李 偉,季磊磊,施衛(wèi)東,周 嶺,張 揚(yáng)
?
導(dǎo)葉式混流泵多工況內(nèi)部流場的PIV測量
李 偉,季磊磊,施衛(wèi)東,周 嶺,張 揚(yáng)
(1. 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心 鎮(zhèn)江 212013;2. 國家水泵及系統(tǒng)工程技術(shù)研究中心 鎮(zhèn)江 212013)
為研究不同流量工況下混流泵內(nèi)部流動(dòng)特性,該文基于粒子圖像測速技術(shù)(particle image velocimetry)對(duì)0.81.0、1.2倍流量工況下混流泵的內(nèi)部流場進(jìn)行試驗(yàn)研究,測量獲得了混流泵葉輪進(jìn)口軸截面、葉輪與導(dǎo)葉間隙和導(dǎo)葉內(nèi)部流場的速度場分布,分析了流量變化對(duì)混流泵內(nèi)部流動(dòng)的影響。研究結(jié)果表明,外特性試驗(yàn)重復(fù)性較好,試驗(yàn)結(jié)果較為可靠。3個(gè)工況下混流泵葉輪進(jìn)口流場的速度分布趨勢基本一致,進(jìn)口的來流基本沿著軸線方向;隨著流量增加,葉輪進(jìn)口速度不斷增大,最大速度達(dá)到7.49 m/s,從輪轂到輪緣高速區(qū)域速度梯度更為明顯,速度等值線分布逐漸形成以左上角為圓心,不斷向周圍遞減的趨勢。受動(dòng)靜干涉作用影響,葉輪與導(dǎo)葉間隙流場速度分布較為紊亂,在導(dǎo)葉進(jìn)口邊輪轂附近形成逆時(shí)針方向旋渦,誘使葉輪出口流體向外緣側(cè)偏轉(zhuǎn);隨著流量增加,逆向旋渦明顯減小,內(nèi)部流動(dòng)更趨于平穩(wěn)。動(dòng)靜干涉效應(yīng)進(jìn)一步影響導(dǎo)葉進(jìn)口流場并形成明顯的旋渦結(jié)構(gòu),造成流道堵塞;在導(dǎo)葉出口由于環(huán)形蝸室的影響形成大尺度旋渦結(jié)構(gòu);隨著流量增大,導(dǎo)葉外緣高速區(qū)向下游移動(dòng),導(dǎo)葉進(jìn)出口的旋渦結(jié)構(gòu)逐漸消失,流動(dòng)損失減小。研究成果為揭示混流泵內(nèi)部流動(dòng)特性和優(yōu)化混流泵設(shè)計(jì)提供參考。
泵;流場;葉片;粒子圖像測速技術(shù);混流泵;多工況;內(nèi)部流動(dòng)
混流泵廣泛應(yīng)用于農(nóng)業(yè)排灌、城市供排水、大型水利工程、艦船噴水推進(jìn)、海水脫鹽系統(tǒng)以及火力發(fā)電和核電站的循環(huán)水系統(tǒng)等領(lǐng)域[1-3],在國民經(jīng)濟(jì)建設(shè)中發(fā)揮著重要作用[4-8]。在混流泵內(nèi),葉輪進(jìn)出口流場、導(dǎo)葉內(nèi)部流場的流動(dòng)狀況直接影響葉輪的做功和壓能轉(zhuǎn)換效率,進(jìn)而影響泵的性能,也對(duì)泵的穩(wěn)定運(yùn)行產(chǎn)生重要影響[9-12]。因此,深入探索混流泵全流場的流動(dòng)規(guī)律,對(duì)混流泵的優(yōu)化設(shè)計(jì)具有重要意義。
目前,基于拉格朗日質(zhì)點(diǎn)運(yùn)動(dòng)研究流體運(yùn)動(dòng)的非接觸式粒子圖像測試技術(shù)(particle image velocimetry)已成為研究葉輪機(jī)械內(nèi)流場的一種先進(jìn)測試手段[13-16]。Paone[17]應(yīng)用了粒子圖像測速技術(shù)測量了運(yùn)行在不同流量工況點(diǎn)下的離心泵擴(kuò)壓器內(nèi)的流場速度,并將測量結(jié)果和激光多普勒試驗(yàn)的結(jié)果進(jìn)行了對(duì)比。Stoffel等[18]通過PIV技術(shù)對(duì)葉輪和蝸室之間的匹配關(guān)系進(jìn)行了研究,通過試驗(yàn)結(jié)果分析后發(fā)現(xiàn),當(dāng)蝸殼基圓與葉輪外徑之間的間隙達(dá)到一定程度后,蝸殼對(duì)葉輪的影響變小,但葉輪出口沿軸向分布仍然不均勻。Miner等[19]利用PIV測試手段對(duì)一臺(tái)有導(dǎo)葉的離心泵進(jìn)行了內(nèi)部流場測量,發(fā)現(xiàn)隔舌上的駐點(diǎn)隨著流量的增大從外部移動(dòng)到了內(nèi)部。