鄭鐵剛,孫雙科,柳海濤,姜 涵,李廣寧
?
基于魚類行為學(xué)與水力學(xué)的水電站魚道進(jìn)口位置選擇
鄭鐵剛,孫雙科,柳海濤,姜 涵,李廣寧
(中國(guó)水利水電科學(xué)研究院流域水循環(huán)模擬及調(diào)控國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100038)
魚道進(jìn)口位置選擇屬于魚類行為學(xué)與水力學(xué)交叉研究范疇,設(shè)置的合適與否直接影響魚道工程的過(guò)魚效果。根據(jù)過(guò)魚對(duì)象的游泳能力和生活習(xí)性,提出了將下游河道內(nèi)區(qū)域劃分為魚道進(jìn)口優(yōu)選區(qū)域、魚道進(jìn)口備選區(qū)域及魚道進(jìn)口禁布區(qū)域的方法和思路。以某大型水電工程為例,在魚類行為學(xué)基礎(chǔ)上,通過(guò)對(duì)水電站下游流速和流場(chǎng)等水力特性進(jìn)行分析,結(jié)果表明:左岸存在低流速帶,魚類可順利上溯至尾水渠附近,為魚道進(jìn)口主要布置區(qū)域;綜合生物學(xué)指標(biāo)和水力學(xué)指標(biāo),利用回流屏障建議將魚道進(jìn)口布置于樁號(hào)0+200~0+210 m范圍內(nèi);考慮到部分上溯性較強(qiáng)的魚類,建議在電站發(fā)電機(jī)組上方布置備用進(jìn)口。該研究可為水電工程魚道進(jìn)口位置選擇提供參考。
水力學(xué);流場(chǎng);流速;水電工程;魚道進(jìn)口;數(shù)值模擬;游泳能力
魚道是幫助魚類順利通過(guò)閘壩等障礙物的專用設(shè)施,在維系河流連續(xù)性與生物種群交流方面具有不可替代的作用[1-3]。魚道建筑物的成功與否是河流生態(tài)系統(tǒng)健康的評(píng)價(jià)指標(biāo)之一,也是水利水電工程環(huán)境影響評(píng)價(jià)中生態(tài)環(huán)境保護(hù)的重要評(píng)價(jià)指標(biāo)[4]。魚道最早出現(xiàn)于17世紀(jì)的歐洲,并于20世紀(jì)在國(guó)內(nèi)外得到迅速發(fā)展,并取得了一定的過(guò)魚效果[5-6]。從水利工程建設(shè)角度看,魚道首先是眾多水工建筑物中的一類,魚道水力學(xué)是魚道水力設(shè)計(jì)首先需要研究的關(guān)鍵技術(shù)問(wèn)題。文獻(xiàn)檢索表明,國(guó)內(nèi)外針對(duì)魚道進(jìn)行了大量的室內(nèi)試驗(yàn)研究與數(shù)值模擬計(jì)算研究,通過(guò)這些研究,優(yōu)化了魚道內(nèi)部的水流流態(tài)與結(jié)構(gòu)布置尺寸,規(guī)范了魚道設(shè)計(jì)方法,對(duì)于舊式魚道的改建與新型高效魚道的建設(shè)起到了關(guān)鍵的技術(shù)指導(dǎo)作用。Rajaratnam等[7-8]系統(tǒng)開(kāi)展了豎縫式魚道的水力特性模型試驗(yàn)研究,對(duì)4種不同比尺的豎縫式魚道模型在不同結(jié)構(gòu)形式的池室進(jìn)行了水流流態(tài)分析;隨后,Liu等[9]和Wu等[10]測(cè)量了豎縫式魚道內(nèi)的流速分布與紊動(dòng)特性等水力指標(biāo);董志勇等[11-12]研究了同側(cè)和異側(cè)豎縫式魚道的水力特性,并進(jìn)行了過(guò)魚試驗(yàn)研究;隨著計(jì)算機(jī)模擬技術(shù)的發(fā)展,徐體兵、張國(guó)強(qiáng)、邊永歡等[13-15]分別通過(guò)數(shù)值模擬方法進(jìn)一步優(yōu)化了豎縫式魚道結(jié)構(gòu)。除關(guān)于豎縫式魚道研究外,Yagci[16]和Ead[17]等則分別對(duì)池堰式魚道的水力特性進(jìn)行了試驗(yàn)及理論研究;孫雙科等[18]對(duì)近自然魚道的設(shè)計(jì)方法和設(shè)計(jì)理念等進(jìn)行了分析闡述。
無(wú)論前人對(duì)何種魚道何種結(jié)構(gòu)進(jìn)行研究,其最終目的均為實(shí)現(xiàn)目標(biāo)魚類順利完成洄游。為了使魚道更加有效,必須使目標(biāo)魚類可以盡可能沒(méi)有洄游延誤的條件下發(fā)現(xiàn)魚道進(jìn)口,即魚道進(jìn)口位置選擇的優(yōu)劣直接決定整個(gè)魚道的過(guò)魚效果[19]。國(guó)外一些專家學(xué)者,如Clay、Bunt等[20-21]對(duì)魚道進(jìn)口設(shè)計(jì)及位置選擇進(jìn)行了闡述,建議將魚道進(jìn)口設(shè)置于溢洪道附近,通過(guò)溢洪道水流進(jìn)行誘魚。然而國(guó)內(nèi)魚類生活習(xí)性與國(guó)外魚類資源不同,其克流流速較小,因此文獻(xiàn)指出的設(shè)計(jì)思路不能完全適用于國(guó)內(nèi)魚類。而國(guó)內(nèi)文獻(xiàn)關(guān)于魚道水力學(xué)研究以魚道水力結(jié)構(gòu)設(shè)計(jì)及優(yōu)化居多,或僅有少量文字?jǐn)⑹鲷~道進(jìn)口選擇原則,如:汪亞超等[22]對(duì)魚道進(jìn)口布置原則進(jìn)行了闡述;湯荊燕等[23]開(kāi)展了不同流態(tài)對(duì)魚道進(jìn)口誘魚效果影響的試驗(yàn)研究,針對(duì)魚道工程進(jìn)出口具體布置方法及思路則是鮮有報(bào)道。
