戴億政,羅錫文,王在滿,曾 山,臧 英,楊文武,張明華,王寶龍,邢 赫
?
氣力集排式水稻分種器設(shè)計(jì)與試驗(yàn)
戴億政1,2,3,羅錫文1,2※,王在滿1,2,曾 山1,2,臧 英1,2,楊文武1,2,張明華1,2,王寶龍1,2,邢 赫1,2
(1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州510642;2. 華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州510642; 3. 江西省農(nóng)業(yè)機(jī)械研究所,南昌330044)
針對(duì)水稻直播高速作業(yè)和大播量的要求,設(shè)計(jì)了一種適用于氣力集排式水稻直播機(jī)的分種器。從直播機(jī)的適應(yīng)性、作業(yè)速度、播量調(diào)節(jié)等方面研究了氣力集排式分種器的分種機(jī)理,分析了分種器的適應(yīng)性、均勻性和穩(wěn)定性;根據(jù)水稻種子的物理特性,采用Solidworks Flow軟件進(jìn)行計(jì)算流體動(dòng)力學(xué)(computational fluid dynamics,CFD)仿真,對(duì)比不同結(jié)構(gòu)分種器速度流場(chǎng)分布圖,得到了較優(yōu)等種數(shù)流場(chǎng),獲得了分種器設(shè)計(jì)參數(shù);分種器劃分為等種數(shù)流場(chǎng)結(jié)構(gòu)、輸送結(jié)構(gòu)、下種結(jié)構(gòu),等種數(shù)流場(chǎng)結(jié)構(gòu)又分為聚種、分種、派種3部分,通過(guò)理論分析與流體仿真計(jì)算,對(duì)比速度大小和離散度,模擬等種數(shù)速度場(chǎng)流線圖,優(yōu)化分種蓋結(jié)構(gòu),選擇合適的氣源,設(shè)計(jì)了氣種混合均勻的分種器,提高了直播機(jī)分種的均勻性和穩(wěn)定性。試制了分種器并進(jìn)行了臺(tái)架試驗(yàn),試驗(yàn)結(jié)果與CFD仿真分析基本一致,設(shè)計(jì)的10行分種器各行之間和行內(nèi)播量變異系數(shù)分別為3.58%和4.55%,設(shè)計(jì)的20行分種器各行之間和行內(nèi)播量變異系數(shù)分別為3.91%和5.04%,能滿足不同直播機(jī)的要求。試驗(yàn)結(jié)果表明,直管輸送管增加波紋結(jié)構(gòu)有助于水稻種子向管道中央集聚;排種管的長(zhǎng)短影響分種效果,特別是行內(nèi)的穩(wěn)定性,排種管的長(zhǎng)度應(yīng)盡可能一致;分種器內(nèi)部結(jié)構(gòu)影響氣體速度場(chǎng)的分布,分種器內(nèi)外蓋形成的等距圓弧結(jié)構(gòu)和輸送管內(nèi)波紋結(jié)構(gòu)有利于分種器中氣種等種數(shù)混合流場(chǎng)的形成,使播種均勻性更好。
計(jì)算流體力學(xué)(CFD);農(nóng)業(yè)機(jī)械;氣力設(shè)備;直播機(jī);分種器;水稻
水稻是我國(guó)的主要糧食作物,2014年種植面積約3033萬(wàn)hm2,產(chǎn)量約2.07億t,分別占全國(guó)谷物種植面積的32%和總產(chǎn)的37%[1],在保障糧食安全中占有極其重要的地位,但水稻生產(chǎn)機(jī)械化率較低,特別是水稻種植環(huán)節(jié),2015年種植機(jī)械化水平約40%。近年來(lái),我國(guó)水稻直播技術(shù)[2-3]發(fā)展很快,但大都采用人工撒播,人工撒播的稻種疏密不均、水稻通風(fēng)透氣采光性差,容易感染病蟲(chóng)害[4]。由于稻種直接撒播在田面上,根系入土淺,容易倒伏。機(jī)械精量直播克服了人工撒播存在的上述問(wèn)題,是水稻直播生產(chǎn)的發(fā)展趨勢(shì)[5-6]。新疆、寧夏、黑龍江和山東等地區(qū)的水稻直播多采用旱直播,種植田塊大、面積廣、播量大,亟需研究適合高速作業(yè)、大播量的氣力集排式播種機(jī)。