Pedersen等[20]利用PIV技術(shù)和激光多普勒對(duì)一臺(tái)6葉片的離心泵進(jìn)行了內(nèi)部流場測量,通過對(duì)比發(fā)現(xiàn)二者試驗(yàn)結(jié)果近乎一致,而Feng等[21]和Stickland等[22]也分別利用離子圖像測速技術(shù)對(duì)具有多葉片葉輪的離心泵內(nèi)流場進(jìn)行了相關(guān)試驗(yàn)和數(shù)值分析。雖然國內(nèi)將PIV應(yīng)用于旋轉(zhuǎn)機(jī)械內(nèi)部測量的時(shí)間較晚,但近幾年也取得了很多的研究成果。郞濤等[23]以一臺(tái)低比轉(zhuǎn)速前伸式扭曲雙葉片污水泵為研究對(duì)象,采用了PIV技術(shù)測量了污水泵葉輪內(nèi)部流場的相對(duì)速度分布,探討分析了軸向旋渦和低速區(qū)隨流量變化的形態(tài)特性,發(fā)現(xiàn)當(dāng)軸向旋渦經(jīng)過蝸殼隔舌時(shí),干涉作用使得軸向旋渦向下游偏移;Wang等[24]采用PIV測試技術(shù)和CFD數(shù)值計(jì)算手段對(duì)雙流道泵設(shè)計(jì)工況、零流量工況下不同截面處的內(nèi)部流場進(jìn)行了測量。Zhang等[25]為了研究軸流泵內(nèi)動(dòng)靜干涉對(duì)內(nèi)流場的影響,利用PIV技術(shù)研究了軸流泵葉輪和導(dǎo)葉之間相干流場的流動(dòng)特性,研究發(fā)現(xiàn)在干涉區(qū)域不僅出現(xiàn)了不規(guī)則軸向旋渦,并且進(jìn)一步加劇了動(dòng)靜干涉作用。Wu等[26]利用熒光粒子和透光顆粒流體并基于PIV測速手段對(duì)工作在設(shè)計(jì)工況下的離心泵進(jìn)行了內(nèi)流場測量,并運(yùn)用DES(detached eddy simulation)模型對(duì)其內(nèi)部的三維非定常流動(dòng)進(jìn)行了數(shù)值模擬。Zhou等[27]也分別利用數(shù)值模擬和PIV技術(shù)結(jié)合分析的手段對(duì)離心泵內(nèi)流分布進(jìn)行了相關(guān)研究。王玲花等[28]利用PIV流場測試技術(shù),對(duì)低比速混流式模型水泵水輪機(jī)轉(zhuǎn)輪在水輪機(jī)工況下進(jìn)行了可視化研究,結(jié)果表明用流動(dòng)可視化理論與試驗(yàn)結(jié)合的方法可以得到水輪機(jī)工況下的內(nèi)部流場速度矢量圖。但截至目前,針對(duì)混流泵內(nèi)流場的PIV測量研究相對(duì)較少。席光等[29]利用PIV技術(shù)對(duì)設(shè)計(jì)流量及變流量工況下葉輪內(nèi)部的流動(dòng)進(jìn)行了測量,研究表明混流泵在小流量工況下在葉頂和中間葉高截面內(nèi)會(huì)出現(xiàn)回流現(xiàn)象。Nagahara等[30]利用高速攝影機(jī)及粒子圖像測試技術(shù)對(duì)斜流泵進(jìn)口處的水下旋渦運(yùn)動(dòng)及旋渦周圍速度分布進(jìn)行了觀察與測量,描述了旋渦強(qiáng)度和旋渦對(duì)水力性能影響之間的關(guān)系。
本文基于PIV測試技術(shù),試驗(yàn)測量了混流泵葉輪進(jìn)口軸截面、葉輪與導(dǎo)葉間隙和導(dǎo)葉內(nèi)部流場的速度矢量場,探索分析了流量變化對(duì)混流泵內(nèi)部流動(dòng)的影響,為掌握不同流量工況下混流泵內(nèi)部流動(dòng)特性提供了參考依據(jù)。
1.1 研究對(duì)象
本文研究模型為一臺(tái)低比轉(zhuǎn)速混流泵,模型的具體參數(shù)如下:流量des=380 m3/h,揚(yáng)程=6m,轉(zhuǎn)速= 1450 r/min,比轉(zhuǎn)數(shù)s=480。葉片數(shù)=4,導(dǎo)葉葉片數(shù)d=7。圖1所示為PIV試驗(yàn)用混流泵模型泵實(shí)物圖,模型的轉(zhuǎn)輪室和進(jìn)水段端壁均由有機(jī)玻璃加工而成。
圖1 混流泵模型
1.2 試驗(yàn)裝置
為測量不同流量工況下混流泵內(nèi)部流動(dòng)特性,搭建如圖2所示的試驗(yàn)裝置系統(tǒng)。
1. 混流泵 2. 試驗(yàn)管路3. 穩(wěn)壓罐
