2 結(jié)果與討論

      2.1 成型基質(zhì)膨脹特性分析

      以牛糞好氧堆肥腐熟料為主料成型的基質(zhì)塊直徑在49~52 mm間,高度在26~35 mm間,牛糞蚯蚓堆肥腐熟料成型基質(zhì)塊直徑在50~52 mm間,高度在24~28 mm間,這是由于牛糞好氧堆肥腐熟富含纖維素、半纖維素、木質(zhì)素,膨脹性較好[26],容積密度小,其壓縮后高度變化范圍較大,而牛糞蚯蚓堆肥腐熟料中的纖維素、半纖維素、木質(zhì)素絕大部分已經(jīng)分解。基質(zhì)塊頂部穴孔周圍的淺槽設(shè)計(jì)是為了使基質(zhì)表面均勻吸水,均勻膨脹。從吸水后的情況看(表4),由于基質(zhì)中加入了一定比例的膨脹劑,基質(zhì)普遍產(chǎn)生較大的膨脹,且膨脹變化主要發(fā)生在高度方向,最大膨脹率達(dá)3.9,最小為1.78(TS4)。大的膨脹率使基質(zhì)塊有較好的孔隙特性,有利于根系生長,但由于基質(zhì)塊直徑最大只有50 mm,大的縱向膨脹率以及吸水的不均勻性,使高膨脹率的基質(zhì)塊吸水后傾倒嚴(yán)重,適當(dāng)降低成型基質(zhì)塊的高度可能更有利于成型基質(zhì)塊的穩(wěn)定性,膨脹劑加入量亦不宜過大,從試驗(yàn)中3個(gè)梯度看,膨脹劑添加量為27 mL的水平即能滿足要求,牛糞蚯蚓堆肥腐熟料中膨脹劑為81 mL水平(全部的TS5、TS7)和部分的TS9均出現(xiàn)吸水完全膨脹破損現(xiàn)象,并且顯著高于牛糞蚯蚓堆肥腐熟料中的其他配方(<0.05)。除此之外,膨脹劑的均勻混合以及試驗(yàn)和生產(chǎn)過程中均勻灌溉也十分關(guān)鍵。

      表4 不同配方成型基質(zhì)塊吸水后的膨脹系數(shù)

      注:表中“—”表示成型基質(zhì)塊吸水完全破損,無法測量其直徑和高度,不能測量其膨脹系數(shù)。

      Notes: “—” means that the compressed substrates are all broken after watering.

      2.2 成型基質(zhì)塊抗損特性分析

      圖2a為兩種腐熟料不同配方下的成型跌碎率,可以看出牛糞好氧堆肥為主材料的成型基質(zhì)塊的跌碎率在1%以內(nèi),完全滿足成型基質(zhì)塊在其后的運(yùn)輸過程中機(jī)械碰撞強(qiáng)度的要求。相對于牛糞好氧堆肥腐熟料的成型基質(zhì)塊,牛糞蚯蚓堆肥腐熟料為主的成型基質(zhì)塊的跌碎率偏大,其中有兩組大于1%(TS1為26.14%,TS5為3.56%),其余的小于1%,并且只有TS1顯著高于其他組(<0.05)。圖2b為基質(zhì)塊的破損情況,破損率最低的處理組是T1:牛糞好氧堆肥腐熟料占83.33%(體積比,下同),草炭占16.67%,膨脹劑27 mL,該處理組無破損現(xiàn)象;破損率最高的是T7(腐熟料占3 L,草炭占1 L,膨脹劑占81 mL)和T9(腐熟料占3 L,草炭占3 L,膨脹劑占54 mL),高達(dá)55.56%。總體趨勢是隨著草炭比例和膨脹劑添加量的增加,破損率升高,主要原因是本研究中牛糞堆肥料仍是半腐熟狀態(tài),部分秸稈填充物沒有完全降解,以長纖維的狀態(tài)存在,起到顆粒之間固接作用,使顆粒之間黏結(jié)力增加,但如果膨脹劑量太大,使顆粒之間的膨脹力大于黏結(jié)力,基質(zhì)塊就會(huì)崩塌分散而破碎。蚯蚓腐熟料各處理的整體破損率明顯高于牛糞好氧堆肥腐熟基質(zhì)的各處理,破損率最高的是TS5(腐熟料占4 L,草炭占2 L,膨脹劑占81 mL)、TS7和TS9三個(gè)處理,達(dá)100%,顯著高于其他組(<0.05);最低為TS4(腐熟料占4 L,草炭占1 L,膨脹劑占54 mL)處理,破損率16.7%。從TS1、TS2和TS3 3個(gè)處理看,隨著蚯蚓腐熟料比例的降低,破損率也隨之顯著降低(<0.05),這主要是因?yàn)槠洳萏康牧吭谠黾?,草炭中的纖維起到了連接作用(而蚯蚓腐熟料中含有的少量砂??赡芤欢ǔ潭壬弦蚕魅趿蓑球靖炝祥g的連接作用)。其他各處理沒有明顯的規(guī)律性,其破損率的差異應(yīng)該是蚯蚓腐熟料和草炭2種物料之間黏結(jié)力的差異和膨脹劑的膨脹力綜合作用的結(jié)果。