氣力集排式水稻直播技術(shù)是一種根據(jù)水稻直播技術(shù)農(nóng)藝[7]要求,采用配套的氣力集排式水稻直播機(jī)具進(jìn)行播種的水稻機(jī)械化種植技術(shù),采用集中定量供種,正壓均勻分種的整體設(shè)計(jì)方案,核心部件為分種器,分種器的效果直接影響播種質(zhì)量。20世紀(jì)80年代氣力集排式播種機(jī)在美國(guó)、加拿大、澳大利亞、歐洲等國(guó)家已得到廣泛應(yīng)用[8-11],中國(guó)目前還處于試驗(yàn)階段,尚未見(jiàn)田間大規(guī)模應(yīng)用的報(bào)道[12-13],適用于我國(guó)差異眾多的稻種和復(fù)雜田間作業(yè)環(huán)境的分種器研究顯得日益迫切。國(guó)內(nèi)大多數(shù)氣力集排式播種機(jī)研究主要集中在排種器、分種器單體上,包括排種器形狀結(jié)構(gòu)的設(shè)計(jì)與試驗(yàn)[14-16]、分種器的動(dòng)力學(xué)仿真[17-18]、一階集排式排種裝置[19-20],適用作物范圍主要有小麥、大豆、玉米、牧草、油菜[21-22],在水稻種植領(lǐng)域,面向整機(jī)分種器的研究較少,對(duì)水稻分種器的分種機(jī)理研究也較少。
針對(duì)這一現(xiàn)狀,本文擬分析氣力集排式水稻分種器分種原理,試制10行與20行水稻分種器,進(jìn)行不同分種器的均勻性、穩(wěn)定性等對(duì)比試驗(yàn),以期得到適應(yīng)高速作業(yè)和大播量要求的氣力集排式水稻直播機(jī)分種器。
以氣力集排式水稻分種器為研究重點(diǎn),華南農(nóng)業(yè)大學(xué)研制成功2BDQJ-20型氣力集排式水稻直播機(jī),采用雙排種分種機(jī)構(gòu),通過(guò)機(jī)械傳動(dòng)驅(qū)動(dòng)氣源和排種器,保證分種器均勻分種,作業(yè)速度可達(dá)3.5 m/s,播種量在75~375 kg/hm2范圍內(nèi)可調(diào),大于中國(guó)水稻直播機(jī)普遍在1~1.5 m/s的作業(yè)速度。
氣力集排式直播機(jī)的排種過(guò)程可分為供種(1)、混種(2)、分種(3)和投種(4)4個(gè)階段,分別涉及中央排種器、導(dǎo)種器、分種器和排種管等關(guān)鍵零部件,如圖1所示。中央排種器將種箱中的種子定量排出,由于重力作用,種子落入導(dǎo)種器,這個(gè)過(guò)程定義為1;導(dǎo)種器通過(guò)噴射式給料原理[23]將定量供應(yīng)的種子與空氣混合形成氣種混合流,這個(gè)過(guò)程定義為2;氣種混合流通過(guò)軟管和金屬?gòu)澒茌斔偷椒址N器,經(jīng)過(guò)分種器的輸送管,進(jìn)入分種器內(nèi)外蓋形成的等距圓弧結(jié)構(gòu),氣種混合流形成等種數(shù)流場(chǎng)(equal amount flow field,EF),均勻排列的分種口在內(nèi)外壓力差作用下將氣種混合流均分,這個(gè)過(guò)程定義為3;排種管連接分種口與開(kāi)溝器,將等分的氣種混合流排入種溝,完成播種過(guò)程,這個(gè)過(guò)程定義為4。
分種器分種原理在3過(guò)程體現(xiàn),分種器輸送管內(nèi)一定質(zhì)量的種子,在風(fēng)力的作用下,由分種內(nèi)蓋與輸送管的結(jié)合處進(jìn)入等種數(shù)流場(chǎng)結(jié)構(gòu),在等種數(shù)流場(chǎng)中通過(guò)壓差均分到各分種口,實(shí)現(xiàn)分種功能,如圖2所示,箭頭的方向?yàn)闅饬鬟\(yùn)動(dòng)方向。等種數(shù)流場(chǎng)始于分種內(nèi)蓋與輸送管的連接端,終于分種口,外在結(jié)構(gòu)由分種外蓋、分種內(nèi)蓋、分種盤(pán)組成,使種子在空間上等數(shù)地向分種口運(yùn)動(dòng),同一時(shí)間每個(gè)分種口下落的種子粒數(shù)盡可能相等。流場(chǎng)指的是用歐拉法描述的流體質(zhì)點(diǎn)運(yùn)動(dòng),其流速、壓強(qiáng)等函數(shù)定義為在時(shí)間和空間點(diǎn)坐標(biāo)場(chǎng)上的流速場(chǎng)、壓強(qiáng)場(chǎng)等的統(tǒng)稱[23],等種數(shù)流場(chǎng)外在結(jié)構(gòu)是中心對(duì)稱體,在平行于分種盤(pán)的平面上,等半徑圓周上各點(diǎn)速度、壓強(qiáng)等大小相等,氣流速度場(chǎng)從始端到終端變化一致,流線與跡線[23]重合,氣流帶動(dòng)等分的種子進(jìn)入各分種口。
2.1 設(shè)計(jì)依據(jù)
