• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    2017-01-07 04:18:00LIUWeifengYANGYongzhenLIUXuguangXUBingshe
    新型炭材料 2016年6期
    關(guān)鍵詞:旭光聚苯胺理工大學(xué)

    LIU Wei-feng, YANG Yong-zhen, LIU Xu-guang, XU Bing-she

    (1.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology),Ministry of Education, Taiyuan030024, China;2.Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan030024, China;3.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, China)

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    LIU Wei-feng1,2, YANG Yong-zhen1,2, LIU Xu-guang1,3, XU Bing-she1,2

    (1.KeyLaboratoryofInterfaceScienceandEngineeringinAdvancedMaterials(TaiyuanUniversityofTechnology),MinistryofEducation,Taiyuan030024,China;2.ResearchCenteronAdvancedMaterialsScienceandTechnology,TaiyuanUniversityofTechnology,Taiyuan030024,China;3.CollegeofChemistryandChemicalEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China)

    A polyaniline-carbon microsphere (PANI-CMS) hybrid was prepared by an electrochemical deposition method and used as an electrode for supercapacitors. Field emission scanning electron microscopy and Fourier transform infra-red spectroscopy were used to characterize its morphology and structure. The supercapacitive performance of the hybrid was investigated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy and cycling tests. Results indicate that polyaniline is uniformly coated on the outer surfaces of the CMSs by the electrochemical deposition. The hybrid has a specific capacitance of 206 F·g-1at a current density of 1 A·g-1. It has a higher specific capacitance and more stable cycle performance than PANI, which is ascribed to a synergistic effect between the PANI and the CMSs.

    Carbon microspheres; Polyaniline; Electrochemical co-deposition; Supercapacitor

    1 Introduction

    Supercapacitor as a new environment-friendly electrochemical energy storage device, has attracted growing attentions owing to its wide range of application in hybrid electric vehicles, mobile electronic devices, backup power sources for computer memory, etc.[1,2]. As electrode materials for supercapacitor, conducting polymers are recognized as typical representatives because of their unique properties, such as fast charge/discharge kinetics, low cost, mild synthesis condition and suitable morphology. In the series of the conducting polymers, polyaniline (PANI) has been considered as one of the most promising electrode materials for supercapacitors because of its easy synthesis, remarkable environmental stability, simplicity in doping, high electrochemical activity and low cost[3-6]. However, irregular granular or flake PANI films obtained by the conventional polymerization methods show poor cycle stability compared with carbon-based electrodes because the redox sites in its polymer backbone are not sufficiently stable and the backbone can be destroyed within a limited number of charge/discharge cycles. Recently, some researchers used carbons as substrate materials to prepare composites to improve the cycle life of PANI, and there is a number of literature on PANI/carbon composite electrodes such as PANI with activated carbon[7], carbon nanotubes[8], carbon fibers[9]and graphene[10]. For example, Zhu et al.[11]synthesized a PANI-MWCNT hybrid with a capacitance of 515 F·g-1compared to 273 F·g-1of pure PANI and a high cycling stability (below 10% capacity loss after 1 000 cycles). Feng et al.[12]reported a graphene-PANI hybrid prepared by the electrochemical reduction method with a high specific capacitance of 640 F·g-1with a capacitance retention of 90% after 1 000 charge/discharge cycles.

    Although above mentioned PANI-carbon material hybrids have improved electrochemical properties[13,14], the difficulties in the preparation of carbon materials (graphene, carbon nanotubes, or carbon nanofibers) in large scale hinder their industrial applications. Among various carbon materials, carbon miscrospheres (CMSs), with fullerenes-like cage structures composed of fairly concentric graphitic shells, have great potential application in many fields such as reinforcing agents, lubrication, and the support of surface molecularly imprinted polymer[15,16]. What is more, CMSs can be prepared continuously by a simple chemical vapor deposition method. However, there are few reports about CMSs as a electrode material for supercapactors. The combination of conducting PANI with CMSs would be an effective way to improve the capacitance and cycling stability of PANI. Wu et al.[5]prepared a PANI-activated mesocarbon microsbead hybrid by an in situ chemical oxidation polymerization method. The hybrid possessed both high specific capacitance and excellent cycle stability. The specific capacitance stabilizes nearly at a fixed value (110.21 F·g-1) at a current density of 250 mA·g-1. Based on the PANI-activated mesocarbon microsbead hybrid, Wu et al.[7]synthesized the nitrogen-enriched carbon materials by carbonization and HNO3treatment, and the specific capacitance was 385 F·g-1at a current density of 1 A·g-1in 6 M KOH electrolyte.