      a. 基質(zhì)塊的跌碎率

      a. Broken rate of compressed substrates

      2.3 基質(zhì)塊幼苗存活率分析

      圖3為2種腐熟料不同處理基質(zhì)塊出苗狀況,從總體上看,存活率均偏低,最高存活率僅為72.22%,這與育苗期間氣溫較低(10~18 ℃)及成型基質(zhì)塊的破損(成型基質(zhì)塊破損澆水破損后,種子裸露在外,成活率率極低)有關(guān)。牛糞好氧腐熟料的存活率遠(yuǎn)低于蚯蚓腐熟料,其原因包括幾個(gè)方面,其一是牛糞好氧腐熟不完全;其二該基質(zhì)EC值過高(EC為3.63 mS/cm),與草炭混合后降低到2.7 mS/cm以下;其三是pH值偏高(8.0),試驗(yàn)中添加了一定比例的木醋液(pH值<5),其目的是利用木醋液的酸性作用,但基質(zhì)料添加木醋液后僅在添加的當(dāng)天pH值有所降低,第3天就會(huì)恢復(fù)到原pH值大小,可能是木醋液的用量太少,牛糞好氧堆肥腐熟料對弱酸的緩沖量太大。從圖3的T1、T2、T3處理比較,牛糞好氧腐熟料添加比例降低,其存活率反而降低,這可能是由于這3個(gè)處理中不同的膨脹劑添加量所至,隨著膨脹劑添加量的增加,孔隙度增加,其持水和保水功能下降,基質(zhì)含水量降低會(huì)改變種苗生長所需的適宜濕度條件。T1、T6、T8三個(gè)處理膨脹劑添加量相同(27 mL),腐熟料比例分別為83.33%、57.14%和60.00%,存活率分別為27.78%、47.22%和30.56%(>0.05),二者之間成正比例關(guān)系。但在膨脹劑添加量為54和81 mL的處理組,沒有出現(xiàn)這種正比例關(guān)系,這是基質(zhì)配方理化特性綜合競爭的結(jié)果。蚯蚓堆肥腐熟處理組總體存活率高于好氧堆肥腐熟處理,這主要是由于蚯蚓腐熟料有很好的化學(xué)穩(wěn)定性,且EC值為0.78 mS/cm,pH值為5.95,這些特性接近草炭的特性但比草炭更富有養(yǎng)分含量[27]。從圖5b看,最高存活率為處理組TS8(腐熟料占3 L,草炭占2 L,膨脹劑占27 mL),存活率為72.2%;最低為5.56%,出現(xiàn)在TS9處理組(腐熟料占3L,草炭占3L,膨脹劑占54 mL)??傮w趨勢是隨蚯蚓腐熟料比例的降低和膨脹劑添加量的增加,存活率降低。