根據(jù)中國(guó)各地水稻種植田塊大小和種植方式,本設(shè)計(jì)中通過(guò)1來(lái)控制播量,在2中種子混合并向分種器運(yùn)動(dòng),在4中要求每行種子播量相近、播種連續(xù)均勻,1、2、4共同形成了3的邊界條件,3過(guò)程的核心是分種器的結(jié)構(gòu)設(shè)計(jì),按照氣力集排式水稻直播機(jī)幅寬4 m,最大作業(yè)速度3.5 m/s和最大播種量375 kg/hm2的要求,確定分種器輸送氣流速度v、輸送空氣流量Q與輸送管徑,進(jìn)而設(shè)計(jì)分種器等種數(shù)流場(chǎng)結(jié)構(gòu)。
水稻種子自由懸浮速度是設(shè)計(jì)分種器的重要依據(jù),根據(jù)水稻種子的物理特性,應(yīng)用公式(1)可計(jì)算空氣中水稻種子自由懸浮速度0,m/s
式中,K為不規(guī)則形狀修正系數(shù),取1.1[24],d為水稻種子平均粒徑,m;ρ為水稻種子密度,kg/m3;取545 kg/m3;為空氣密度,kg/m3;為阻力系數(shù),取0.44[24];為重力加速度,取9.8 m/s2。經(jīng)計(jì)算,水稻種子自由懸浮速度0為6.74 m/s,根據(jù)輸送氣流速度經(jīng)驗(yàn)系數(shù)[24]可知,管路布置有彎曲時(shí),輸送氣流v應(yīng)是0的2.6~6.0倍。
據(jù)公式(2)和(3)可算出輸送空氣流量Q,式中W、W分別為單位時(shí)間輸送空氣、水稻種子質(zhì)量,kg/s;為料氣混合比,取=2.9[24],又Q=v·π2/4,可得公式(4),由此可計(jì)算出輸送管直徑為58 mm,v=38.5 m/s,Q=366.2 m3/h。
(3)
(4)
2.2 總體設(shè)計(jì)
為滿足分種過(guò)程要求,根據(jù)氣力輸送原理和已確定的參數(shù),設(shè)計(jì)的分種器結(jié)構(gòu)示意圖如圖3所示,關(guān)鍵部件為分種外蓋、分種內(nèi)蓋、分種盤(pán)和輸送管。分種盤(pán)通過(guò)法蘭與輸送軸連接,輸送管上端與分種蓋通過(guò)螺紋連接,分種外蓋與分種盤(pán)通過(guò)螺栓連接,中間墊圈密封。由于配合關(guān)系,分種外蓋的形狀尺寸決定了內(nèi)蓋與分種盤(pán)的形狀尺寸,所以設(shè)計(jì)的主要內(nèi)容為分種外蓋與輸送管。
2.3 分種蓋和等種數(shù)流場(chǎng)的設(shè)計(jì)
分種蓋包括分種內(nèi)蓋和分種外蓋2部分,外蓋由外表面1II和內(nèi)表面1I組成,內(nèi)蓋由外表面2I和內(nèi)表面2II組成,表面1I、表面2I與分種盤(pán)上表面形成等種數(shù)流場(chǎng),如圖4所示,帶箭頭紅線為速度場(chǎng)流線分布,黃色橢圓結(jié)構(gòu)代表水稻種子,表面1I上各點(diǎn)曲率半徑1i與表面2I上各點(diǎn)曲率半徑2i應(yīng)滿足公式(5),以保證氣流速度變化一致。
式中為分種外蓋內(nèi)表面1I與分種內(nèi)蓋外表面2I之間的距離,mm;為1I與2I上點(diǎn)數(shù);為自然數(shù)。在2過(guò)程中,由于導(dǎo)種器的噴射作用,種子呈不規(guī)則分布,在由輸送管進(jìn)入等種數(shù)流場(chǎng)前,要對(duì)不規(guī)則分布的種子聚攏。等種數(shù)流場(chǎng)中的EF1、EF2、EF33部分分別是中間區(qū)域、周邊區(qū)域、下種區(qū)域,分別起聚種、分種、派種的作用,如圖4所示。為了保證“EF”場(chǎng)中種子等種數(shù)地分配至各排種管,種子先在EF1中聚攏,使大部分種子聚攏到中央,在EF2中進(jìn)行流場(chǎng)導(dǎo)向分布,然后在EF3中等分到各分種口。
注:為水稻種子,↑為速度場(chǎng)流線,EF1為分種蓋水平部分流場(chǎng),EF2為分種蓋圓弧部分流場(chǎng),EF3為分種蓋垂直部分流場(chǎng),1I為分種外蓋內(nèi)表面,1II為分種外蓋外表面,2I為分種內(nèi)蓋外表面,2II為分種內(nèi)蓋內(nèi)表面。
Note:is rice seeds, ↑is velocity field flow line, EF1is the horizontal part cover flow field, EF2is the circular part cover flow field, EF3is the vertical part cover flow field, 1Iis inner surface of outer cover, 1IIis outer surface of outer cover, 2Iis outer surface of inner cover, 2IIis inner surface of inner cover.