試驗(yàn)中,扭矩的測量采用的是ZJ型轉(zhuǎn)矩轉(zhuǎn)速測量儀,其額定的轉(zhuǎn)矩100 N·m,齒輪的齒數(shù)180,測量的精度0.2級(jí),轉(zhuǎn)速的測量范圍為0~6 000 r/min。流量的測量采用的是上海自儀九生產(chǎn)的精度為0.5的LWGY型渦輪流量計(jì),進(jìn)出口壓力的測量采用的是麥克公司生產(chǎn)的精度為0.5%FS的MPM型壓力傳感器,這些通過傳感器獲得的能量性能參數(shù)均由HSJ-2010水力機(jī)械綜合測試儀采集并傳輸至計(jì)算機(jī)進(jìn)行數(shù)據(jù)處理。試驗(yàn)臺(tái)達(dá)到1級(jí)精度要求,流量工況的變化通過調(diào)節(jié)出口管路上的調(diào)節(jié)閥開度來實(shí)現(xiàn)。
在進(jìn)行PIV測量試驗(yàn)中,采用美國TSI公司的商業(yè)粒子圖像測速系統(tǒng),其主要裝置和設(shè)備包括YAG200- NML型脈沖激光器、PIV專用630059POWERVIEW 4MP型跨幀CCD相機(jī)、610035型同步控制系統(tǒng)、610015-SOL型光臂及其片光源系統(tǒng)、圖像采集分析軟件Insight 3G等。
2.1 示蹤粒子選擇與添加方法
PIV測試結(jié)果的精度受示蹤粒子的影響較大,在本文的試驗(yàn)中,采用了二氧化硅空心玻璃球作為示蹤粒子。該粒子直徑為20~60m,材質(zhì)密度為1.05 g/cm3。通過試驗(yàn)已經(jīng)證明了該種粒子具有良好的跟隨性和散射性。為將示蹤粒子添加進(jìn)測試管道中,先將試驗(yàn)臺(tái)內(nèi)部充滿足夠多的水(水面位置約為穩(wěn)壓罐高度的4/5),然后開啟混流泵使試驗(yàn)系統(tǒng)水流循環(huán)起來,關(guān)閉所有通外閥門,再打開真空泵使得穩(wěn)壓罐頂部的氣體為負(fù)壓,此時(shí)將盛有示蹤粒子與水混合后的容器與試驗(yàn)臺(tái)上的通外閥門相連,利用負(fù)壓將示蹤粒子吸入試驗(yàn)臺(tái)內(nèi)并與水流一起循環(huán)。
2.2 標(biāo)定裝置及方法
PIV試驗(yàn)過程中的標(biāo)定準(zhǔn)確度對(duì)測試結(jié)果有決定性的影響??紤]試驗(yàn)泵的拆卸麻煩,為了試驗(yàn)精度和可行性,加工一個(gè)半邊形狀和有機(jī)玻璃端壁一致的標(biāo)定水箱進(jìn)行PIV試驗(yàn)標(biāo)定,如圖3所示,水箱上方敞開,方便標(biāo)尺的放入和充水。
圖3 標(biāo)定水箱
試驗(yàn)開始前,固定好托架,將標(biāo)定水箱置于托架上方,先調(diào)整標(biāo)定水箱至水平,再調(diào)整標(biāo)定水箱的相機(jī)側(cè)外表面與轉(zhuǎn)輪室同一側(cè)面位于同一垂直面內(nèi)。位置調(diào)整完成后,放入曲率與標(biāo)定水箱完全一致的標(biāo)尺底座,標(biāo)尺位于底座上表面,試驗(yàn)中將標(biāo)尺帶有刻度的端面調(diào)整至與所拍攝平面相一致,最后再將相機(jī)移動(dòng)到與標(biāo)尺同一水平面進(jìn)行標(biāo)定。如圖4所示。
2.3 相機(jī)固定方式
試驗(yàn)過程中,鏡頭組支架的底座固定在升降臺(tái)上,且與軸線平行,支架的升降桿與底座相互垂直,桿頭水平并掛有鏡頭組固定裝置,相機(jī)和鏡頭組的位置關(guān)系如圖5所示。該裝置保證了鏡頭組的、、3個(gè)方向的自由移動(dòng)及固定,相機(jī)則被安裝在專用支架上,能夠自由進(jìn)行移動(dòng)和固定。
1. 激光臂 2. CCD相機(jī)3. 計(jì)算機(jī)
在試驗(yàn)開始時(shí),先將進(jìn)口閥門開度調(diào)至最大,然后再將試驗(yàn)管路進(jìn)出口閥門開度調(diào)節(jié)到最大,之后再啟 動(dòng)變頻器并調(diào)節(jié)變頻器頻率使得混流泵轉(zhuǎn)速穩(wěn)定在1 450 r/min。在試驗(yàn)進(jìn)行過程中,逐漸減小出口閥門開度,待各傳感器數(shù)據(jù)偏差不大并且流量計(jì)讀數(shù)穩(wěn)定后分別記錄不同流量點(diǎn)的試驗(yàn)數(shù)據(jù),本次試驗(yàn)一共測試15個(gè)工況點(diǎn),通過計(jì)算機(jī)中的泵產(chǎn)品參數(shù)測量軟件自動(dòng)計(jì)算,求得了混流泵的揚(yáng)程和效率。為盡可能減小測量中的隨機(jī)誤差,關(guān)閉電源停機(jī),待管路內(nèi)流體重新穩(wěn)定,進(jìn)行重復(fù)性試驗(yàn),驗(yàn)證試驗(yàn)臺(tái)和試驗(yàn)方法的可靠性。