綜合國(guó)內(nèi)魚道資料來(lái)看,目前國(guó)內(nèi)魚道大部分運(yùn)行效果不理想,尚需進(jìn)一步開(kāi)展基礎(chǔ)研究和應(yīng)用實(shí)踐的改進(jìn),而魚道進(jìn)口位置的選擇合適與否則更是直接影響魚道運(yùn)行的成敗[24-25]。成功過(guò)魚設(shè)施的設(shè)計(jì)需要生物學(xué)和水力學(xué)的緊密結(jié)合,因此,本文以魚類行為學(xué)和水力學(xué)為基礎(chǔ),結(jié)合魚道設(shè)計(jì)理論,以某大型水利工程為例,詳盡闡述魚道進(jìn)口位置的選擇思路及方法,從而為其他工程魚道布置提供參考。
某大型水電站位于西南山區(qū)雅魯藏布江,總裝機(jī)容量360 MW,多年平均發(fā)電量16億 kWh,最大壩高87.00 m,上下游水位最大落差42 m,主要建筑物由擋水建筑物(混凝土重力壩)、泄水建筑物(溢流表孔和沖砂底孔)、消能防沖建筑物、引水發(fā)電廠房建筑物等組成。該電站共有3臺(tái)發(fā)電機(jī)組,單機(jī)發(fā)電流量為403.0 m3/s。為了更好地保護(hù)好江段水生生態(tài)環(huán)境的完整性,減緩大壩阻隔對(duì)魚類種群遺傳交流的影響,根據(jù)國(guó)家有關(guān)法律法規(guī)的規(guī)定,電站擬修建過(guò)魚設(shè)施以保護(hù)庫(kù)區(qū)水生生態(tài)系統(tǒng)。魚道作為該工程主要過(guò)魚設(shè)施之一進(jìn)行了專門技術(shù)研究。
西南地區(qū)具有復(fù)雜的地理?xiàng)l件和氣候差異,從而造就了多樣的水生生境和復(fù)雜的魚類區(qū)系。前人多年對(duì)雅魯藏布江魚類資源調(diào)查得知,江內(nèi)共分布25種魚類,主要由裂腹魚亞科、條鰍亞科及鮡科3 個(gè)類群組成,其中拉薩裸裂尻魚、雙須葉須魚、異齒裂腹魚、拉薩裂腹魚、巨須裂腹魚等構(gòu)成魚類產(chǎn)量的90%以上[26]。根據(jù)流域魚類資源以及其生物學(xué)、生態(tài)學(xué)特點(diǎn),江內(nèi)魚類可分為4類:第1類是異齒裂腹魚、巨須裂腹魚和拉薩裂腹魚等,它們具有一定的短距離生殖洄游習(xí)性,在繁殖季節(jié)對(duì)流水生境具有一定的趨向性,并且資源量較大,占調(diào)查統(tǒng)計(jì)魚類的82%,受工程阻隔影響最大,應(yīng)作為主要過(guò)魚對(duì)象;第2類為尖裸鯉,資源量較低,但為自治區(qū)一級(jí)保護(hù)動(dòng)物,從促進(jìn)交流和物種保護(hù)的角度而言,將其作為兼顧過(guò)魚種類;第3類為雙須葉須魚和拉薩裸裂尻魚,它們屬定居性種類,且資源量較大,受水電站影響較小,但為兼顧其壩上壩下基因交流將其列為兼顧過(guò)魚對(duì)象,可以隨機(jī)通過(guò)。第4類,如黑斑原鮡和黃斑褶鮡,它們資源量較少,從促進(jìn)交流和物種保護(hù)的角度將其列入兼顧過(guò)魚對(duì)象。
過(guò)魚對(duì)象的生物學(xué)指標(biāo)和水動(dòng)力指標(biāo)是魚道進(jìn)口位置選擇中必須考慮的重要因素,缺乏魚類行為學(xué)研究的魚道設(shè)計(jì)往往是失敗的[27]?;谖墨I(xiàn)資料調(diào)查結(jié)果[28-29],異齒裂腹魚、巨須裂腹魚和拉薩裂腹魚等適應(yīng)急流冷水環(huán)境,喜棲息于河流入口交匯,水深一般在1 m左右,主要洄游繁殖季節(jié)為每年的3―6月;巨須裂腹魚的最小性成熟體長(zhǎng)為25.3 cm,異齒裂腹魚的最小性成熟體長(zhǎng)為24.5 cm,拉薩裂腹魚的最小性成熟體長(zhǎng)為26.2 cm。
魚道進(jìn)口一般布置在經(jīng)常有水流下泄、魚類洄游路線以及魚類經(jīng)常聚集的區(qū)域,并盡可能靠近魚類能上溯到達(dá)的最前沿即阻礙魚類上溯的障礙物附近[22]。鑒于下游流場(chǎng)復(fù)雜,通過(guò)物理模型試驗(yàn)難以捕捉詳盡的流場(chǎng)結(jié)構(gòu),且耗時(shí)費(fèi)力,因此本文采用數(shù)值模擬方法對(duì)電站下游河道進(jìn)行數(shù)值模擬,分析流速、流場(chǎng)結(jié)構(gòu)等水力特性,以選擇適宜區(qū)域布置魚道進(jìn)口。
2.1 數(shù)學(xué)模型
對(duì)于復(fù)雜的紊流場(chǎng)研究,在一定程度上依賴于準(zhǔn)確的數(shù)值模擬結(jié)果。根據(jù)流體力學(xué)理論,滿足連續(xù)介質(zhì)假設(shè)的流體運(yùn)動(dòng)可以用Navier-Stokes方程準(zhǔn)確計(jì)算。廠房上下游水體內(nèi)紊動(dòng)劇烈,并伴有旋渦和回流,下游地形復(fù)雜,水流具有較強(qiáng)的各向異性。RNG-模型中,通過(guò)修正紊動(dòng)黏度,能夠很好地模擬強(qiáng)旋流或帶有彎曲壁面的流動(dòng)[30]。因此,本文將基于FLUENT軟件平臺(tái),結(jié)合UDF技術(shù),采用Reynolds時(shí)均N-S方程和RNG-紊流計(jì)算模型,對(duì)水電站下游流場(chǎng)進(jìn)行三維精細(xì)模擬。
2.2 計(jì)算區(qū)域及邊界條件