    Herein, the water-soluble CMSs with a high specific surface area were obtained by a combination of acid-oxidation and heat-treatment[15,17]. PANI-CMS hybrid was synthesized through a one-step electrochemical deposition method in H2SO4solution. The physical and electrochemical properties of the PANI-CMS hybrid were studied.

    2 Experimental

    2.1 Instruments and Materials

    All chemicals were of analytical grade and all solutions were prepared using deionized water. CMSs (~350 nm in diameter) were synthesized by chemical vapor deposition. Aniline was distilled under reduced pressure before use and all other chemical reagents were used as received. Electrochemical experiments were conducted at 25 ℃ on a VMP3 Potentiostat (Princeton, USA) controlled with an EC-Lab software. A standard three-electrode system was used for preparation and characterization of the PANI-CMS hybrid. The hybrid film and platinum plate (10 mm × 10 mm × 0.2 mm) served as the working electrode and the counter electrode, respectively. A saturated calomel electrode (SCE) was used as the reference electrode and all potentials reported herein are referenced to SCE. The morphologies and structures of the products were characterized by field emission scanning electron microscopy (FESEM; JSM-6700F, operated at 10 kV) and Fourier transformation infrared spectroscopy (FTIR; FTS-165).

    2.2 Preparation of the PANI-CMS hybrid

    CMSs (0.5 g) were dispersed in an acid mixture (120 mL, 96 wt% H2SO4and 65 wt% HNO3in volume ratio 3∶1) in a flask under ultrasonication for 20 min. To increase the specific surface area, heat-treatment was conducted on the acid-treated CMSs in temperature ranging from 25 ℃ to 800 ℃ at a heating rate of 20 ℃/min in Ar atmosphere. The specific surface area increased to 179 m2·g-1from 9 m2·g-1[17]. Then, the obtained CMSs (20 mg) was added into a mixed solution (20 mL, 0.1 M aniline and 0.5 M H2SO4), and the mixture was sonicated for another 10 min. The PANI-CMS hybrid was electrochemically prepared in the mixed aqueous solution using potentiost at method at 0.9 V for 10 min. The deposition of PANI on CMSs was performed at 25 ℃ under static conditions.

    2.3 Electrochemical measurement

    Electrochemical performance was determined mainly by the cyclic voltammetry (CV) and galvanostatic charge/discharge in a 0.5 M H2SO4aqueous solution, where the three electrode system was equipped with a platinum plate as a counter electrode and a saturated calomel electrode (SCE) as a reference electrode. The PANI-CMS hybrid on the platinum plate was used as the working electrode. Electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range from 105to 0.01 Hz at open circuit potential with an alternating perturbation of 5 mV. Galvanostatic charge/discharge curves were measured between 0 and 0.6 V at different current densities (1, 5, 10 and 20 A·g-1). Galvanostatic cycling was performed between 0 and 0.6 V at a current density of 5 A·g-1for 2 000 times.

    3 Results and discussion

    3.1 Electrosynthesis of PANI-CMS hybrid

    The formation of the PANI-CMS hybrid is summarized in Fig. 1. There were oxygen-enriched (e.g. carboxyl) functionalities on the surfaces of CMSs as a result of the acid-oxidation. These functional groups acted as anchor sites and enabled the subsequent electrochemical polymerization of PANI on the surfaces of CMSs. Meanwhile, the π-π electron interaction between the CMSs and the aniline was beneficial to the polymerization of aniline on the surfaces of CMSs. Then, the PANI would gradually grow along the initial nuclei of PANI and extend along CMSs to form a network structure.

    Fig. 1 A schematic representation of the formation of the PANI-CMS hybrid.

    3.2 Structural characterization

    Fig. 2 shows the FESEM images of PANI, the PANI-CMS hybrid and CMSs.

    Fig. 2 FESEM images of (a, b) PANI, (c, d, e) PANI-CMS hybrid and (f) CMSs.