      2.4 黃瓜苗生長發(fā)育分析

      圖4為各處理組黃瓜苗生長發(fā)育狀況,其中圖4a為2種腐熟料各處理的黃瓜苗莖粗,圖4b為2種腐熟料各處理的黃瓜苗株高。從2種不同原料和2個(gè)不同指標(biāo)看,生長發(fā)育狀況最差的均在處理5(腐熟料占4 L,草炭占2 L,膨脹劑占81 mL)和處理9(腐熟料占3 L,草炭占3 L,膨脹劑占54 mL),這2個(gè)處理共同的特點(diǎn)是腐熟原料所占比例低或膨脹劑相對腐熟原料所占比例較高。好氧堆肥腐熟料各處理中黃瓜苗生長發(fā)育最好的是T6,而蚯蚓堆肥腐熟料各處理中黃瓜苗生長發(fā)育最好的則是TS8。

      a. 莖粗

      a. Stemdiameter

      2.5 綜合評價(jià)

      表5為2種牛糞腐熟料成型基質(zhì)塊的相關(guān)指標(biāo)。對于基質(zhì)塊成型效果,以牛糞好氧腐熟料為主料的基質(zhì)塊在跌碎率、破損率、膨脹系數(shù)指標(biāo)上均比以牛糞蚯蚓腐熟料為主料的基質(zhì)塊表現(xiàn)出較好的性能,即采用牛糞好氧腐熟料在基質(zhì)塊成型效果方面優(yōu)于牛糞蚯蚓腐熟料。對于基質(zhì)塊育苗效果,采用牛糞好氧腐熟料配方的基質(zhì)塊在全株干質(zhì)量指標(biāo)上僅有兩組配方(T2和T6)超過50 mg,而牛糞蚯蚓腐熟料配方的基質(zhì)塊全株干質(zhì)量分布較為集中(絕大部分在60~90 mg間);同時(shí)在存活率上牛糞好氧腐熟料比牛糞蚯蚓腐熟料差,即牛糞蚯蚓腐熟料在基質(zhì)塊育苗效果上優(yōu)于牛糞好氧腐熟料,這是因?yàn)榕<S蚯蚓腐熟料相比于牛糞好氧腐熟料,有低養(yǎng)分、低鹽濃度、偏微酸等特性,同時(shí)蚯蚓糞還含有一些植物生長激素及生長調(diào)節(jié)物質(zhì),對黃瓜幼苗的生長有促進(jìn)作用[28-29]。各配方基質(zhì)塊質(zhì)量的綜合指數(shù)在[57.85,86.09],所有配方基質(zhì)塊質(zhì)量平均綜合指數(shù)為70.70,并且僅改變牛糞好氧腐熟料和牛糞蚯蚓腐熟料時(shí),兩者所得到的基質(zhì)塊質(zhì)量綜合指數(shù)變化趨勢一樣。其中基質(zhì)塊質(zhì)量綜合指數(shù)高于80的配方有T6(84.89)、TS4(83.16)、TS8(86.09),T6中牛糞好氧腐熟料約占4 L、草炭約占3 L、膨脹劑占27 mL、另加木醋液60 mL,TS8中蚯蚓腐熟料占3 L,草炭占2 L,膨脹劑為27 mL,另加木醋液90 mL,對比可知優(yōu)化配方為兩種腐熟料占總物料體積的57.14%~60.00%;膨脹劑與總物料(腐熟料和輔料混合后的物料)的比值為27 mL:5~6 L;在牛糞好氧腐熟料配方中,木醋液與總物料60 mL:7 L,而牛糞蚯蚓腐熟料配方中,這一比值為18 mL:1。

      表5 種牛糞腐熟料的成型基質(zhì)塊的相關(guān)指標(biāo)