本項(xiàng)研究中,計(jì)算區(qū)域包括廠房尾水出口、尾水渠、海漫和下游河道,全長(zhǎng)約1.0 km,如圖1所示。圖中人工建筑物及河道天然地形建模采用原型數(shù)據(jù)資料,坐標(biāo)與壩軸線垂直,坐標(biāo)與壩軸線平行,坐標(biāo)代表高程。定義尾水管末端斷面即尾水渠首部斷面為=0斷面,尾水渠右邊墻為=0斷面,方向以尾水管末端底板為0斷面,見(jiàn)圖1。
計(jì)算中上游采用速度進(jìn)口邊界條件,以保證恒定的入流流量。出口假設(shè)為充分發(fā)展的紊流,且各變量均取零梯度條件,從而消除下游對(duì)上游水流的影響。水電站在同一水位下,由于下游水位波動(dòng)較小,為提高計(jì)算效率,故本文選取剛蓋假定模擬自由水面。固壁邊界規(guī)定為無(wú)滑移邊界條件,采用標(biāo)準(zhǔn)壁函數(shù)作為近壁區(qū)與充分發(fā)展紊流區(qū)之間的橋梁。
2.3 計(jì)算網(wǎng)格劃分
水電站下游由于河道地形復(fù)雜,計(jì)算過(guò)程中綜合考慮計(jì)算效率,網(wǎng)格采用混合網(wǎng)格,包括結(jié)構(gòu)化網(wǎng)格和非結(jié)構(gòu)化網(wǎng)格兩種類型。考慮到結(jié)構(gòu)網(wǎng)格的優(yōu)越性,在網(wǎng)格劃分過(guò)程中優(yōu)先采用結(jié)構(gòu)化網(wǎng)格。
由于廠房出口水流流速較大,尾水渠內(nèi)紊動(dòng)劇烈,該區(qū)域?yàn)橹攸c(diǎn)關(guān)注區(qū)域,因此該區(qū)域采用收斂性較好的結(jié)構(gòu)網(wǎng)格劃分,方向和方向節(jié)點(diǎn)間距為1.0~2.0 m,方向節(jié)點(diǎn)間距為0.5~1.0 m。下游河道內(nèi),受邊坡開(kāi)挖等影響,較難形成結(jié)構(gòu)化網(wǎng)格,且下游流速較低,紊動(dòng)較弱,因此下游網(wǎng)格以非結(jié)構(gòu)化網(wǎng)格為主,方向和方向節(jié)點(diǎn)間距為3~5 m,方向節(jié)點(diǎn)間距為1~2 m,計(jì)算區(qū)域內(nèi)網(wǎng)格單元總數(shù)100多萬(wàn)個(gè)。局部計(jì)算網(wǎng)格劃分如圖2所示。
3.1 計(jì)算模型準(zhǔn)確性分析
基于FLUENT平臺(tái)對(duì)三維流場(chǎng)的模擬已較為成熟,并在多篇文獻(xiàn)資料中有諸多應(yīng)用[31-33]。為論證計(jì)算模型的可靠性,本文采用西藏尼洋河多布水電站工程下游河道樁號(hào)0+300.0 m斷面流速進(jìn)行數(shù)值模型驗(yàn)證[34]。多布水電站與本文研究依托工程類似,主要開(kāi)發(fā)任務(wù)均以發(fā)電為主,由擋水建筑物、泄水消能建筑物、引水發(fā)電系統(tǒng)等組成,其中發(fā)電廠房均為河床式廠房。引水發(fā)電廠房下游布置型式相近,均接尾水渠,尾水渠與消力池由隔墻隔開(kāi),發(fā)電廠房尾水在尾水渠內(nèi)經(jīng)反坡段進(jìn)入下游河道。多布水電站工程水工模型比尺為1:40,模擬范圍包括上游庫(kù)區(qū)(長(zhǎng)約600 m)、引水發(fā)電系統(tǒng)與尾水渠、放水閘、與部分下游河道(長(zhǎng)約1 000 m)。水工模型中模擬了1~4臺(tái)發(fā)電機(jī)組分別組合運(yùn)行工況,對(duì)應(yīng)的下游水位分別為3054.40~3056.28 m。本文分別選取1#+2#和1#+2#+3#兩組機(jī)組運(yùn)行工況試驗(yàn)結(jié)果對(duì)數(shù)學(xué)模型進(jìn)行論證,數(shù)學(xué)模型與本文采用的模型一致。
圖3為兩組工況下典型斷面實(shí)測(cè)與計(jì)算流速對(duì)比情況,結(jié)果表明,下游實(shí)測(cè)斷面流速與模擬斷面流速變化趨勢(shì)基本一致,除個(gè)別點(diǎn)外,監(jiān)測(cè)點(diǎn)流速偏差不大,二者平均相對(duì)誤差為4.28%,小于15%,在允許范圍之內(nèi)[35]。由此說(shuō)明,本文采用的計(jì)算方法準(zhǔn)確,計(jì)算模型可靠,可以較好地模擬下游河道三維流場(chǎng)結(jié)果,計(jì)算結(jié)果可信。
3.2 河道下游流場(chǎng)分析
研究文獻(xiàn)[36]指出,魚道進(jìn)口處應(yīng)保持有1~1.5 m的水深,而通常情況下魚道內(nèi)設(shè)計(jì)水深為2 m,也就是說(shuō),魚道底板高程位于水下0.5~1.0 m處,因此本文主要選取水下1.0 m位置平面流場(chǎng)為研究分析對(duì)象,縱剖面圖則選取左側(cè)工作機(jī)組中軸線斷面為代表斷面,這是考慮到水電站右岸地形受限,魚道方案初步設(shè)計(jì)為左岸魚道布置方案。圖示結(jié)果中顏色及標(biāo)示數(shù)值代表、、方向矢量流速合成值大小。通常情況下,隨著發(fā)電機(jī)組運(yùn)行數(shù)量的不同,下游水位不同,進(jìn)而上下游產(chǎn)生的水位落差不同,因此通常需要設(shè)計(jì)多個(gè)魚道進(jìn)口來(lái)滿足上下游水位落差需要。受篇幅限制,本文僅選取3臺(tái)機(jī)組全部發(fā)電運(yùn)行工況進(jìn)行示例分析,即研究該水位落差條件下魚道進(jìn)口布置方案。