圖4 等種數(shù)場(chǎng)水稻種子分布示意圖
Fig.4 Schematic diagram of rice distribution in equal amount flow field
2.4 分種外蓋的設(shè)計(jì)
分種器外蓋尺寸和值決定了內(nèi)蓋尺寸,現(xiàn)已知的值(據(jù)式(4),=58 mm),根據(jù)水稻種子物理尺寸,值取22 mm,下種口個(gè)數(shù)取10,下種口位于內(nèi),內(nèi)徑為20 mm,下種口下端與排種管連接。根據(jù)設(shè)計(jì)計(jì)算,分種外蓋的結(jié)構(gòu)參數(shù)如圖5所示。如果外蓋頂端設(shè)計(jì)凸型或凹型,公式(5)不能保證,所以外蓋頂端設(shè)計(jì)為水平,與輸送管輸出端平面保持水平,大小等于輸送管內(nèi)徑;分種蓋中間設(shè)計(jì)為圓弧形狀,上端壓力大,壓力向下逐漸減少,引導(dǎo)種子向下運(yùn)動(dòng);圓弧兩端連接處均為圓角過(guò)渡,圓弧連接處下端為垂直圓環(huán)結(jié)構(gòu),連接圓弧結(jié)構(gòu)與底面圓形密封板。
2.5 輸送管的設(shè)計(jì)
為使水稻種子高速集中輸入等種數(shù)流場(chǎng)中,設(shè)計(jì)的輸送管為直圓管內(nèi)壁帶圓弧凸起物的波紋輸送管,軸向斷面局部剖視圖如圖6所示,每段波紋長(zhǎng)度為12 mm,波紋中間直管長(zhǎng)度為18 mm,其余尺寸如圖6標(biāo)注所示,1個(gè)輸送管有15個(gè)波紋,輸送管總長(zhǎng)為445 mm。
3.1 函數(shù)模型的選用
據(jù)分種器水稻分種過(guò)程3,在常溫(25 ℃)標(biāo)準(zhǔn)大氣壓下,通過(guò)公式(6)計(jì)算得到的雷諾數(shù)大于臨界雷諾數(shù)Re,所以選用湍流模型。采用Solidworks 2016軟件中的Flow Simulation[25]模塊進(jìn)行計(jì)算流體動(dòng)力學(xué)(computational fluid dynamics,CFD)[26]計(jì)算,選用自帶湍流模型對(duì)不同結(jié)構(gòu)的分種器進(jìn)行速度流場(chǎng)分布對(duì)比分析,選擇湍流函數(shù)模型是因理論分析需要而假想的一種理想化模型,目的是使理論分析簡(jiǎn)化。
式中為雷諾數(shù)(無(wú)量綱);為空氣密度,kg/m3;為流體平均流速,m/s;為圓管直徑,m;為空氣黏度,Pa·s。在壓強(qiáng)為101.325 kPa、溫度為25 ℃的條件下,空氣的運(yùn)動(dòng)黏度取1.79×10-5Pa·s,高于Re(2300)時(shí)一般是湍流態(tài)[27]。
3.2 模型結(jié)構(gòu)與邊界設(shè)定
在Solidworks模型空間中建立分種器的三維模型,導(dǎo)入至Flow Simulation模塊中,將輸送管下端進(jìn)風(fēng)口和所有排種管末端出風(fēng)口封閉,創(chuàng)建蓋,邊界條件為入口速度與出口靜壓,選擇空氣作為輸入流體,加載選好的湍流函數(shù)模型,輸送管入口速度大小為38.5 m/s,分種口出口靜壓為101.325 kPa,疊加收斂,得到分種器仿真模型。
3.3 不同結(jié)構(gòu)分種器速度流場(chǎng)分布
在同樣的仿真模型條件下,設(shè)置相同的邊界條件,改變分種器的局部結(jié)構(gòu),設(shè)置3組對(duì)比分析,因素1為輸送管的內(nèi)部結(jié)構(gòu),包括帶波紋的直管和不帶波紋的直管,排種管長(zhǎng)度和分種口數(shù)一致;因素2為排種管的長(zhǎng)度,包括2種不同長(zhǎng)度,分別為1.5和2.8 m,輸送管內(nèi)部結(jié)構(gòu)和分種口數(shù)一致;因素3為分種口個(gè)數(shù),一種為10個(gè)分種口,一種為20個(gè)分種口,輸送管內(nèi)部結(jié)構(gòu)和排種管長(zhǎng)度一致,都為波紋管。通過(guò)CFD仿真得3組速度流場(chǎng)分布如圖7所示,輸送管中流場(chǎng)速度按黃色、橙色和紅色劃分為3個(gè)主要梯度,分別為41.807~45.608、45.609~49.408、49.409~53.209 m/s。
在圖7a中,輸送管為內(nèi)徑58 mm和外徑64 mm的不銹鋼直管,內(nèi)部光滑,圖7b為內(nèi)表面帶有圓弧凸起物的不銹鋼波紋管,等同于在直管上增加半徑為8 mm圓弧凸起物。直管CFD仿真計(jì)算得到直管中流場(chǎng)最大速度和最小速度分別為41.148、2.417 m/s,在EF1底部速度最大,在EF1中速度場(chǎng)呈水平形,輸送管中流場(chǎng)速度主要集中在34.206~41.807 m/s之間,梯度不明顯;波紋管中流場(chǎng)最大速度和最小速度分別為50.55、2.426 m/s,在EF1中速度場(chǎng)呈凸形,3個(gè)梯度明顯。
在圖7c中,排種管長(zhǎng)度為1.5和2.8 m,交錯(cuò)排列,各5根;在圖7d中,10行排種管長(zhǎng)度都為1.5 m,圖7c和圖7d中排種管內(nèi)徑為20 mm,外徑為25 mm。圖7c中流場(chǎng)最大速度和最小速度分別為49.518、2.818 m/s,EF2中0~11.402的速度場(chǎng)面積大于圖7d,3個(gè)梯度左右不對(duì)稱,45.609~49.408 m/s梯度下端有缺口,速度變化不均,1.5 m管中流場(chǎng)速度大于2.8 m管,49.409~53.209 m/s梯度面積小于圖7d。