在進(jìn)行能量性能試驗(yàn)的同時(shí),同步進(jìn)行了混流泵葉輪和導(dǎo)葉內(nèi)部流場的PIV測量,分別獲取0.8、1.0、1.2倍流量工況下混流泵進(jìn)口軸截面流場、葉輪與導(dǎo)葉間隙流場、導(dǎo)葉內(nèi)部流場的信息。在PIV試驗(yàn)過程中,拍攝了不同流量下同一截面內(nèi)的流場結(jié)構(gòu),葉輪進(jìn)口、葉輪和導(dǎo)葉間隙流場的拍攝截面經(jīng)過混流泵旋轉(zhuǎn)軸線并垂直于水平面。由于PIV拍攝時(shí)有導(dǎo)葉葉片剛好位于拍攝的中間截面內(nèi),因此,在進(jìn)行導(dǎo)葉內(nèi)流場測量時(shí)將拍攝截面向相機(jī)所在位置偏移了5 mm進(jìn)行拍攝,拍攝截面及區(qū)域示蹤粒子效果如圖6所示。
圖6 PIV試驗(yàn)示蹤粒子效果圖
4.1 能量性能試驗(yàn)結(jié)果
為了準(zhǔn)確地得到混流泵的外特性結(jié)果,對(duì)模型泵進(jìn)行重復(fù)性試驗(yàn),重復(fù)性試驗(yàn)性能曲線如圖7所示。從圖中可以看出,2次外特性測量結(jié)果比較集中,曲線趨勢基本完全一致,最大誤差不超過5%,說明試驗(yàn)結(jié)果較為可靠。
圖7 重復(fù)性外特性試驗(yàn)曲線
4.2 PIV測試結(jié)果與分析
4.2.1 葉輪進(jìn)口前軸截面流場分布
葉輪進(jìn)口前軸截面流場分布如圖8所示,拍攝截面為過軸心線的子午面。圖中橫坐標(biāo)為拍攝截面軸向距離縱坐標(biāo)為拍攝截面徑向距離。從圖8可以看出,3個(gè)工況下,在混流泵的進(jìn)口流場中,流體的速度分布趨勢基本一致,在葉輪前部進(jìn)水段中,葉輪進(jìn)口的來流基本沿著軸線方向;在葉輪進(jìn)口前部附近區(qū)域,PIV試驗(yàn)結(jié)果均存在一個(gè)豎直的高速區(qū)域,高速區(qū)域從輪轂向輪緣處不斷增強(qiáng),這是由于葉片形狀所造成,由于葉片進(jìn)口邊外緣距離來流方向最近,且半徑最大,在相同轉(zhuǎn)速情況下,葉片進(jìn)口邊外緣的圓周速度最大,對(duì)該處流體的影響較大,預(yù)旋和加速作用明顯,因此,出現(xiàn)從輪轂向輪緣不斷增強(qiáng)的高速區(qū)域。同時(shí),在進(jìn)口外緣端壁處還分別出現(xiàn)一個(gè)低速A區(qū)域,該區(qū)域可能是由于輪緣間隙泄漏流形成的低速渦流,也可能是由于有機(jī)玻璃段中進(jìn)水段和葉輪室存在過渡圓角引起光線折射而在此區(qū)域出現(xiàn)錯(cuò)誤速度場。
注:Qdes為設(shè)計(jì)流量380 m3·h-1;X為拍攝截面軸向距離;Y拍攝截面徑向距離。下同。
對(duì)比不同流量下葉輪進(jìn)口速度場分布可以發(fā)現(xiàn),隨著流量增加,葉輪進(jìn)口速度不斷增大,最大值從5.18 m/s增加到7.49 m/s。根據(jù)1.2des工況下的流量和速度三角形,可知該點(diǎn)處的圓周速度和軸向速度分別為6.32和4.06 m/s,合成速度約為7.51 m/s,理論分析結(jié)果與試驗(yàn)結(jié)果基本一致,試驗(yàn)結(jié)果較為可靠。同時(shí),存在的豎直高速區(qū)域從輪轂到輪緣速度梯度更為明顯,速度等值線分布逐漸形成以左上角為圓心,不斷向周圍遞減的趨勢。而低速的A區(qū)域有所增大,這與隨著流量增加泄漏流減弱的經(jīng)驗(yàn)判斷不一致,故而推斷該區(qū)域更多是由于光線折射引起錯(cuò)誤流場信息。
4.2.2 葉輪出口與導(dǎo)葉間隙流場分布
獲得葉輪出口與導(dǎo)葉間隙流場的速度場分布如圖9所示。從圖9中可以看出,因葉輪和導(dǎo)葉相互干涉影響,不同流量工況下葉輪與導(dǎo)葉軸向間隙內(nèi)的速度分布較為紊亂,存在較大的速度梯度。在轉(zhuǎn)輪室的端壁邊緣附近,由于壁面邊界層的影響使得流體的流速較??;同時(shí),在導(dǎo)葉進(jìn)口邊輪轂側(cè)附近,3個(gè)工況PIV試驗(yàn)結(jié)果均捕捉到一個(gè)明顯的回流旋渦,其旋轉(zhuǎn)方向?yàn)槟鏁r(shí)針方向;該旋渦阻塞了一部分葉輪出口流道,使得葉輪出口以后的流體向外緣側(cè)偏轉(zhuǎn),在外緣壁面摩擦阻力和輪轂處旋渦阻塞共同作用下,葉輪與導(dǎo)葉軸向間隙內(nèi)中部絕對(duì)速度較高。