圖4a為3臺(tái)機(jī)組全部開(kāi)啟工況下尾水渠及下游平面流場(chǎng)情況。計(jì)算結(jié)果表明,3臺(tái)機(jī)組全部開(kāi)啟時(shí),尾水渠內(nèi)表層流速以負(fù)向流速為主,且最大回流流速達(dá)到1.5 m/s。1∶4反坡末端流速為2.3~2.5 m/s,右側(cè)區(qū)域流速略大于左側(cè)區(qū)域流速。水流出渠后,左岸附近流速約為1.5 m/s,樁號(hào)0+650.0 m下游斷面平均流速約為1.8 m/s,左岸岸邊流速為0.9 m/s左右。圖4b為3臺(tái)機(jī)組運(yùn)行工況下,左側(cè)機(jī)組中軸斷面尾水渠縱剖面圖流場(chǎng)情況。計(jì)算結(jié)果表明,3臺(tái)機(jī)組全部運(yùn)行時(shí),受剪切作用,機(jī)組上方形成回流,表面為負(fù)向流速,尾水渠末端為正向流速。
綜上所述,水電站發(fā)電機(jī)組運(yùn)行時(shí),尾水渠內(nèi)流態(tài)較為復(fù)雜,存在不同程度的豎向環(huán)流或橫向回流;尾水渠下游左岸附近最大流速為1.5 m/s,最小流速為0.8 m/s;受天然地形條件影響,樁號(hào)0+550.0 m下游河道內(nèi)流速值較大,斷面平均流速最大可達(dá)1.8 m/s,最小為1.0 m/s左右,但左岸岸邊流速相對(duì)較小,為0.3~0.9 m/s。
3.3 魚道進(jìn)口位置分析
水生生物對(duì)水流的察覺(jué)對(duì)它們?cè)诤恿髦斜鎰e方向起著決定性作用,文獻(xiàn)[28]中通過(guò)對(duì)西藏典型裂腹魚(體長(zhǎng)約200~500 mm)游泳能力進(jìn)行試驗(yàn)研究指出,主要過(guò)魚對(duì)象游泳能力較為相似,可感知到與主流差為0.04~0.13 m/s的流速,臨界流速約為0.77~1.29 m/s,突進(jìn)流速約為0.89~1.59 m/s。由此可知,主要過(guò)魚對(duì)象臨界速度為0.77~1.29 m/s,即魚道進(jìn)口出水流速,而過(guò)魚對(duì)象能夠感知與主流差為0.04~0.13 m/s的流速,也就是說(shuō),當(dāng)河道內(nèi)流速不高于1.2 m/s時(shí),魚類可以通過(guò)水流感知到魚道進(jìn)口,同時(shí)文獻(xiàn)[37]中通過(guò)現(xiàn)場(chǎng)調(diào)研指出裂腹魚對(duì)平均流速的需求主要集中于0.4~1.2 m/s,由此可知小于1.2 m/s流速值的區(qū)域均適宜布置魚道進(jìn)口。
0.4~0.8 m/s流速帶在魚類喜好流速范圍內(nèi),該區(qū)域內(nèi)水流流速與魚道進(jìn)口出流流速能夠形成明顯吸引流,在過(guò)魚對(duì)象正驅(qū)流性反應(yīng)下,魚類將聚集于此較容易察覺(jué)到魚道進(jìn)口,因此該區(qū)域作為魚道進(jìn)口布置優(yōu)選區(qū)域。然而受河道地形影響,下游河道流態(tài)復(fù)雜,若僅限于尋找河道內(nèi)限定區(qū)域布置進(jìn)口,則后期施工難度較大,受地形限制可能無(wú)法完成布置。為此,本研究將0~0.4和0.8~1.2 m/s流速帶作為魚道進(jìn)口備選布置區(qū)域,從而為后期魚道進(jìn)口位置具體選址和施工條件提供便利。0.8~1.2 m/s流速帶雖同樣在過(guò)魚對(duì)象喜好流速范圍內(nèi),但該區(qū)域內(nèi)布置魚道進(jìn)口時(shí),由過(guò)魚對(duì)象可感知流速差可知魚道進(jìn)口出流未能形成明顯吸引流,誘魚效果稍差,該區(qū)域內(nèi)布置魚道進(jìn)口時(shí),需要采用一定的補(bǔ)水措施提高魚道進(jìn)口出水流速,進(jìn)而滿足過(guò)魚對(duì)象的感知流速,因此該區(qū)域僅可作為魚道進(jìn)口備選區(qū)域I。0~0.4 m/s流速區(qū)域內(nèi)水流流速較低,該流速帶非過(guò)魚對(duì)象喜好流速,但由于魚道進(jìn)口出流可以在該區(qū)域內(nèi)形成明顯吸引流,因此將該區(qū)域作為魚道備選區(qū)域II。1.2~1.5 m/s流速帶內(nèi)流速大于過(guò)魚對(duì)象的臨界流速,魚類難以在此聚集,過(guò)魚效率較低,若前述優(yōu)選和備選區(qū)域受條件均無(wú)法布置魚道進(jìn)口,則該區(qū)域內(nèi)布置魚道進(jìn)口需結(jié)合聲學(xué)、光學(xué)等其他誘魚設(shè)施輔助,因此將該區(qū)域作為魚道備選區(qū)域III。大于1.5 m/s流速帶內(nèi)流速高于過(guò)魚對(duì)象的突進(jìn)流速,該區(qū)域內(nèi)禁止布置魚道進(jìn)口。鑒于此,本研究將下游河道內(nèi)流速分為5個(gè)流速帶,分別為0~0.4、>0.4~0.8、>0.8~1.2、>1.2~1.5及>1.5 m/s,5個(gè)流速帶的含義分別為:魚道進(jìn)口備選區(qū)域II、魚道進(jìn)口優(yōu)選區(qū)域、魚道進(jìn)口備選區(qū)域I、魚道進(jìn)口備選區(qū)域III及魚道進(jìn)口禁布區(qū)域。
a. 尾水渠及下游河道表層流場(chǎng)
a. Flow field near tailrace and downstream