圖7e為20個(gè)分種口,即播種行為20,圖7f為10個(gè)分種口,即播種行為10。20行中的流場(chǎng)最大速度和最小速度分別為50.399、2.409 m/s,排種管中流場(chǎng)速度小于圖7f,即排種管中風(fēng)量更小。
3.4 仿真結(jié)果分析
從圖7中的3組對(duì)比仿真分析可知,速度流場(chǎng)可以分為2部分,一部分為輸送管速度流場(chǎng)分布,為種子的分配提供輸送準(zhǔn)備;一部分為EF速度流場(chǎng)分布,包括EF1、EF2和EF33段分配種子。通過(guò)圖示和速度數(shù)值統(tǒng)計(jì)對(duì)比可得,排種管長(zhǎng)度相等且?guī)Рy輸送的分種器EF速度流場(chǎng)分布中,41.807~45.608、45.609~49.408、49.409~53.209 m/s速度梯度明顯,梯度之間變化均勻,與圖4中流線一致,且速度最大值最大,有利于種子的分配;由于速度差的原因,產(chǎn)生壓強(qiáng)差,使種子向中間速度最大的流場(chǎng)運(yùn)動(dòng),例如在圖7b中1點(diǎn)的種子,左邊速度場(chǎng)大于右邊速度場(chǎng),種子將由1向2移動(dòng),所以輸送管中心最大速度梯度(深紅色區(qū)域)面積越大越有利于聚攏。
通過(guò)理論計(jì)算分析、CFD仿真分析,設(shè)計(jì)了10行和20行水稻分種器,通過(guò)臺(tái)架試驗(yàn)驗(yàn)證其總體結(jié)構(gòu)的適用性和理論分析的合理性;通過(guò)分種的行間均勻性和行內(nèi)穩(wěn)定性判定分種器的分種效果。
4.1 試驗(yàn)裝置與材料
試驗(yàn)裝置采用自制的水稻分種器試驗(yàn)臺(tái),如圖8所示,該裝置主要由分種器、排種管、導(dǎo)種器、排種器、種箱、金屬?gòu)澒?、安裝架、閘閥、風(fēng)機(jī)、軟管、測(cè)量孔、減速電機(jī)等組成。試驗(yàn)時(shí),選用的風(fēng)機(jī)為380 V、5.5 kW漩渦式電動(dòng)風(fēng)機(jī),最大流量530 m3/h,大于Q,滿足設(shè)計(jì)要求,通過(guò)調(diào)節(jié)零件6控制分種器中的輸入風(fēng)量;試驗(yàn)使用的水稻種子為黃華占品種,千粒質(zhì)量為20.78 g,含水率13.6%。
為測(cè)定分種器性能,按照GB/T 9478-2005“谷物條播機(jī)試驗(yàn)方法”,通過(guò)各行之間播量變異系數(shù)測(cè)定分種的均勻性,行內(nèi)播量的變異系數(shù)大小測(cè)定分種的穩(wěn)定性。試驗(yàn)分為5組,分別標(biāo)記為1、2、3、4、5,1為波紋管分種器,10行排種管長(zhǎng)度都為1.5 m;2為直管分種器,10行排種管長(zhǎng)度都為1.5 m;3為直管分種器,5行排種管長(zhǎng)度為1.5 m,5行為2.8 m,交錯(cuò)排列;4為波紋管分種器,5行排種管長(zhǎng)度為1.5 m,5行為2.8 m,交錯(cuò)排列;5為波紋管分種器,20行排種管長(zhǎng)度都為1.5 m。排種管標(biāo)記為(=1,···,),種箱中加入300 g種子;調(diào)整減速電機(jī),保證排種器播量恒定;調(diào)節(jié)閘閥測(cè)定風(fēng)速大小,使分種器中輸入風(fēng)量為366.2 m3/h;播后對(duì)每行播量進(jìn)行測(cè)定,每次試驗(yàn)重復(fù)5次。對(duì)第行排出的種子稱質(zhì)量,取5次質(zhì)量的平均值,記為x,單位為g;按變異系數(shù)公式計(jì)算出變異系數(shù)值,如表1所示,為單個(gè)分種器整體各行的平均值。
4.3 試驗(yàn)結(jié)果與分析
表2中cv表示序號(hào)為的排種管5次重復(fù)試驗(yàn)的變異系數(shù),可說(shuō)明同一行內(nèi)播種質(zhì)量穩(wěn)定性,由表2可知,平均變異系數(shù)1<5<2<4<3,2比3平均變異系數(shù)小11.15百分點(diǎn),說(shuō)明排種管長(zhǎng)度不一致對(duì)行內(nèi)播種的穩(wěn)定性影響很大,1與4相差10.37百分點(diǎn)也能證明這一點(diǎn);3比4平均變異系數(shù)小5.36百分點(diǎn),波紋輸送管對(duì)行內(nèi)播種的穩(wěn)定性影響大,能提高分種的穩(wěn)定性,1與2相差4.58百分點(diǎn)也能證明這一點(diǎn);1與5變異系數(shù)相差不大,說(shuō)明在風(fēng)量足夠的前提下,增加播種行數(shù)對(duì)行內(nèi)播種的穩(wěn)定性影響不明顯。
表1 分種器各行播量
注:=1,···, 20;1為波紋管分種器,10行排種管長(zhǎng)度都為1.5 m;2為直管分種器,10行排種管長(zhǎng)度都為1.5 m;3為直管分種器,5行排種管長(zhǎng)度為1.5 m,5行為2.8 m,交錯(cuò)排列;4為波紋管分種器,5行排種管長(zhǎng)度為1.5 m,5行為2.8 m,交錯(cuò)排列;5為波紋管分種器,20行排種管長(zhǎng)度都為1.5 m。