      3 結(jié) 論

      1)牛糞好氧堆肥腐熟料制成的成型基質(zhì)塊在膨脹性能、抗摔性及育苗期間破損情況優(yōu)于牛糞蚯蚓堆肥腐熟料制成的成型基質(zhì)塊;牛糞好氧堆肥腐熟料基質(zhì)塊的縱向膨脹大,可通過減小基質(zhì)塊質(zhì)量來適當(dāng)減小其吸水膨脹后的高度,增強(qiáng)基質(zhì)塊的穩(wěn)定性,同時(shí)也有利于灌溉的均勻性。但其pH值、EC值含量較高,使其存活率和莖粗株高不及牛糞蚯蚓堆肥腐熟料,兩類成型基質(zhì)均需要進(jìn)一步調(diào)節(jié)。

      2)木醋液對牛糞好氧堆肥腐熟料成型基質(zhì)育苗效果影響不大,但對牛糞蚯蚓堆肥腐熟料成型基質(zhì)塊育苗有促進(jìn)作用,可能是木醋液對牛糞好氧腐熟料的pH值影響不大,而pH值是影響牛糞好氧腐熟料育苗效果的最主要因素。

      3)通過對基質(zhì)塊質(zhì)量綜合評價(jià),可得既適合成型又有利于育苗效果的配方為:腐熟料占總物料體積的57.14%~60.00%;成型基質(zhì)塊中膨脹劑的含量以本試驗(yàn)中最小劑量27 mL左右基質(zhì)較為合適,即與總物料(腐熟料和輔料混合后的物料)的比值為27 mL∶5~6 L;在牛糞好氧腐熟料配方中,木醋液與總物料比值為60 mL:7 L,而牛糞蚯蚓腐熟料配方中,木醋液與總物料比值為18 mL∶1 L,此時(shí),此時(shí)成型基質(zhì)塊的跌碎率均小于5%,破損率分別小于20%和小于40%,幼苗存活率分別大于40%和大于70%,全株干質(zhì)量全部大于100 mg。

      [1] 王懷松,張志斌,陳鈺輝. 意大利蔬菜生產(chǎn)與農(nóng)用塑料的使用概況[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(14):10-12.

      Wang Huaisong, Zhang Zhibin, Chen Yuhui, et al. Status of vegetable production and agricultural plastic use in Italy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(14): 10-12. (in Chinese with English abstract)

      [2] 張真和. 我國農(nóng)用塑料應(yīng)用技術(shù)的發(fā)展與展望[J]. 塑料,2001,30(2):9-12.

      Zhang Zhenhe. Development and prospect for agriculture-plastic applied technology in China[J]. Plastic, 2001, 30(2): 9-12. (in Chinese with English abstract)

      [3] 袁華玲,張金云,張學(xué)義,等. 蔬菜穴盤工廠化育苗技術(shù)及發(fā)展策略[J]. 安徽農(nóng)業(yè)科學(xué),2003,31(6):977-979.

      Yuan Hualing, Zhang Jinyun, Zhang Xueyi, et al. Key techniques and the development of vegetable seedling culture[J]. Journal of Anhui Agricultural Sciences, 2003, 31(6): 977-979. (in Chinese with English abstract)

      [4] 郭世榮. 固體栽培基質(zhì)研究、開發(fā)現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(增刊2):1-4.

      Guo Shirong. Research progress, current exploitations and developing trends of solid cultivation medium[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21 (Supp.2): 1-4. (in Chinese with English abstract)

      [5] Raviv M, Chen Y, Inbar Y. Peat and Peat Substitutes as Growth Media for Container-Grown Plants[M]// The Role of Organic Matter in Modern Agriculture. Springer Netherlands, 1986: 257-287.

      [6] 孟憲民. 我國泥炭資源的儲(chǔ)量、特征與保護(hù)利用對策[J].自然資源學(xué)報(bào),2006,21(4):567-574.

      Meng Xianmin. The deposit, characteristic and exploitation strategy of peat resource in China[J]. Journal of Natural Resources, 2006, 21(4): 567-574. (in Chinese with English abstract)

      [7] Page S E, Rieley J O, Banks C J. Global and regional importance of the tropical peatland carbon pool[J]. Global Change Biology, 2011, 17(2): 798-818.