    It can be seen that the PANI film (Fig. 2a and b) was flat and smooth. Besides, there were some holes evenly distributed on the surface of PANI film. Unlike the dense PANI film, it is obviously observed that the PANI-CMS hybrid (Fig. 2c, d and e) had a uniform network structure, and CMSs were with a good spherical shape. Compared with the acid-treated CMSs (Fig. 2f), the surfaces of the PANI-CMS hybrid became rough, indicating that the CMSs had been coated with PANI. The network structure caused by the CMSs is favorable to improve the electrochemical properties of the hybrid.

    Fig. 3 FT-IR spectra of (a) CMSs, (b) PANI and (c) PANI-CMS hybrid.

    3.3 Electrochemical characterization

    To evaluate the electrochemical characteristics of the PANI-CMS hybrid, the CV curves in 0.5 M H2SO4electrolyte at different scan rates were recorded at the potential window of -0.2- 0.6 V versus SCE (Fig. 4).

    Fig. 4 Cyclic voltammograms of (a) PANI and (b) PANI-CMS hybrid.

    Notably, it can be seen that because of the existence of polarization, a positive shift of oxidation peaks and a negative shift of reduction peaks were observed with the increase of the scan rate. Also, the curve shape is steady, indicating the good electrochemical stability of the electrode material. The two couples (at ca. 0/0.2 and 0.4/0.5 V) of apparent redox peaks were attributed to the redox transition of PANI between a semiconducting state (leucoemeraldine form) and a conducting state (polaronic emeraldine form) and the emeraldine-pernigraniline transformation. In addition, the PANI-CMS hybrid electrode exhibited a higher current value and more obvious redox peaks compared with PANI under the same conditions. The results reveal that the electroactivity of PANI was effectively improved by the introduction of CMSs during the quick charge/discharge process.

    For further understanding electrochemical behavior of the PANI-CMS hybrid, the galvanostatic charge/discharge measurements at different current densities within a potential window (-0.2- 0.6 V vs. SCE) were carried out, and the results are shown in Fig. 5. As can be seen, the charge/discharge curves of PANI and the PANI-CMS hybrid were almost linear and presented a typical symmetrical triangle shape, indicating that the hybrid had a good double-layer capacitive behavior[18,19]. Besides, it can be noted that the discharge time increased distinctly with decreasing current density, the reason is that the electrolyte ions could not penetrate well into the inner of active materials as a result of low diffusion at large current density. Although the charge/discharge curves of PANI are similar to those of the PANI-CMS hybrid, but the latter would have much longer charge/discharge duration and larger charge storage capacity than the former.

    Fig. 5 Galvanostatic charge/discharge curves of (a) PANI and (b) PANI-CMS hybrid.

    The specific capacitance (Cs) values may be calculated from the charging and discharging curves according toCs=(I·Δt)/(ΔV·m), whereIis the discharge current,Δtis the discharge time,ΔVis the potential drop in the discharge process (in our experimentsΔV=0.6 V), and m is the mass of active material. Specific capacitances increased from 146 to 206 F·g-1with current densities from 1 to 20 A·g-1for the PANI-CMS hybrid, which were higher than those of PANI (88-135 F·g-1). The highCsof the PANI-CMS hybrid may be attributed to the uniform coating of PANI around CMSs, which could help to provide a large electrolyte-accessible surface area to improve utilization of PANI for redox reactions. Besides, electrical conductivity was increased with the introduction of CMSs, resulting in a increased specific capacitance. In addition, with the increase of current density, the PANI-CMS hybrid has only a 29%Csreduction from 1 to 20 A·g-1, which is less than that of PANI (35%). It suggests that the hybrid exhibited a better electrochemical stability. The capacitances of the PANI-CMS hybrid are even higher than those of previously reported graphene/PANI composite[20]. The reason is that a stable structure was formed by the chemical linking of PANI and CMSs, and CMSs provide a good framework for the hybrid. These results support the formation mechanism of the PANI-CMS hybrid proposed in Fig. 1, and are consistent with the structural characterization (Fig. 2).

    The Nyquist plots of PANI and the PANI-CMS hybrid are demonstrated in Fig. 6. The electrochemical resistances of PANI and the PANI-CMS hybrid electrodes were small, whereas the electrochemical resistance of the pure PANI was larger than that of the hybrid, which may result in the excellent capacitive behaviors of the hybrid. In addition, these plots did not show semicircle regions, probably due to the low faradaic resistances of these films.

    Fig. 6 Nyquist diagrams for the PANI-CMS hybrid and PANI.