Note:=1,···, 20;1is corrugated conveying pipe distributor with 10 rows spreader tube length of 1.5 m;2is straight conveying pipe distributor with 10 rows spreader tube length of 1.5 m;3is straight conveying pipe distributor with 5 rows spreader tube length of 1.5 m and 5 rows spreader tube length of 2.8 m, staggered arranged;4is corrugated conveying pipe distributor with 5 rows spreader tube length of 1.5 m and 5 rows spreader tube length of 2.8 m, staggered arranged;5is corrugated conveying pipe distributor with 20 rows spreader tube length of 1.5 m.
表2 分種器行內(nèi)播量變異系數(shù)
CFD仿真及試驗(yàn)結(jié)果表明:
1)在75~375 kg/hm2大播量的情況下,采用排種管長(zhǎng)度相等和帶波紋輸送的10行分種器可以實(shí)現(xiàn)均勻分種,行間播量變異系數(shù)為3.58%。
2)直管輸送管增加波紋結(jié)構(gòu)有助于水稻種子向管道中央集聚;排種管的長(zhǎng)短影響分種效果,特別是行內(nèi)的穩(wěn)定性,排種管的長(zhǎng)度應(yīng)盡可能一致。
防治方法:在蟲(chóng)害初期,選用1.8%阿維菌素乳油(15毫升/畝)4 000倍液,或5.7%氟氯氰菊酯乳油(30~60毫升/畝)1 000~2 000倍液,或抑食肼可濕性粉劑(60克/畝)1 000倍液等交替噴霧防治。
3)CFD仿真表明,輸送管內(nèi)部結(jié)構(gòu)影響氣體速度場(chǎng)的分布,等種數(shù)流場(chǎng)和波紋結(jié)構(gòu)有利于分種器氣種混合均勻,使播種均勻性更好;在增加播種行數(shù)的情況下,分種性能無(wú)明顯降低。
本文的CFD仿真分析只是空氣流的單相仿真,假想種子按照速度流場(chǎng)的分布規(guī)律進(jìn)行運(yùn)動(dòng),沒(méi)有考慮種子與種子之間、種子與分種器內(nèi)壁之間的碰撞等因素,這是將來(lái)的一個(gè)研究重點(diǎn)。
[1] 國(guó)家統(tǒng)計(jì)局. 年度數(shù)據(jù): 農(nóng)業(yè)主要農(nóng)作物指標(biāo)[Z]. http://data.stats.gov.cn/easyquery.htm?cn=C01, 2016-10-18.
[2] 王在滿,戴億政,王寶龍,等. 水稻機(jī)械化穴播和條播的對(duì)比研究[J]. 中國(guó)稻米,2016,22(4):19-20.
Wang Zaiman, Dai Yizheng, Wang Baolong, et al. Research on hill-drop drilling and row drilling of rice[J]. China Rice, 2016, 22(4): 19-20. (in Chinese with English abstract)
[3] 張明華,曾山,羅錫文. 水稻機(jī)械旱直播技術(shù)研究現(xiàn)狀及發(fā)展[C]//中國(guó)農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集,重慶:中國(guó)農(nóng)業(yè)工程學(xué)會(huì),2011.
Zhang Minghua, Zeng Shan, Luo Xiwen. The current status and research progresses of the rice mechanical direct seeding on dry land[C]//Proceeding of Academic Annual Meeting of Chinese Society of Agricultural Engineering, Chongqing: Chinese Society of Agricultural Engineering, 2011. (in Chinese with English abstract)
[4] 羅錫文,蔣恩臣,王在滿,等. 開(kāi)溝起壟式水稻精量穴直播機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(12):52-56.
Luo Xiwen, Jiang Enchen, Wang Zaiman, et al. Precision rice hill-drop drilling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 52-56. (in Chinese with English abstract)
[5] 曾山,湯海濤,羅錫文,等. 同步開(kāi)溝起壟施肥水稻精量旱穴直播機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):12-19.
Zeng Shan, Tang Haitao, Luo Xiwen, et al. Design and experiment of precision rice hill-drop drilling machine for dry land with synchronous fertilizing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 12-19. (in Chinese with English abstract)
[6] 張國(guó)忠,羅錫文,臧英,等. 水稻芽種氣力播種技術(shù)研究概況[C]//中國(guó)農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集,重慶:中國(guó)農(nóng)業(yè)工程學(xué)會(huì),2011.