b. 尾水渠附近縱剖面流場(chǎng)
b. Flow field at longitudinal section near tailrace
圖4尾水渠下游河道表層流場(chǎng)及附近縱剖面流場(chǎng)
Fig.4 Flow field in downstream and longitudinal section near tailrace
圖5為發(fā)電機(jī)組滿發(fā)工況下尾水渠附近及下游河道流速區(qū)域劃分情況。圖示樁號(hào)0+550.0 m下游為天然河道段,計(jì)算結(jié)果表明,3臺(tái)機(jī)組運(yùn)行時(shí),河道內(nèi)為高流速帶,平均流速大于1.5 m/s,洄游魚類無(wú)法由河道中央上溯。但數(shù)據(jù)分析表明,受天然地形影響,河道左岸存在低流速帶,因此魚類可以穿過(guò)下游窄深河道沿岸邊自由上溯至尾水渠下游附近,故本文以尾水渠附近流態(tài)特性為主要研究對(duì)象,擬將魚道進(jìn)口位置調(diào)整至尾水渠附近,且魚道進(jìn)口應(yīng)布置在岸邊,與主要流向平行,以便魚類不改變方向就能游入。同時(shí),魚道的入口不應(yīng)離障礙物下游太遠(yuǎn),以防止洄游魚類找到魚道進(jìn)口困難,降低過(guò)魚效率。研究過(guò)魚對(duì)象的突進(jìn)流速最大達(dá)到1.5 m/s左右,可以短時(shí)間內(nèi)穿過(guò)高流速區(qū)上溯至障礙物附近,因此河道內(nèi)流速大于1.5 m/s區(qū)域?yàn)檫^(guò)魚對(duì)象洄游路線的屏障,魚類無(wú)法通過(guò)。同時(shí),根據(jù)魚類洄游習(xí)性,漩渦、水躍和回流等均有可能將洄游魚類困住,從而導(dǎo)致無(wú)法尋找到魚道進(jìn)口,因此漩渦、水躍和回流等流態(tài)可以作為魚類洄游路線的另一道屏障。
由圖5可知,發(fā)電機(jī)組滿發(fā)運(yùn)行時(shí),尾水渠末端一定范圍內(nèi)合成流速值均大于1.5 m/s;除此之外,發(fā)電機(jī)組不滿發(fā)工況下,通過(guò)模擬研究可知,尾水渠末端流速仍高于1.5 m/s,即洄游魚類難以由下游繼續(xù)上溯至尾水渠內(nèi)。同時(shí)結(jié)合圖4可知,尾水渠右側(cè)存在大范圍回流區(qū)域,該區(qū)域的魚類無(wú)法聚集,而將沿主流方向向左側(cè)聚集。
根據(jù)流速區(qū)域劃分圖我們可以發(fā)現(xiàn),洄游魚類沿左岸上溯,穿過(guò)局部高流速區(qū)可以上溯至尾水渠末端附近,為具體確定魚道進(jìn)口適宜布置位置,本文列舉了尾水渠下游附近岸邊流速情況,如表1所示。表中灰色顯示區(qū)域?yàn)樨?fù)流速區(qū)域,即回流區(qū)域,該區(qū)域不適宜設(shè)置魚道進(jìn)口。由表可知,上溯魚類沿左岸上溯至樁號(hào)0+200 m,上游存在回流區(qū)域,故該樁號(hào)可以作為過(guò)魚對(duì)象上溯路徑的屏障。樁號(hào)0+220 m下游,河道內(nèi)流速值均高于1.1 m/s,達(dá)到過(guò)魚對(duì)象的突進(jìn)流速,魚類難以在此區(qū)域聚集。左岸樁號(hào)0+200~0+210 m區(qū)域,該區(qū)域內(nèi)岸邊流速為0.4~0.8 m/s,符合研究過(guò)魚對(duì)象的持續(xù)游泳流速,且該樁號(hào)岸邊流態(tài)穩(wěn)定,流速較為均勻,適宜布置魚道進(jìn)口。除此之外,在該區(qū)域內(nèi)布置魚道進(jìn)口,可采用適當(dāng)補(bǔ)水進(jìn)行誘魚,為補(bǔ)水量最小區(qū)域,同時(shí)符合魚道入口不能離障礙物太遠(yuǎn)的設(shè)計(jì)原則。鑒于以上分析,建議將魚道進(jìn)口布置于左岸樁號(hào)0+200~0+210 m離岸10 m范圍以內(nèi),但該魚道進(jìn)口僅適用于3臺(tái)機(jī)組運(yùn)行時(shí)魚類上溯,而其他進(jìn)口位置選擇則需根據(jù)其他機(jī)組運(yùn)行工況綜合考慮而定。除此之外,建議在尾水渠首部,即發(fā)電機(jī)組上方增加備用魚道進(jìn)口,這是由于發(fā)電機(jī)組出流能夠形成誘魚水流,當(dāng)魚類上溯至尾水渠末端區(qū)域,部分上溯性較強(qiáng)的魚類能夠迅速穿過(guò)高流速帶上溯至尾水渠內(nèi)。但根據(jù)前文流場(chǎng)分析,尾水渠內(nèi)存在不同程度的回流和環(huán)流,上溯魚類在此區(qū)域難以找到魚道進(jìn)口,因此該處魚道進(jìn)口僅建議為備用進(jìn)口。
表1 尾水渠下游左岸附近流速值
以某大型水電工程為例,本文在魚類行為學(xué)和水力學(xué)基礎(chǔ)上,分析了電站魚道進(jìn)口位置選擇方法,主要結(jié)論如下:
1)雅魯藏布江魚類資源豐富,根據(jù)流域魚類資源以及其生物學(xué)、生態(tài)學(xué)特點(diǎn),將江內(nèi)魚類分為4類,并將異齒裂腹魚、巨須裂腹魚和拉薩裂腹魚作為主要過(guò)魚對(duì)象,同時(shí)兼顧其他魚類。