    The lack of stability of the capacitors based on conducting polymer films (especially PANI) during long-term charge/discharge cycling is one of their most fatal deficiencies. As shown in Fig. 7, the pure PANI lost 28% (from 129 to 93 F·g-1) of its capacitance after 2 000 charging/discharging cycles at a current density of 5 A·g-1. However, under the same conditions, the capacitance of the PANI-CMS hybrid decreased only 21% (from 192 to 151 F·g-1). In addition, the capacitance of the PANI-CMS hybrid maintained a good stability after 500 cycles while the capacitance for PANI electrode showed a decreasing trend. The enhanced specific capacitance is due to the synergistic effect between PANI and CMSs. On one hand, CMSs undertake some mechanical deformation in the redox process of the PANI-CMS hybrid, which avoids destroying the electrode material and thus benefits a better stability. On the other hand, the pseudocapacitance of PANI in the hybrid film is enhanced by the highly conductive CMSs. The results indicate that the high stability of the PANI-CMS hybrid film and its potential prospect as an electrode active material for long-term supercapacitor applications.

    Fig. 7 Variations of the capacitance with cycle number for PAN and PANI/CMSs.

    4 Conclusions

    A novel PANI-CMS hybrid was prepared by electrochemical deposition method and its supercapacitive performance was systematically investigated. The PANI was grown on the external surfaces of CMSs. And the network structure was formed for the PANI-CMS hybrid. A drastically enhanced gravimetric capacitance of the PANI-CMS hybrid compared with PANI was detected in H2SO4aqueous solution, which could be ascribed to the synergistic effect between CMSs and PANI. A maximum specific capacitance of 206 F·g-1was achieved at a current density of 1 A·g-1, which was much higher than that of PANI at the same current density. Compared with PANI, the PANI-CMS hybrid possessed both a high specific capacitance and excellent cycle stability. The PANI-CMS hybrid is promising for supercapacitor applications.

    [1] Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. J Power Sources, 2011, 196: 7835-7840.

    [2] Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2: 69-75.

    [3] WU Ming-bo, LI Ling-yan, LIU Jun, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.

    [4] Liu W X, Liu N, Song H H, et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors[J]. New Carbon Materials, 2011, 26: 217-223.

    [5] Yan Y F, Cheng Q L, Zhu Z J, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes[J]. J Power Sources, 2013, 240: 544-550.

    [6] Wang Q, Li J L, Gao F, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials, 2008, 23: 275-280.

    [7] Wu C, Wang X Y, Ju B W, et al. Supercapacitive performance of nitrogen-enriched carbons from carbonization of polyaniline/activated mesocarbon microbeads[J]. J Power Sources, 2013, 227: 1-7.

    [8] Yoon S B, Yoon E H, Kim K B. Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications[J]. J Power Sources, 2011, 196: 10791-10797.

    [9] Bal Sydulu S, Palaniappan S, Srinivas P. Nano fiber polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor[J]. Electrochim Acta, 2013, 95: 251-259.

    [10] Li J, Xie H Q, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. J Power Sources, 2011, 196: 10775-10781.

    [11] Zhu Z Z, Wang G C, Sun M Q, et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications[J]. Electrochim Acta, 2011, 56: 1366-1372.

    [12] Feng X M, Li R M, Ma Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Adv Funct Mater, 2011, 21: 2989-2996.

    [13] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38: 2520-2531.

    [14] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. J Power Source, 2006, 157: 11-27.

    [15] Liu W F, Zhao H J, Yang Y Z, et al. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer[J]. Appl Surf Sci, 2013, 277: 146-154.

    [16] Yang Y Z, Zhang Y, Li S, et al. Grafting molecularly imprinted poly( 2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres[J]. Appl Surf Sci, 2012, 258: 6441-6450.

    [17] Liu W F, Yang Y Z, Luan C H, et al. Thermal stability and surface chemistry evolution of oxidized carbon microspheres[J]. Fullerenes Nanotubes Carbon Nanostruct, 2014, 22, 7: 670-678.

    [18] Chen S, Zhu J W, Wu X D, et al. Graphene oxide-MnO2nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4: 2822-2830.

    [19] An H F, Wang Y, Wang X Y, et al. Polypyrrole/carbon aerogel composite materials for supercapacitor[J]. J Power Sources, 2010, 195: 6964-6969.

    [20] Li Z F, Zhang H Y, Liu Q, et al. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5: 2685-2691.