對(duì)比不同流量下葉輪出口與導(dǎo)葉間隙流場速度場分布可以發(fā)現(xiàn),0.8des工況下間隙流場最為紊亂,流線分布嚴(yán)重不均,并在導(dǎo)葉進(jìn)口邊輪轂側(cè)出現(xiàn)占據(jù)間隙流場三分之一以上區(qū)域的回流旋渦B,回流旋渦與端壁低速區(qū)一起堵塞了近二分之一流道。隨著流量增加,端壁低速區(qū)域和導(dǎo)葉進(jìn)口邊輪轂側(cè)的旋渦明顯減小,動(dòng)靜干涉效應(yīng)相對(duì)減弱,內(nèi)部流動(dòng)更趨于平穩(wěn),在1.2des工況下導(dǎo)葉進(jìn)口來流近似平行于端壁面進(jìn)入導(dǎo)葉流道,流線光滑平順,并在葉輪與導(dǎo)葉軸向間隙中部形成高速集中區(qū)域,最大速度為4.21 m/s。
圖9 葉輪和導(dǎo)葉中間截面PIV測量結(jié)果
4.2.3 導(dǎo)葉內(nèi)部流場分布
獲得導(dǎo)葉內(nèi)部流場速度分布如圖10所示。從圖10可以看出,與間隙區(qū)域流場一樣,流體因葉輪和導(dǎo)葉的動(dòng)靜干涉,在導(dǎo)葉進(jìn)口處形成旋渦C,旋渦使得導(dǎo)葉進(jìn)口過流面積減小,排擠系數(shù)變大,堵塞部分流道,并在端壁和導(dǎo)葉流道的規(guī)整下,致使液流在端壁邊界附近形成明顯的高速流動(dòng)區(qū)域,流動(dòng)速度分布在3.29至3.95 m/s之間,葉輪出口液流沿圓周方向的速度分布也逐漸被梳理為呈軸向傾斜向下的運(yùn)動(dòng)趨勢。同時(shí),受出口環(huán)形蝸室的影響,在導(dǎo)葉出口和環(huán)形蝸室連接處的D區(qū)域出現(xiàn)了大尺度的旋渦結(jié)構(gòu),造成了能量損失。
隨著流量增大,導(dǎo)葉流道主流獲得的動(dòng)壓能不斷增大,導(dǎo)葉外緣高速區(qū)向下游移動(dòng),內(nèi)部高速區(qū)域逐步擴(kuò)大,動(dòng)靜干涉效應(yīng)相對(duì)減弱,導(dǎo)葉進(jìn)口的旋渦結(jié)構(gòu)逐漸消失,導(dǎo)葉出口和環(huán)形蝸室連接處的旋渦結(jié)構(gòu)尺度也有所減小。在1.2des工況下導(dǎo)葉對(duì)液流的規(guī)整作用充分體現(xiàn),流動(dòng)非常平穩(wěn),沒有出現(xiàn)明顯旋渦流動(dòng),此時(shí)測試平面內(nèi)流體的平均速度約為3.0 m/s。
圖10 導(dǎo)葉內(nèi)部截面PIV測量結(jié)果
1)混流泵葉輪進(jìn)口流場的PIV測量結(jié)果表明,三個(gè)工況下葉輪進(jìn)口流場的速度分布趨勢基本一致,進(jìn)口的來流基本沿著軸線方向。隨著流量增加,葉輪進(jìn)口速度不斷增大,最大速度達(dá)到7.49 m/s,從輪轂到輪緣高速區(qū)域速度梯度更為明顯,速度等值線分布逐漸形成以左上角為圓心,不斷向周圍遞減的趨勢。
2)混流泵葉輪出口與導(dǎo)葉間隙流場的PIV測量結(jié)果表明,受動(dòng)靜干涉作用影響,不同流量工況下葉輪與導(dǎo)葉軸向間隙內(nèi)的速度分布較為紊亂,在導(dǎo)葉進(jìn)口邊輪轂側(cè)附近存在明顯的逆時(shí)針方向旋轉(zhuǎn)的旋渦,并使得葉輪出口流體向外緣側(cè)偏轉(zhuǎn)。隨著流量增加,逆向旋渦明顯減小,內(nèi)部流動(dòng)更趨于平穩(wěn),在1.2des工況下葉輪與導(dǎo)葉軸向間隙中部形成高速集中區(qū)域,最大速度為4.21 m/s。
3)混流泵導(dǎo)葉內(nèi)部流場的PIV測量結(jié)果表明,葉輪和導(dǎo)葉的動(dòng)靜干涉進(jìn)一步影響導(dǎo)葉進(jìn)口流場并在導(dǎo)葉進(jìn)口處形成明顯的旋渦結(jié)構(gòu),造成流道堵塞。同時(shí),受出口環(huán)形蝸室的影響,在導(dǎo)葉出口形成大尺度旋渦結(jié)構(gòu)。隨著流量增大,導(dǎo)葉外緣高速區(qū)向下游移動(dòng),導(dǎo)葉進(jìn)出口的旋渦逐漸消失,流動(dòng)損失減小。
[1] 楊敏官,王達(dá),高波,等. 混流式核主泵導(dǎo)葉-殼體匹配水力特性[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(2):110-114.
Yand Minguan, Wand Da, Gao Bo, et al. Influences of guide vane-casing volute positions on performance of nuclear reactor coolant pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(2): 110-114. (in Chinese with English Abstract)