2)通過(guò)分析電站過(guò)魚對(duì)象的游泳行為指標(biāo)發(fā)現(xiàn),河道內(nèi)流速小于1.2 m/s的區(qū)域?yàn)轸~道進(jìn)口適宜布置區(qū)域;同時(shí)根據(jù)魚類游泳能力及產(chǎn)生吸引流效果,提出將電站下游河道內(nèi)區(qū)域劃分為魚道進(jìn)口優(yōu)選布置區(qū)域(0.4~0.8 m/s)、魚道進(jìn)口備選布置區(qū)域I(0.8~1.2 m/s)、魚道進(jìn)口備選布置區(qū)域II(0~0.4 m/s)、魚道進(jìn)口備選布置區(qū)域III(1.2~1.5 m/s)和魚道進(jìn)口禁布區(qū)域(>1.5 m/s)。
3)通過(guò)對(duì)電站下游流場(chǎng)進(jìn)行三維精細(xì)模擬,結(jié)果表明,左岸岸邊存在低流速帶,上溯魚類可以沿岸邊低流速帶順利上溯至尾水渠附近,而尾水渠末端流速大于過(guò)魚對(duì)象突進(jìn)流速,魚類難以繼續(xù)上溯至尾水渠內(nèi);樁號(hào)0+200 m上游存在回流區(qū)域,為過(guò)魚對(duì)象上溯路徑的屏障;樁號(hào)0+220 m下游岸邊流速均高于1.1 m/s,魚類難以在此區(qū)域聚集;考慮到流速和回流屏障等,同時(shí)樁號(hào)0+200 m~樁號(hào)0+210 m范圍流速符合魚道進(jìn)口位置布置優(yōu)選區(qū)域要求,建議在此區(qū)域布置進(jìn)口;考慮到一些上溯能力較強(qiáng)的魚類,建議在機(jī)組上方增加布置備用魚道進(jìn)口。
魚道進(jìn)口位置選擇屬于魚類行為學(xué)與水力學(xué)交叉研究范疇,然而目前大多文獻(xiàn)提及魚道進(jìn)口布置均從工程運(yùn)行角度和水力學(xué)角度考慮,從而可能降低魚道的過(guò)魚效率。文中通過(guò)深入分析過(guò)魚對(duì)象游泳行為,提出了魚道進(jìn)口優(yōu)選布置區(qū)域、備選布置區(qū)域以及禁布區(qū)域等新方法與新思路。然而由于魚類行為學(xué)較為復(fù)雜,目前缺乏過(guò)魚對(duì)象特有生活習(xí)性研究文獻(xiàn),因此本文對(duì)魚道進(jìn)口布置區(qū)域的劃分時(shí)過(guò)多的依賴過(guò)魚對(duì)象的游泳能力與常規(guī)生活習(xí)性,研究方法尚處于探索階段,仍需進(jìn)一步開(kāi)展研究。本文采用的方法及思路可為電站魚道工程方案布置提供參考。
[1] 南京水利科學(xué)研究所. 魚道[M]. 北京:電力工業(yè)出版社,1982.
[2] DVWK. Fish passes: Design, dimensions and monitoring [M]. Food and Agriculture Organization of the United Nations. Rome, 2002.
[3] 張俊杰,鄢慶枇. 我國(guó)魚類資源的危機(jī)和保護(hù)[J]. 水利漁業(yè),2007,27(2):55-57.
[4] 陳凱麒,常仲農(nóng),曹曉紅,等. 我國(guó)魚道建設(shè)現(xiàn)狀與展望[J]. 水利學(xué)報(bào),2012,43(2):182-188.
Chen Kaiqi,Chang Zhongnong,Cao Xiaohong, et al. Status and prospection of fish pass construction in China[J]. Journal of Hydraulic Engineering, 2012, 43(2): 182-188. (in Chinese with English abstract)
[5] 陳凱麒,葛懷鳳,郭軍,等. 我國(guó)過(guò)魚設(shè)施現(xiàn)狀分析及魚道適宜性管理的關(guān)鍵問(wèn)題[J]. 水生態(tài)學(xué)雜志,2013,34(4):1-6.
Chen Kaiqi, Ge Huaifeng, Guo Jun, et al. Study on the Situation analysis of fish passages and the key issues of adaptive management in China[J]. Journal of Hydroecology, 2013, 34(4): 1-6. (in Chinese with English abstract)
[6] 王珂,劉紹平,段辛斌,等. 崔家營(yíng)航電樞紐工程魚道過(guò)魚效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):184-189.
Wang Ke, Liu Shaoping, Duan Xinbin, et al. Fishway effect of Cuijiaying navigation-power junction project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 184-189. (in Chinese with English abstract)
[7] Rajaratnam N, Vinne G V, Katopodis C. Hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 1986, 112(10): 909-927.
[8] Rajaratnam N, Katopadis C, Paccagnan R. Field studies of fishways in Albeta[J]. Canadian Journal of Civil Engineering, 1992, 19(4): 627-638.