    1007-8827(2016)06-0594-06

    聚苯胺-炭微球復(fù)合材料的制備及其電化學(xué)性能

    劉偉峰1,2, 楊永珍1,2, 劉旭光1,3, 許并社1,2

    (1.新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室(太原理工大學(xué)),山西 太原030024;2.太原理工大學(xué) 新材料工程技術(shù)研究中心,山西 太原030024;3.太原理工大學(xué) 化學(xué)化工學(xué)院,山西 太原030024)

    通過電化學(xué)沉積法制備得到聚苯胺/炭微球(PANI/CMS)復(fù)合電極材料,通過場發(fā)射掃描電子顯微鏡和紅外光譜對PANI/CMS復(fù)合材料進(jìn)行形貌和結(jié)構(gòu)表征。并采用循環(huán)伏安、恒電流充放電、電化學(xué)阻抗譜及循環(huán)壽命測試等技術(shù)考察其電化學(xué)行為。結(jié)果表明:PANI均勻包覆于CMSs表面;在電流密度為1 A·g-1時(shí),復(fù)合材料的比電容達(dá)到206 F·g-1;PANI/CMS復(fù)合材料表現(xiàn)出優(yōu)異的電化學(xué)穩(wěn)定性。說明PANI/CMS復(fù)合材料有望作為電極材料用于超級電容器。

    炭微球; 聚苯胺; 電化學(xué)聚合; 超級電容器

    TB332

    A

    國家自然科學(xué)基金(21176169,51152001);國家國際科技合作專項(xiàng)項(xiàng)目(2012DFR50460);山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)(2015013002-10);山西省自然科學(xué)青年基金(201601D021043);太原理工大學(xué)?;?2014TD015).

    劉旭光,教授,博士生導(dǎo)師. E-mail: liuxuguang@tyut.edu.cn; 楊永珍,教授,博士生導(dǎo)師. E-mail: yyztyut@126.com

    劉偉峰,講師. E-mail: lwf061586@yeah.net

    Foundationitems: National Natural Science Foundation of China (21176169, 51152001); International Science & Technology Cooperation Program of China (2012DFR50460); Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10); Natural Science Foundation of Shanxi Province (201601D021043); Special/Youth Foundation of Taiyuan University of Technology (2014TD015).

    LIU Xu-guang, Ph. D., Professor. E-mail: liuxuguang@tyut.edu.cn; YANG Yong-zhen, Ph. D., Professor. E-mail: yyztyut@126.com.