Zhang Guozhong, Luo Xiwen, Zang Ying, et al. The pneumatic feed mechanism research overview of pre-sprouted rice seeds[C]//Proceeding of Academic Annual Meeting of Chinese Society of Agricultural Engineering, Chongqing: Chinese Society of Agricultural Engineering, 2011. (in Chinese with English abstract)
[7] 王在滿,羅錫文,唐湘如,等. 基于農(nóng)機(jī)與農(nóng)藝相結(jié)合的水稻精量穴直播技術(shù)及機(jī)具[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,31(1):91-95.
Wang Zaiman, Luo Xiwen, Tang Xiangru, et al. Precision rice hill-direct-seeding technology and machine based on the combination of agricultural machinery and agronomic technology[J]. Journal of South China Agricultural University, 2010, 31(1): 91-95. (in Chinese with English abstract)
[8] Bourges G, Medina M. Air-seeds flow analysis in a distributor head of an “air drill” Seeder[J]. Acta Horticulturae, 2013(1008): 259-264.
[9] Furuhata Masami, Chosa Tadashi, Shioya Yukiharu, et al. Developing direct seeding cultivation using an air-assisted strip seeder[J]. Jarq-Japan Agricultutal Research Quarterly, 2015, 49(3): 227-233.
[10] Manzone Marco, Paolo Marucco, Mario Tamagnone, et al. Performance evaluation of a cyclone to clean the air exiting from pneumatic seed drills during maize sowing[J]. Crop Protection, 2015, 76: 33-38.
[11] Maleki M R, Jafari J F, Raufat M H, et al. Evaluation of seed distribution uniformity of a multi-flight auger as a grain drill metering device[J]. Biosystems Engineering, 2006, 94(4): 535-543.
[12] 楊慧,劉立晶,周軍平,等. 氣流輸送式條播機(jī)現(xiàn)狀及我國(guó)應(yīng)用情況分析[J]. 農(nóng)機(jī)化研究,2013,35(12):216-220.
Yang Hui, Liu Lijing, Zhou Junping, et al. Analysis of air seed drill current situations and using situation in China[J]. Journal of Agricultural Mechanization Research, 2013, 35(12): 216-220. (in Chinese with English abstract)
[13] 張敏,吳崇友. 氣力輸送式播種機(jī)概況及我國(guó)的應(yīng)用前景分析[J]. 中國(guó)農(nóng)機(jī)化,2008(2):70-72.
Zhang Min, Wu Chongyou. The survey and the prospect in china of the pneumatic drills[J]. Journal of Chinese Agricultural Mechanization, 2008(2): 70-72. (in Chinese with English abstract)
[14] 廖慶喜,張猛,余佳佳,等. 氣力集排式油菜精量排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):30-34.
Liao Qingxi, Zhang Meng, Yu Jiajia, et al. Pneumatic centralized metering device for rape seed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 30-34. (in Chinese with English abstract)
[15] 祁兵,張東興,崔濤. 中央集排氣送式玉米精量排種設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):8-15.
Qi Bing, Zhang Dongxing, Cui Tao. Design and experiment of centralized pneumatic seed metering device for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 8-15. (in Chinese with English abstract)
[16] 史嵩. 氣壓組合孔式玉米精量排種器設(shè)計(jì)與試驗(yàn)研[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Shi Song. Design and Experimental Research of Pneumatic Maize Precision Seed-metering Device with Combined Holes[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[17] 李中華,王德成,劉貴林,等. 氣流分配式排種器CFD模擬與改進(jìn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(3):64-68.
Li Zhonghua, Wang Decheng, Liu Guilin, et al. CFD simulation and improvement of air-stream distributive metering device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(3): 64-68. (in Chinese with English abstract)
[18] 王福林,尚家杰,劉宏新,等. EDEM顆粒體仿真技術(shù)在排種機(jī)構(gòu)研究上的應(yīng)用[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,44(2):110-114.
Wang Fulin, Shang Jiajie, Liu Hongxin, et al. Application of EDEM particles simulation technology on seed-metering device research[J]. Journal of Northeast Agricultural University, 2013, 44(2): 110-114. (in Chinese with English abstract)
[19] 常金麗,張曉輝. 2BQ-10型氣流一階集排式排種系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):136-141.
Chang Jinli, Zhang Xiaohui. Design and test of one-step centralized type pneumatic seeding system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 136-141. (in Chinese with English abstract)
[20] 曹成茂,王安民,秦寬,等. 一器多行環(huán)槽推送式排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(4):128-134.
Cao Chengmao, Wang Anmin, Qin Kuan, et al. Multi-line metering device with ring groove push movement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 128-134. (in Chinese with English abstract)
[21] 劉立晶,劉忠軍,楊學(xué)軍,等. 氣流輸送式小麥免耕播種機(jī)設(shè)計(jì)和試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):54-57.