      [8] Schmilewski G. Sustainable horticulture with peat-a German case study[J]. Peatlands International, 2000, 1: 27-30.

      [9] 楊永興. 從魁北克2000-世紀(jì)濕地大事件活動(dòng)看21世紀(jì)國際濕地科學(xué)研究的熱點(diǎn)與前沿[J]. 地理科學(xué),2002,22(2):150-155.

      Yang Yongxing. The 21st century hot point and forward position field of international wetland research from quebec 2000-millennium wetland event[J]. Scientia Geographica Sinica, 2002, 22(2): 150-155. (in Chinese with English abstract)

      [10] 時(shí)連輝,張志國,劉登民,等. 菇渣和泥炭基質(zhì)理化特性比較及其調(diào)節(jié)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):199-203.

      Shi Lianhui, Zhang Zhiguo, Liu Dengmin. Comparison of physiochemical properties between spent mushroom compost and peat substrate and adjustment[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2008, 24(4): 199-203. (in Chinese with English abstract)

      [11] 胡亞利,孫向陽,龔小強(qiáng),等. 混合改良劑改善園林廢棄物堆肥基質(zhì)品質(zhì)提高育苗效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):198-204.

      Hu Yali, Sun Xiangyang, Gong Xiaoqiang, et al. Mix-ameliorant improving substrates quality of waste compost from garden and seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 198-204. (in Chinese with English abstract)

      [12] Ostos J C, López-Garrido R, Murillo J M, et al. Substitution of peat for municipal solid waste-and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrubL[J]. Bioresource Technology, 2008, 99(6): 1793-1800.

      [13] 徐文俊,程智慧,孟煥文,等. 農(nóng)業(yè)廢棄有機(jī)物基質(zhì)配方對番茄生長及產(chǎn)量的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2012(4):127-133.

      Xu Wenjun, Cheng Meng Zhihui, Huanwen, et al. Influence of the formula of organic waste substrate from crop production on growth and yield of tomato[J]. Journal of Northwest A&F University, 2012(4):127-133.

      [14] Tikhomirov A A, Kudenko Y A, Ushakova S A, et al. Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems[J]. Advances In Space Research, 2010, 46(6): 744-750.

      [15] Ribeiro H M, Romero A M, Pereira H, et al. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production[J]. Bioresource Technology, 2007, 98(17): 3294-3297.

      [16] Petre S N, Pele M, Draghici E M. Influence of perlite and jiffy substrates on cucumber fruit productivity and quality[J]. Journal of Agricultural Science, 2015, 7(8): 185.

      [17] Salvador E D, Haugen L E, Gislerod H R. Compressed coir as substrate in ornamental plants growing.-part I: physical analysis[J]. Acta Horticulturae, 2005, 683: 215.

      [18] 白曉虎,李芳,張祖立,等. 秸稈擠壓成型育苗缽的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2008,(2):136-138.

      Bai Xiaohu, Li Fang, Zhang Zuli, et al. Experimental study on seedling pot extruded by straw[J]. Journal of Agricultural Mechanization Research, 2008(2): 136-138. (in Chinese with English abstract)

      [19] 曹紅亮,楊龍?jiān)上?,? 稻草,玉米芯調(diào)理牛糞堆肥成型育苗基質(zhì)試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):197-202.

      Cao Hongliang, Yang Longyuan, Yuan Qiaoxia, et al. Experimental research of seedling substrate compressed of cattle manures [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 197-202. (in Chinese with English abstract)

      [20] 劉洪杰,劉俊峰,郝建軍,等. 生物質(zhì)育苗缽及成型裝備[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(2):52-55.

      Liu Hongjie, Liu Junfeng, Hao Jianjun, et al. Biomass seeding bowl and molding equipment[J].Transactions of the Chinese Society for Agricultural Machinery, 2012, 46(2): 52-55. (in Chinese with English abstract)

      [21] 高玉芝,王君玲,尹維達(dá),等. 粘結(jié)劑對秸稈育苗缽成型質(zhì)量影響的試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2009,31(12):147-148.