    Authorintroduction: LIU Wei-feng, Lecturer. E-mail: lwf061586@yeah.net

    10.1016/S1872-5805(16)60035-5

    Receiveddate: 2016-07-26;Reviseddate: 2016-10-29

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    旭光聚苯胺理工大學(xué)
    孫旭光
    昆明理工大學(xué)
    董旭光永濟(jì)調(diào)研農(nóng)牧產(chǎn)業(yè)項(xiàng)目
    城市軌道交通供電系統(tǒng)及電力技術(shù)探析
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
    中國塑料(2015年7期)2015-10-14 01:02:34
    聚苯胺復(fù)合材料研究進(jìn)展
    中國塑料(2014年11期)2014-10-17 03:07:18
    亚洲精品自拍成人| 精品国产国语对白av| 丰满饥渴人妻一区二区三| 又黄又爽又刺激的免费视频.| 亚洲久久久国产精品| 欧美精品一区二区大全| 中国三级夫妇交换| 亚洲国产最新在线播放| 一个人免费看片子| 欧美三级亚洲精品| av免费在线看不卡| 美女内射精品一级片tv| 中文字幕免费在线视频6| 亚洲性久久影院| 亚洲精品aⅴ在线观看| 日日撸夜夜添| av不卡在线播放| 新久久久久国产一级毛片| 国产精品国产av在线观看| 人妻夜夜爽99麻豆av| 国产成人免费观看mmmm| 一本一本综合久久| 免费高清在线观看视频在线观看| 精品久久国产蜜桃| 久久精品国产亚洲网站| 麻豆成人av视频| 最新的欧美精品一区二区| 国产亚洲欧美精品永久| 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线 | 涩涩av久久男人的天堂| 肉色欧美久久久久久久蜜桃| 国产一区亚洲一区在线观看| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 久久久久久久久久久免费av| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 日韩熟女老妇一区二区性免费视频| av免费观看日本| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 国产午夜精品一二区理论片| 国产精品成人在线| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 免费观看在线日韩| 男女高潮啪啪啪动态图| 999精品在线视频| 色5月婷婷丁香| 一区二区三区精品91| 国产高清国产精品国产三级| 999精品在线视频| 免费看光身美女| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 在线观看一区二区三区激情| 91午夜精品亚洲一区二区三区| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 只有这里有精品99| 亚洲av电影在线观看一区二区三区| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美 | 99久久精品国产国产毛片| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 国产精品无大码| 人人澡人人妻人| 久久精品久久久久久久性| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产免费又黄又爽又色| 满18在线观看网站| 一级a做视频免费观看| 国产黄色视频一区二区在线观看| 欧美激情国产日韩精品一区| 99热国产这里只有精品6| 一二三四中文在线观看免费高清| 免费少妇av软件| 国产女主播在线喷水免费视频网站| 2018国产大陆天天弄谢| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 亚洲精品日韩av片在线观看| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 18在线观看网站| 久久综合国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃 | 最近最新中文字幕免费大全7| 国产在视频线精品| 欧美变态另类bdsm刘玥| 3wmmmm亚洲av在线观看| 亚洲四区av| 欧美一级a爱片免费观看看| 国产免费一级a男人的天堂| 色哟哟·www| 99热全是精品| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 亚洲国产精品999| 国产 一区精品| 亚洲,一卡二卡三卡| 欧美亚洲日本最大视频资源| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 天堂俺去俺来也www色官网| 免费看光身美女| 草草在线视频免费看| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 午夜av观看不卡| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 五月玫瑰六月丁香| 久久精品夜色国产| 免费高清在线观看日韩| 精品久久国产蜜桃| 美女视频免费永久观看网站| 性高湖久久久久久久久免费观看| 九色成人免费人妻av| 国产精品国产三级国产专区5o| 国产欧美亚洲国产| 大片电影免费在线观看免费| 国产乱来视频区| 伊人久久精品亚洲午夜| 桃花免费在线播放| 性色av一级| 岛国毛片在线播放| 午夜久久久在线观看| 国产亚洲一区二区精品| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| av有码第一页| 国产精品免费大片| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 九色成人免费人妻av| 欧美3d第一页| 亚洲av日韩在线播放| 久久影院123| 久久久久久人妻| 日本黄大片高清| 搡老乐熟女国产| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 自线自在国产av| 