Liu Lijing, Liu Zhongjun, Yang Xuejun, et al. Design and test on pneumatic no-till wheat planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 54-57. (in Chinese with English abstract)
[22] Koller A, Wan Y, Miller E, et al. Test method for precision seed simulation systems[J]. Transactions of the ASABE, 2014, 57(5): 1283-1290.
[23] 丁祖榮. 工程流體力學(xué)[M]. 北京:機(jī)械工業(yè)出版社,2013.
[24] 楊倫,謝一華. 氣力輸送工程[M]. 北京:機(jī)械工業(yè)出版社,2006.
[25] 陳超祥,胡其登. Solidworks Flow simulation教程[M]. 北京:機(jī)械工業(yè)出版社,2015.
[26] 王福軍. 計(jì)算流體動(dòng)力學(xué)分析: CFD軟件原理與應(yīng)[M]. 北京:清華大學(xué)出版社,2004.
[27] 劉鶴年. 流體力學(xué)[M]. 北京:中國(guó)建筑工業(yè)出版社,2004.
Design and experiment of rice pneumatic centralized seed distributor
Dai Yizheng1,2,3, Luo Xiwen1,2※, Wang Zaiman1,2, Zeng Shan1,2, Zang Ying1,2, Yang Wenwu1,2, Zhang Minghua1,2, Wang Baolong1,2, Xing He1,2
(1.,,510642,; 2.,,,510642,; 3.,330044,)
Aiming at the requirements of high speed and large sowing quantity for rice direct seeding, a kind of rice pneumatic centralized seed distributor, including outer cover, inner cover, metering disc, gasket, mounting holes, distribution port, conveying pipe, was designed based on rice pneumatic centralized drilling machine. The distribution mechanism of pneumatic centralized seed distributor was studied according to the adaptability, working speed and seeding quantity adjustment of the drilling machine; the adaptability, uniformity and stability of pneumatic centralized seed distributor were analyzed; the computational fluid dynamics (CFD) simulation with Solidworks Flow software was carried out according to the physical characteristics of rice seeds; the distribution of velocity flow field of the seed distributors with different structure was compared, which contained 3 groups of comparative analysis: Factor 1 was for the internal structure of the conveying pipe, including the corrugated straight pipe and straight pipe without ripple, in which the spreader tube length and distribution port number were the same; Factor 2 was for the length of spreader tube, with 2 lengths of 1.5 and 2.8 m, in which the internal structure of conveying pipe and distribution port number were the same; Factor 3 was for the distribution port number, and one was 10 and the other was 20, in which the internal structure of conveying pipe and spreader tube length were the same. The optimal equal amount flow field (EF) was obtained, whose structure was the central symmetric body, with the velocity and pressure magnitude being equal for each point on the circumference with equal radius; the changes of air velocity flow field were consistent from the beginning to the end, the flow line and the track were coincident, and the seed distributor design parameters were obtained; the seed distributor contained the EF structure, the transportation structure and the spreading structure. And the EF structure was divided into 3 parts: EF1(the horizontal part of flow field of the cover), EF2(the circular part of flow field of the cover), and EF3(the vertical part of flow field of the cover), which were for gathering seeds, dividing seeds and sending seeds, respectively. The structure of the outer cover was optimized through the theoretical analysis and fluid simulation, the velocity magnitude and the dispersion of equal amount flow field were compared, the flow line of EF velocity field was simulated, the proper air source was selected, a seed distributor with homogeneous mixture for air and seeds was designed, and the distribution uniformity and stability of drilling machine were improved. Platform experiment of seed distributor was carried out, and the experimental results were in accord with the CFD simulation analysis. The coefficients of variation of the seeding quantity between rows and intra-row for the 10-row seed distributor, which had the same spreader tubes and corrugated pipe for each row, were 3.58% and 4.55% respectively, and that for the 20-row seed distributor, which had the same spreader tubes and corrugated pipe for each row, were 3.91% and 5.04% respectively, which could meet the requirements of different drilling machines. The CFD and experiment results show that the adding of corrugated structure in the straight pipe can help the rice seeds gathering in the center of the pipe; the length of spreader tubes will influence the seed distribution effect, and therefore especially the intra-row stability, and the length of the seeding pipe should be as uniform as possible; the internal structure of the pipe affects the distribution of the velocity flow; the equidistant circular arc structure formed by the inner and outer covers and the corrugated structure in the conveying pipe are beneficial to the formation of the air and seeds mixed equal amount flow field, which makes the seeding uniformity better.
computational fluid dynamics (CFD); agricultural machinery; pneumatic equipment; drilling machine; distributor; rice
10.11975/j.issn.1002-6819.2016.24.005
S223.25
A
1002-6819(2016)-24-0036-07
2016-11-20
2016-12-12
公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201203059);948計(jì)劃項(xiàng)目(2011-G18(2)); 863計(jì)劃項(xiàng)目(2012AA10A501-2)
戴億政,男,江西南昌人,工程師,博士生,主要從事農(nóng)業(yè)生產(chǎn)機(jī)械化研究,廣州華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,510642。Email:nc_vip@163.com
羅錫文,男,湖南株洲人,中國(guó)工程院院士,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機(jī)械化研究,廣州華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,510642。Email:xwluo@scau.edu.cn