      Gao Yuzhi, Wang Junlin, Yi Weida, et al. Experimental study on cohesive material for the molding quality of straw seedling nursing container[J]. Journal of Agricultural Machanization Research, 2009, 31(12): 147-148. (in Chinese with English abstract)

      [22] NY/T2118-2012 蔬菜育苗基質(zhì)[S]. 2012.

      [23] 劉爽,王宇欣,劉志丹. 生物氫烷工程沼渣用于油菜及菠菜育苗的效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):225-232.

      Liu Shuang, Wang Yuxin, Liu Zhidan. Application effect of biohythane residue onandseedling production[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(11): 225-232. (in Chinese with English abstract)

      [24] 門寶輝,梁川. 基于變異系數(shù)權(quán)重的水質(zhì)評價(jià)屬性識(shí)別模型[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2005,37(10):1373-1375.

      Men Baohui, Liang Chuan. Attribute recognition model-based variation coefficient weight for evaluating water quality[J]. Journal of Harbin Institute of Technology, 2005, 37(10): 1373-1375. (in Chinese with English abstract)

      [25] 奉婷,張鳳榮,李燦,等. 基于耕地質(zhì)量綜合評價(jià)的縣域基本農(nóng)田空間布局[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(1):200-210.

      Feng Ting, Zhang Fengrong, Li Can, et al. Spatial distribution of prime farmland based on cultivated land qualitycomprehensive evaluation at county scale[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2014, 30(1): 200-210. (in Chinese with English abstract)

      [26] 夏煒林,黃宏坤,漆智平,等. 不同堆肥方式對奶牛糞便處理效果的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(14):215-219.

      Xia Weilin, Huang Hongkun, Qi zhiping, et al. Experimental studies on dairy manure treatment by static bed composting and microbere agent inoculating[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(2): 215-219. (in Chinese with English abstract)

      [27] 李輝信,胡鋒,倉龍,等. 蚯蚓堆制處理對牛糞性狀的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2004,23(3):588-593.

      Li Huixin, Hu Feng, Cang Long, et al. Effect of vermicomposting on characteristics of cattle manure[J]. Journal of Agro-Environment Science, 2004, 23(3): 588-593.

      [28] Krishnamoorthy R V, Vajranabhaiah S N. Biological activity of earthworm casts: an assessment of plant growth promotor levels in the casts[J]. Proceedings: Animal Sciences, 1986, 95(3): 341-351.

      [29] Tomati U, Grappelli A, Galli E. The hormone-like effect of earthworm casts on plant growth[J]. Biology and Fertility of Soils, 1988, 5(4): 288-294.

      Experiment on seedling of compressed substrates with cow dung aerobic composting and earthworm cow dung composting

      Yang Longyuan, Yuan Qiaoxia※, Liu Zhigang, Cao Hongliang, Luo Shuai

      (430070, China)