[9] Liu M, Rajaratnam N, Zhu D Z. Mean flow and turbulence structure in vertical slot fishway[J]. Journal of Hydraulics Engineering, 2006, 132(8): 765-777.
[10] Wu S, Rajaratnam N, Katopodis C. Structure of flow in vertical slot fishway[J]. Journal of Hydraulics Engineering, 1999, 125(4): 351-360.
[11] 董志勇,馮玉平,Ervine A. 同側(cè)豎縫式魚道水力特性及放魚試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào),2008,27(6):121-125.
Dong Zhiyong, Feng Yuping, Ervine A. An experimental study of hydraulic characteristic and fish test in vertical slot fishway to one side[J]. Journal of Hydroelectric Engineering, 2008, 27(6): 121-125. (in Chinese with English abstract)
[12] 董志勇,馮玉平,Ervine A. 異側(cè)豎縫式魚道水力特性及放魚試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào),2008,27(6):126-130.
Dong Zhiyong, Feng Yuping, Ervine A. An experimental study of hydraulic characteristic and fish test in vertical slot fishway from side to side[J]. Journal of Hydroelectric Engineering, 2008, 27(6): 126-130. (in Chinese with English abstract)
[13] 徐體兵,孫雙科. 豎縫式魚道水流結(jié)構(gòu)的數(shù)值模擬計(jì)算[J]. 水利學(xué)報(bào),2009,40(11):1386-1391.
Xu Tibing, Sun Shuangke. Numerical simulation of the flow structure in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2009, 40(11): 1386-1391. (in Chinese with English abstract)
[14] 張國(guó)強(qiáng),孫雙科. 豎縫寬度對(duì)豎縫式魚道水流結(jié)構(gòu)的影響[J]. 水力發(fā)電學(xué)報(bào),2012,43(1):151-156.
Zhang Guoqiang, Sun Shuangke. Effect of slot width on the flow structure of vertical slot fishway[J]. Journal of Hydroelectric Engineering, 2012, 43(1): 151-156. (in Chinese with English abstract)
[15] 邊永歡,孫雙科. 豎縫式魚道的水力特性研究[J]. 水利學(xué)報(bào),2013,44(12):1462-1467.
Bian Yonghuan, Sun Shuangke. Study on hydraulic characteristic of flow in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1462-1467. (in Chinese with English abstract)
[16] Yagci O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure[J]. Ecological Engineering, 2009, 36(1): 36-46.
[17] Ead S A, Katopodis C,Sikora G J,et al. Flow regimesand structure in pool and weir fishways[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 379-390.
[18] 孫雙科,張國(guó)強(qiáng). 環(huán)境友好的近自然型魚道[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2012,10(1):41-46.
Sun Shuangke, Zhang Guoqiang. Environment-friendly fishway in close-to-nature types[J]. Journal of China Institute of Water Resources and Hydropower Research, 2012, 10(1): 41-46. (in Chinese with English abstract)
[19] BFPP. Fishways: Biological Basis, Design Criteria and Monitoring[M]. Copublished by FAO, CSP, Cemagref. 2002.
[20] Clay C H. Design of fishways and other fish facilities[M]. Florida: CRC Press, 1995.
[21] Bunt C M. Fishway Entrance Modifications Enhance Fish Attraction[J]. Fisheries Management and Ecology, 2001, 8: 95-105.
[22] 汪亞超,陳小虎,張婷,等. 魚道進(jìn)口布置方案研究[J]. 水生態(tài)學(xué)雜志,2013,34(4):30-34.
Wang Yachao, Chen Xiaohu, Zhang Ting, et al. Study on layout scheme of fishway entrance[J]. Journal of Hydroecology, 2013, 34(4): 30-34. (in Chinese with English abstract)
[23] 湯荊燕,高策,陳旻,等. 不同流態(tài)對(duì)魚道進(jìn)口誘魚效果影響的實(shí)驗(yàn)研究[J]. 紅水河,2013,32(1):34-39.
Tang Jingyan, Gao Ce, Chen Min, et al. Study on influence of different flow patterns on fish attracting effect at fish way entrance[J]. Hongshui River, 2013, 32(1): 34-39. (in Chinese with English abstract)
[24] 王興勇,郭軍. 國(guó)內(nèi)外魚道研究與建設(shè)[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào),2005,3(3):222-228.
Wang Xingyong, Guo Jun. Brief review on research and construction of fish-ways at home and abroad[J]. Journal of China Institute of Water Resources and Hydropower Research, 2005, 3(3): 222-228. (in Chinese with English abstract)
[25] 吳曉春,史建全. 基于生態(tài)修復(fù)的青海湖沙柳河魚道建設(shè)與維護(hù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):130-136.
Wu Xiaochun, Shi Jianquan. Construction and management of fish passage on Shaliu River adjacent to Qinghai Lake based on ecological restoration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 130-136. (in Chinese with English abstract)
[26] 楊漢運(yùn),黃道明. 雅魯藏布江中上游魚類區(qū)系和資源狀況初步調(diào)查[J]. 華中師范大學(xué)學(xué)報(bào):自然科學(xué)版,2011,45(4):629-633.
Yang Hanyun, Huang Daoming. A preliminary investigation on fish fauna and resources of the upper and middle Yalu Tsangpo River[J]. Journal of Huazhong Normal University: Natural Sciences, 2011, 45(4): 629-633. (in Chinese with English abstract)
[27] 鄭金秀,韓德舉,胡望斌,等. 與魚道設(shè)計(jì)相關(guān)的魚類游泳行為研究[J]. 水生態(tài)學(xué)雜志,2010,3(5):104-110.
Zheng Jinxiu, Han Deju, Hu Wangbin, et al. Fish swinmming performance related to fishway design[J]. Journal of Hydroecology, 2010, 3(5): 104-110. (in Chinese with English abstract)
[28] 許曉蓉. 西藏典型裂腹魚游泳能力及魚道方案優(yōu)化數(shù)值模擬研究[D]. 宜昌:三峽大學(xué),2012.