两个人的视频大全免费| 亚洲精品av麻豆狂野| 乱码一卡2卡4卡精品| 一级,二级,三级黄色视频| 免费观看性生交大片5| 国产亚洲精品第一综合不卡 | 欧美另类一区| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 亚洲丝袜综合中文字幕| 日韩伦理黄色片| 在现免费观看毛片| 伦精品一区二区三区| 久久久久久久久大av| 九色亚洲精品在线播放| 国产欧美亚洲国产| 午夜激情久久久久久久| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 汤姆久久久久久久影院中文字幕| 插阴视频在线观看视频| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| a级毛片黄视频| 日本黄色日本黄色录像| 精品久久国产蜜桃| 乱码一卡2卡4卡精品| 国产极品天堂在线| 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 在线播放无遮挡| 国产一区二区在线观看av| 人妻少妇偷人精品九色| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 涩涩av久久男人的天堂| 美女主播在线视频| 久久久久国产精品人妻一区二区| 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图 | 哪个播放器可以免费观看大片| 久久国内精品自在自线图片| 精品酒店卫生间| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| 男女边摸边吃奶| 好男人视频免费观看在线| 久久久欧美国产精品| 日韩制服骚丝袜av| 成人二区视频| 日韩人妻高清精品专区| 夜夜骑夜夜射夜夜干| 亚洲国产精品999| 日韩三级伦理在线观看| 如何舔出高潮| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 人妻制服诱惑在线中文字幕| 成人18禁高潮啪啪吃奶动态图 | 人人妻人人澡人人看| a 毛片基地| 夫妻性生交免费视频一级片| 自线自在国产av| 国产女主播在线喷水免费视频网站| 亚洲色图综合在线观看| 少妇被粗大的猛进出69影院 | 免费av中文字幕在线| 国产深夜福利视频在线观看| 国产熟女午夜一区二区三区 | 男人操女人黄网站| 亚洲人与动物交配视频| 国产av精品麻豆| 青春草亚洲视频在线观看| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 我要看黄色一级片免费的| 国产精品99久久久久久久久| 日本猛色少妇xxxxx猛交久久| 午夜精品国产一区二区电影| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 国产成人freesex在线| 色哟哟·www| 亚洲少妇的诱惑av| 欧美日韩在线观看h| 在线 av 中文字幕| 成年人免费黄色播放视频| 有码 亚洲区| 亚洲精品一区蜜桃| 成人国产麻豆网| 少妇 在线观看| 精品国产露脸久久av麻豆| xxxhd国产人妻xxx| 亚洲无线观看免费| 国产视频首页在线观看| 欧美精品高潮呻吟av久久| 国产一区二区在线观看日韩| 免费看av在线观看网站| 18在线观看网站| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 在线观看国产h片| 日本欧美视频一区| 色吧在线观看| 久久精品国产鲁丝片午夜精品| 午夜av观看不卡| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 在线观看美女被高潮喷水网站| 美女中出高潮动态图| 久久久久久久久大av| 久热久热在线精品观看| 亚洲精品自拍成人| 热99国产精品久久久久久7| 国产免费现黄频在线看| 亚洲,一卡二卡三卡| a级片在线免费高清观看视频| 大码成人一级视频| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| 亚洲综合精品二区| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 久久精品国产亚洲网站| 久久国产精品大桥未久av| 中文字幕最新亚洲高清| 人妻 亚洲 视频| 黑人高潮一二区| 国产在线一区二区三区精| 日本色播在线视频| 婷婷成人精品国产| 制服诱惑二区| 麻豆精品久久久久久蜜桃| 欧美精品一区二区大全| 久久久久精品性色| 精品熟女少妇av免费看| 一本久久精品| 中文字幕人妻丝袜制服| 国产成人a∨麻豆精品| 国产毛片在线视频| 青青草视频在线视频观看| av视频免费观看在线观看| 亚洲精品色激情综合| 免费黄网站久久成人精品| 亚洲天堂av无毛| a级毛色黄片| 国产永久视频网站| a 毛片基地| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| 亚洲人成77777在线视频| 高清不卡的av网站| www.av在线官网国产| 免费大片18禁| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡 | 我的女老师完整版在线观看| 丝袜喷水一区| 五月玫瑰六月丁香| 欧美精品高潮呻吟av久久| 一级毛片 在线播放| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 国产精品久久久久久精品古装| 亚洲精品亚洲一区二区| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| 久久久久精品性色| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 免费观看在线日韩| 国内精品宾馆在线| 男女免费视频国产| av不卡在线播放| av.