      Compared with the traditional substrate for nursery, compressed substrates could provide a good environment for seedlings to grow. The seedling planted in compressed substrates could be transplanted well into the field as a whole, which could protect the root system of seedling and shorten recovering period, and would promote the development of agricultural mechanization in China. In addition, it could reduce the usage of plastic seedling trays and then reduce plastic pollution. This study was aimed to evaluate the feasibility of using the compost material mainly composed of cow dung and rice straw or the earthworm and cow dung compost as compressed substrates for the production of vegetable seedlings, and optimized the formula of compressed substrates for nursery. The aerobic compost and earthworm compost from cow dung were respectively mixed with peat, water absorption resin and wood vinegar as compressed substrates for the cucumber seedling production. The Four-factor three-level orthogonal experiment was carried out: the levels of the aerobic compost and earthworm compost were respectively 3, 4 and 5 L; the levels of peat were 1, 2 and 3 L; the levels of water absorption resin were 27, 54 and 81 mL; the levels of wood vinegar were 30, 60 and 90 mL; the cucumber was the indicator plant. The expansion properties, broken rate and damage rate of compressed substrates, and the survival rate, stem diameter and plant height of the seedlings were determined for comprehensive evaluation. It showed that the expansion properties, broken rate and damage rate in the seedling period for the compressed substrates obtained from cow dung aerobic compost were better than that for the compressed substrates composed of cow dung earthworm compost, and the expansion coefficient would be increasing with the levels of the aerobic compost increasing, but the opposite trend occurred in the broken rate and damage rate. However, the pH value and EC (electrical conductivity) value of the compressed substrates obtained from cow dung aerobic compost were higher, so the survival rate, stem diameter and plant height of the seedlings in the cow dung aerobic compost compressed substrates were worse, and the survival rate, stem diameter and plant height of the seedlings were increased when the usage of earthworm compost increased. The highest comprehensive evaluation index in the formulas of aerobic compost occurred under the T6 treatment (4 L aerobic compost, 3 L peat, 27 mL water absorption resin, and 60 mL wood vinegar), which was 84.89, and that in the formulas of earthworm compost occurred under the TS8 treatment (3 L earthworm compost, 2 L peat, 27 mL water absorption resin, and 90 mL wood vinegar), which was 86.09. In accordance with the comprehensive evaluation index of compressed substrates, a set of suitable formulas were determined: the 2 kinds of main raw materials were mixed with peat at a rough ratio of 57.14%-60.0% by volume; there were 27 mL expansive agent added in the 5-6 L total material, and 60 mL wood vinegar liquid in the 7 L total material in formulas of aerobic composts, but the latter ratio in the earthworm compost was 18 mL:1 L. With these ratios, the broken rates were both under 5%, the damage rate of cow dung compost formula was under 20% and that of earthworm compost was under 40%, the survival rates of those were beyond 40% and 70%, respectively, and the plant dry weights were both beyond 100 mg.

      manures; composting; substrates; compression; seedling; earthworm

      10.11975/j.issn.1002-6819.2016.24.030

      S216; X71

      A

      1002-6819(2016)-24-0226-08

      2016-03-08

      2016-09-19

      公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(201303091);華中農(nóng)業(yè)大學(xué)自主科技創(chuàng)新基金項(xiàng)目(2662016PY108)

      楊龍?jiān)?,男,湖北武漢人,博士生,主要從事農(nóng)業(yè)生物環(huán)境與能源工程研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:daisy413@126.com

      袁巧霞,女,湖北麻城人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)生物環(huán)境與能源工程研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。 Email:qxyuan@mail.hzau..edu.cn

      猜你喜歡
      草炭膨脹劑牛糞
      膨脹劑在低收縮 UHPC 中的研究現(xiàn)狀*
      商品混凝土(2022年4期)2023-01-13 16:59:34
      石牛糞金
      意林彩版(2022年2期)2022-05-03 10:23:56
      一維限制條件下MgO膨脹劑膨脹特性溫度模型的建立
      云南化工(2021年8期)2021-12-21 06:37:28
      丟失的牛糞
      屎殼郎大戰(zhàn)牛糞
      趣味(語文)(2020年11期)2020-06-09 05:32:32
      野保糗事之撿牛糞
      不同草炭比例對覆土栽培暗褐網(wǎng)柄牛肝菌出菇的影響
      人工草炭復(fù)合基質(zhì)對櫻桃蘿卜出苗率和 果實(shí)營養(yǎng)的影響
      三種人工草炭對金森女貞育苗的影響
      纖維和膨脹劑的混凝土路面開裂及力學(xué)性能研究
      繁峙县| 正安县| 长兴县| 焦作市| 同江市| 长岛县| 夏津县| 许昌市| 鄂托克前旗| 内丘县| 醴陵市| 龙陵县| 大田县| 商河县| 卢氏县| 旺苍县| 广元市| 桦川县| 广宁县| 孙吴县| 玉林市| 南丰县| 西乌| 忻州市| 上杭县| 资溪县| 五常市| 麻栗坡县| 张家港市| 新建县| 时尚| 商河县| 汽车| 化州市| 凤山市| 宜丰县| 璧山县| 日喀则市| 平乡县| 尉犁县| 淮北市|