Xu Xiaorong. Study on Swimming Ability of Typical Fish in Tibet and Numercial Simulating of Optimizing for Fishway Project[D]. Yichang: China Three Gorges University, 2012. (in Chinese with English abstract)
[29] 涂志英. 雅礱江流域典型魚類游泳特性研究[D]. 武漢:武漢大學(xué),2012.
Tu Zhiying. Research of Swimming Performance of Several Typical Fish in the Yalong River[D]. Wuhan: Wuhan University, 2012. (in Chinese with English abstract)
[30] Yakhot V, Orszag S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51.
[31] 宗全利,鄭鐵剛,劉煥芳,等. 滴灌自清洗網(wǎng)式過(guò)濾器全流場(chǎng)數(shù)值模擬與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(16):57-65.
Zong Quanli, Zheng Tiegang, Liu Huanfang, et al. Numerical simulation and analysis on whole flow field for drip self-cleaning screen filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 57-65. (in Chinese with English abstract)
[32] 王娟,王春光,王芳. 基于Fluent 的9R-40 型揉碎機(jī)三維流場(chǎng)數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):165-169.
Wang Juan, Wang Chunguang, Wang Fang. Numerical simulation on three-dimensional turbulence air flow of 9R-40 rubbing and breaking machine based on Fluent software[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 165-169. (in Chinese with English abstract)
[33] 郭嘉明,呂恩利,陸華忠,等. 冷藏運(yùn)輸廂體結(jié)構(gòu)對(duì)流場(chǎng)影響的數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):74-80.
Guo Jiaming, Lü Enli, Lu Huazhong, et al. Numerical simulation of effects of transport enclosure structure on flow field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 74-80. (in Chinese with English abstract)
[34] 孫雙科. 西藏尼洋河多布水電站工程魚道及生態(tài)放水閘水工模型試驗(yàn)報(bào)告[R]. 北京:中國(guó)水利水電科學(xué)研究院, 2013.
[35] Moriasi D N, Arnold J G, Liew M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the American Society of Agricultural and Biological Engineers (Transactions of the ASABE), 2007, 50(3): 885-900.
[36] 艾克明. 魚道水力設(shè)計(jì)的基本要點(diǎn)與工程實(shí)例[J]. 水利科技與經(jīng)濟(jì),2012,18(10):82-85.
[37] 王玉蓉,譚燕平. 裂腹魚自然生境水力學(xué)特征的初步分析[J]. 四川水利,2010(6):55-59.
Location choice of fishway entrance in hydropower project based on fish behavioristics and hydraulics
Zheng Tiegang, Sun Shuangke, Liu Haitao, Jiang Han, Li Guangning
(,100038)
A large hydropower project is located on the stream of Yalong River in China, and the multi-year average energy output of hydropower station is 1.6 billion kWh, having a total installed capacity of 360 MW. In order to protect the river ecology and environment, it is planned to build some facilities for fish passing, such as fishway. In order to be effective for a fishway, it is necessary for the migratory fish to find the entrance with as little delay as possible. The entrance to the fishway must be located at the furthest point upstream in the immediate area where fishes are congregating downstream the obstruction. It should not be positioned either in the center of the river or too far downstream. The attractivity of a fishway is linked to its location in relation to the obstruction, and particularly to the location of its entrances and the hydrodynamic conditions (flow discharges, velocities and flow patterns) in the vicinity of the entrances. In other words, successful fishway design requires the close combination of fish biology and hydraulics. Combined with specific engineering, the primary goal is to establish a new idea and method for location choice of fishway entrance. Based on the resources, biology and ecology in the Yalong River, the migratory fishes in the river are divided into 4 categories, and the,andare the main migratory fishes in present study. Through analyzing the swimming abilities of the main migratory fishes, it is found that the regions where the velocity does not exceed 1.2 m/s are fit to install the entrance. In present study, it is first offered that the regions where the velocity ranges from 0.4 to 0.8 m/s are the optimal to install the entrance. And, given other factors, the regions where the velocity is 0.8-1.2, 0-0.4 and 1.2-1.5 m/s are the alternative locations of I, II and III respectively to install the entrance. It is forbidden to install the entrance in the area where the normal velocity exceeds 1.5 m/s. Taking a large hydropower project as the example, the hydraulic characteristics of the velocity and flow field at downstream were analyzed. When the power units were running, there was complex flow pattern in the tail channel, with some circulation and backflow. The maximum and minimum velocities near the left bank at downstream of tail channel were 1.5 and 0.8 m/s, respectively. It was also shown that the migratory fish could travel as far upstream as possible along the left bank. Because of the high velocity at the end of tailrace, the fishes were impossible to pass. It is therefore advisable to install the entrance to the fishway near the tailrace. Considering the velocity and flow pattern, there was backflow region at upstream that was also the situation of the stake number 0+200, which was the obstruction for migratory fishes. In addition, the average velocity near the bank was all larger than 1.1 m/s, which indicated the migratory fishes could not congregate in this area. It was pointed that the optimal location of entrances was the area 200-210 m away from the axis of the dam at the downstream, where the velocity and flow pattern conditions were fit to set the entrance to the fishway. And some fishway entrances should be arranged above the power station generators for standby. Accordingly as an inter-disciplinary subject, the choice of fishway entrance is not perfect. In the further, the study should be developed combined with the special life habits of migratory fish.
hydrodynamics; flow fields; flow velocity; hydropower project; fishway entrance; numerical simulation; swimming ability
10.11975/j.issn.1002-6819.2016.24.021
TV61
A
1002-6819(2016)-24-0164-07
2016-03-22
2016-10-25
國(guó)家自然科學(xué)基金資助項(xiàng)目(51309256,51679261)
鄭鐵剛,男,河北定州人,高級(jí)工程師,博士,主要從事水工水力學(xué)與生態(tài)水力學(xué)研究工作。北京 中國(guó)水利水電科學(xué)研究院100038。Email:zhengtg@iwhr.com