[2] 羅燦,成立,劉超,等. 船用噴水推進(jìn)泵裝置水力特性的數(shù)值模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(5):374-379.
Luo Can, Cheng Li, Liu Chao, et al. Numerical simulation of performance of marine waterjet propulsion system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(5): 374-379. (in Chinese with English Abstract)
[3] 薛宏林,張馳,李彥軍,等. 立式混流泵站停泵兩階段關(guān)閥過渡過程分析[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(11):953-959.
Xue Honglin, Zhang Chi, Li Yanjun, et al. Analysis of transient flow in vertical mixed-flow pumping system during pump stopping period by closing valve in two-phase mode[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(11): 953-959. (in Chinese with English Abstract)
[4] 歐鳴雄,施衛(wèi)東,賈衛(wèi)東,等. 斜流泵葉輪水力徑向力的數(shù)值模擬與試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9): 71-76.
Ou Mingxiong, Shi Weidong, Jia Weidong, et al. Numerical simulation and experimental validation on hydrodynamic radial force of mixed-flow pump impeller[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(9): 71-76. (in Chinese with English Abstract)
[5] 劉建瑞,鄭俊峰,付登鵬,等. 混流泵徑向間隙對(duì)內(nèi)部非定常流場影響的分析[J]. 流體機(jī)械,2014,42 (3):19-23.
Liu Jianrui, Zheng Junfeng, Fu Dengpeng, et al. Effect of volute tongue-impeller gaps on the unsteady flow in mixed-flow pump[J]. Fluid Machinery, 2014, 42(3): 19-23. (in Chinese with English Abstract)
[6] 施衛(wèi)東,鄒萍萍,張德勝,等. 高比轉(zhuǎn)速斜流泵內(nèi)部非定常壓力脈動(dòng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):147-152.
Shi Weidong, Zou Pingping, Zhang Desheng, et al. Unsteady flow pressure fluctuation of high-specific-speed mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(4) : 147-152. (in Chinese with English Abstract)
[7] 高強(qiáng). 導(dǎo)葉式混流泵壓力脈動(dòng)特性研究[D]. 蘭州:蘭州理工大學(xué),2014.
Gao Qiang. Study of Pressure Fluctuation in a Mixed-flow Pump with Vaned Diffuser[D]. Lanzhou: Lanzhou University of Technology, 2014. (in Chinese with English Abstract)
[8] 邴浩,曹樹良,譚磊,等. 速度矩分布規(guī)律的參數(shù)化描述及對(duì)混流泵性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):100-105.
Bing Hao, Cao Shuliang, Tan Lei, et al. Parameterization of velocity moment distribution and its effects on performance of mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(13): 100-105. (in Chinese with English Abstract)
[9] 馬桂超,湯方平,楊帆,等. 基于CFX的混流泵內(nèi)流場數(shù)值模擬[J]. 水電能源科學(xué),2012,30(3):128-131.
Ma Guichao, Tang Fangping, Yang Fan, et al. Numerical analysis of interior flow field of mixed-flow pump based on CFX[J]. Water Resources and Power, 2012, 30(3): 128-131. (in Chinese with English Abstract)
[10] 孔繁余,王文廷,黃道見,等. 前置導(dǎo)葉調(diào)節(jié)混流泵性能的數(shù)值模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):124-128.
Kong Fanyu, Wang Wenting, Huang Daojian, et al. Numerical simulation of inlet guide vane regulation for mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(10) : 124-128. (in Chinese with English Abstract)
[11] 李偉. 斜流泵啟動(dòng)過程瞬態(tài)非定常內(nèi)流特性及實(shí)驗(yàn)研究[D]. 鎮(zhèn)江:江蘇大學(xué),2013.
Li wei. Experimental Study and Numerical Simulation on Transient Characteristics of Mixed-flow Pump during Starting Period[D]. Zhenjiang: Jiangsu University, 2013 (in Chinese with English Abstract)
[12] 黎義斌,李仁年,王秀勇,等. 混流泵內(nèi)部流動(dòng)不穩(wěn)定特性的數(shù)值模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(5):384-389.
Li Yibin, Li Rennian, Wang Xiuyong, et al. Numerical simulation of unstable characteristics in head curve of mixed-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(5): 384-389. (in Chinese with English Abstract)
[13] Tan D, Li Y, Wilkes I, et al. Visualization and time-resolved particle image velocimetry measurements of the flow in the tip region of a subsonic compressor rotor[J]. Journal of Turbomachinery, 2015, 137(4): 041007.
[14] Li Y, Yuan S, Wang X, et al. Comparison of flow fields in a centrifugal pump among different tracer particles by particle image velocimetry[J]. Journal of Fluids Engineering, 2016, 138(6): 061105.
[15] Shao C, Zhou J, Gu B, et al. Experimental investigation of the full flow field in a molten salt pump by particle image velocimetry[J]. Journal of Fluids Engineering, 2015, 137(10): 104501.
[16] Li Y, Dong W, He Z, et al. Flow instability of a centrifugal pump determined using the energy gradient method[J]. Journal of Thermal Science, 2015, 24(1): 44-48.
[17] Paone N. Experimental investigation of the flow in the vaneless diffuser of a centrifugal pump by particle image displacement velocimetry[J]. Experiments in Fluids, 1989(7): 371-378.
[18] Stoffel B, Ludwig G, Weiss K. Experimental investigations on the structure of part-load recirculations in centrifugal pump impellers and the role of different influence[C]. Proc of 16th IAHR Symp, 1992, 445-454.
[19] Miner S M, Beaudion R J, Flack R D. Laser velocimeter measurements in a centrifugal flow pump[J]. Journal of turbomachinery, 1989, 111(3): 205-212.
[20] Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions-partⅠ: particle image velocimetry (PIV) and laser doppler velocimetry (LDV) measurements[J]. Journal of Fluids Engineering, 2003, 125(1): 61-72.
[21] Feng J, Benra F, Dohmen H J. Time-resolved particle image velocity (PIV) measurements in a radial diffuser pump[C]. ASME 2009 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2009.
[22] Stickland M T, Scanlon T J, Fernandez-Francos J, et al. A numerical and experimental analysis of flow in a centrifugal pump[J].American Society of Mechanical Engineers, Fluids Engineering Division, 2002, 257(2B): 703-708.
[23] 郎濤,施衛(wèi)東,陳刻強(qiáng),等. 前伸式雙葉片污水泵內(nèi)部流場PIV試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):74-79.
Lang Tao, Shi Weidong, Chen Keqiang, et al. PIV experiment of flow field in sewage pump with forward-extended double blades[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(20): 74-79. (in Chinese with English Abstract)
[24] Wang Kai, Liu Houlin, Yuan Shouqi, et al. Numerical simulation and stereo PIV test of inner flow in a double blades pump[C]. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2011.
[25] Zhang Hua, Shi Weidong, Chen Bin, et al. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump[J]. Journal of Hydrodynamics, 2014, 26(6): 894-901.
[26] Wu Y L, Liu S H, Yuan H J, et al. PIV measurement on internal instantaneous flows of a centrifugal pump[J]. Science China Technological Sciences, 2011, 54(2): 270-276.
[27] Zhou L, Shi W D, Cao W D, et al. CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions[J]. Science China Technological Sciences, 2015, 58(3): 405-414.
[28] 王玲花,高傳昌,陳德新. 水泵水輪機(jī)流動(dòng)可視化研究[J]. 水力發(fā)電,2005,31(7):61-63.
Wang Linghua, Gao Chuanchang, Chen Dexin. Flow visualization study on hydraulic pump-turbine[J]. Water Power, 2005, 31(7): 61-63. (in Chinese with English Abstract)
[29] 席光,盧金鈴,祁大同. 混流泵葉輪內(nèi)部流動(dòng)的PIV實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(10):53-57.
Xi Guang,Lu Jinling, Qi Datong. Experimental study on the flow in mixed pump impeller by PIV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(10): 53-57. (in Chinese with English Abstract)
[30] Nagahara T, Sato T, Okamura T. Effect of the submerged vortex cavitation in pump suction intake on mixed flow pump impeller[C]. CAV2001: 4th International Symposium on Cavitation, 2001.
PIV measurement of internal flow in mixed-flow pump under different flow rate conditions
Li Wei, Ji Leilei, Shi Weidong, Zhou Ling, Zhang Yang
(1.212013,; 2.212013,)
In this study, a low specific speed mixed-flow pump with guide vanes was investigated experimentally. In order to study the internal flow characteristics in this mixed flow pump under different flow conditions, the internal flow of mixed flow pump under 0.8, 1.0, 1.2 times of the designed flow conditions were studied in this paper based on the particle image velocimetry (PIV) technology. Firstly, the external characteristics of mixed flow pump were acquired after conducting the repeated experiment. Then, the velocity distribution of internal flow field in mixed flow pump at inlet axial cross section of impeller, section clearance between impeller and guide vane and section in guide vane were measured. Moreover, the influence of flow rate change on the internal flow in mixed-flow pump was analyzed. The research results showed that the experimental repeatability of external characteristic was preferable and the result of experiment was reliable. The PIV experiment results showed that the distribution of velocity vector, velocity counter and vortex structure in the mixed-flow pump were greatly affected by the changing of the flow rate conditions. The velocity distribution of impeller inlet was consistent under three flow condition and the incoming flow from impeller inlet was along the axis direction. The velocity of impeller inlet increases with the flow rate increasing and the maximum speed can reach to 7.49 m/s. The velocity gradient of high speed zone from hub to rim was higher and the center of the distribution of contoured velocity was on the upper left corner which was decreasing to around continually. A high velocity area appeared vertically near the impeller under different flow rate conditions during the PIV experiment and the velocity of the fluids increased from the hub to the rim which was caused by the structure of the impeller blade. When the rotating speed was constant, the circumferential velocity of the blade near the rim was much bigger which had a great impact on the fluids nearby. The velocity distribution of gap flow field between impeller and guide vane was disordered which was affected by the rotor-stator interaction when the mixed pump operated. The anticlockwise vortex was formed at the inlet edge of guide vane near the hub and the fluid flowing from the impeller outlet was induced to the blade edge. With the increase in flow rate, the anticlockwise vortex tended to be smaller and the internal flow tended to be steady. Under the large flow rate condition, the maximum velocity of fluids almost reached 4.21 m/s in the middle of the axial clearance between the impeller and guide vanes. The flow field near the guide vane inlet was further influenced by the rotor-stator interaction and then the vortex structure was formed obviously which caused the flow passage congestion. Also, the fluids were structured by the end wall and the flow passages so as to the high velocity zones appeared near the end wall, and the velocity of fluids varied from 3.29 m/s to 3.95 m/s. At the same time, the velocity distribution of the fluids in the circumferential direction that flowed from the impeller also showed the movement axially and obliquely.The large scale vortex structure was formed at the guide vane inlet because of the effect of circular volute chamber. With the increase in flow rate, the high speed zone on edge of the guide vane moved to the downstream, the vortex structures at the guide vane inlet and outlet gradually disappeared while the flow losses decreased. The research results provided reference for revealing the internal flow characteristics of mixed flow pump. Moreover, the analysis of the internal flow fields could optimize the design of impeller of mixed flow pump.
pumps; flow fields; blade; particle image velocimetry; mixed-flow pump; different flow rate conditions; internal flow
10.11975/j.issn.1002-6819.2016.24.011
TH313
A
1002-6819(2016)-24-0082-07
2016-04-02
2016-10-25
國家自然科學(xué)基金項(xiàng)目(51409127、51679111、51579118);江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2015119、BE2015001-4);江蘇省六大人才高峰項(xiàng)目(HYZB-002);江蘇省自然科學(xué)基金項(xiàng)目(BK20161472);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)。
李偉,男,河南人,副研究員,博士,主要從事流體機(jī)械的研究。鎮(zhèn)江江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,212013。Email:lwjiangda@ujs.edu.cn