在线天堂| av电影中文网址| 亚洲经典国产精华液单| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 热re99久久国产66热| 国产欧美亚洲国产| 丝袜美足系列| 全区人妻精品视频| 女性被躁到高潮视频| 大话2 男鬼变身卡| 国产片特级美女逼逼视频| 寂寞人妻少妇视频99o| 美女cb高潮喷水在线观看| 国产免费现黄频在线看| 性色avwww在线观看| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 日本黄大片高清| 日韩亚洲欧美综合| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 午夜福利在线观看免费完整高清在| 婷婷色综合www| 熟女电影av网| 精品一区二区三区视频在线| 91午夜精品亚洲一区二区三区| 九色亚洲精品在线播放| 只有这里有精品99| 晚上一个人看的免费电影| 国产一区二区在线观看日韩| 亚洲人成网站在线播| 少妇人妻 视频| 国产在线一区二区三区精| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 午夜免费观看性视频| 国产精品欧美亚洲77777| 热99久久久久精品小说推荐| 观看美女的网站| 欧美日本中文国产一区发布| 午夜福利视频精品| 人体艺术视频欧美日本| 久久久久网色| 18在线观看网站| 在线观看www视频免费| 国产一区二区三区av在线| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 天天影视国产精品| 黑人猛操日本美女一级片| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 亚洲经典国产精华液单| 国内精品宾馆在线| 亚洲精品日韩在线中文字幕| 美女视频免费永久观看网站| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 极品人妻少妇av视频| 丝袜喷水一区| 欧美另类一区| 国产探花极品一区二区| 大片免费播放器 马上看| 人体艺术视频欧美日本| 亚洲欧美中文字幕日韩二区| 免费av不卡在线播放| 好男人视频免费观看在线| 你懂的网址亚洲精品在线观看| 日韩亚洲欧美综合| 国产极品天堂在线| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片| 夜夜爽夜夜爽视频| 久久影院123| 人妻制服诱惑在线中文字幕| av电影中文网址| 高清黄色对白视频在线免费看| 狂野欧美激情性bbbbbb| 日本色播在线视频| 新久久久久国产一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区视频免费看| 少妇的逼好多水| 国产不卡av网站在线观看| 精品少妇久久久久久888优播| 伦理电影大哥的女人| 一本久久精品| 日韩av在线免费看完整版不卡| 欧美3d第一页| 亚洲伊人久久精品综合| 欧美一级a爱片免费观看看| 一级毛片电影观看| 黄色配什么色好看| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 麻豆乱淫一区二区| 又大又黄又爽视频免费| tube8黄色片| 亚洲综合色网址| 日韩在线高清观看一区二区三区| 国精品久久久久久国模美| 最近中文字幕2019免费版| 亚洲国产色片| 欧美日韩视频精品一区| 精品亚洲成国产av| 伦理电影免费视频| 免费大片黄手机在线观看| 一区二区三区乱码不卡18| 看非洲黑人一级黄片| 97在线人人人人妻| 欧美另类一区| 大香蕉久久网| 女性被躁到高潮视频| 国产精品国产三级专区第一集| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 日韩一区二区视频免费看| 视频中文字幕在线观看| 九九在线视频观看精品| 欧美精品亚洲一区二区| 国产 一区精品| 极品少妇高潮喷水抽搐| 精品久久国产蜜桃| 看免费成人av毛片| 免费日韩欧美在线观看| 91aial.com中文字幕在线观看| 久久久久久人妻| 亚洲av福利一区| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 丝袜在线中文字幕| 成人国产av品久久久| 久久影院123| 国产免费现黄频在线看| 丝袜脚勾引网站| 亚洲天堂av无毛| 午夜福利视频在线观看免费| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 人妻少妇偷人精品九色| av福利片在线| 美女中出高潮动态图| 色视频在线一区二区三区| 亚洲人成77777在线视频| 午夜激情av网站| 最黄视频免费看| 亚洲欧美色中文字幕在线| 亚洲av电影在线观看一区二区三区| 亚洲经典国产精华液单| 狂野欧美激情性bbbbbb| 搡女人真爽免费视频火全软件| 日韩精品免费视频一区二区三区 | 中文字幕精品免费在线观看视频 | 亚洲国产精品一区三区| 最近中文字幕2019免费版| 午夜激情福利司机影院| 九九久久精品国产亚洲av麻豆| 欧美97在线视频| 精品少妇久久久久久888优播| 肉色欧美久久久久久久蜜桃| 在线观看www视频免费| av免费在线看不卡| 国产伦理片在线播放av一区| 一级毛片我不卡| 久久久午夜欧美精品| 亚洲av在线观看美女高潮| 国产精品欧美亚洲77777| 亚洲中文av在线| 欧美日韩av久久| 日韩伦理黄色片| 一级毛片aaaaaa免费看小| 亚洲,一卡二卡三卡| 国产免费一级a男人的天堂| 国产精品久久久久久久久免| 欧美精品国产亚洲| www.av在线官网国产| 美女国产高潮福利片在线看| 国产熟女午夜一区二区三区 | 综合色丁香网| 国产成人精品久久久久久| 免费看av在线观看网站| 日韩中文字幕视频在线看片| 免费看光身美女| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区 | 黄色怎么调成土黄色| 国产成人精品久久久久久| 丝袜在线中文字幕| 国产男女内射视频| 女人久久www免费人成看片| 国产精品99久久99久久久不卡 | 精品一品国产午夜福利视频| 在线观看免费高清a一片| 交换朋友夫妻互换小说| 三上悠亚av全集在线观看| 精品久久国产蜜桃| .国产精品久久| 99热全是精品| 一本—道久久a久久精品蜜桃钙片| 麻豆成人av视频| 亚洲av免费高清在线观看| 观看av在线不卡| 亚洲丝袜综合中文字幕| av卡一久久| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 热re99久久精品国产66热6| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放| 男人爽女人下面视频在线观看| 五月伊人婷婷丁香| 日韩欧美一区视频在线观看| 久久午夜福利片| 超色免费av| 在线观看一区二区三区激情| 亚洲色图综合在线观看| 日韩一本色道免费dvd| 极品少妇高潮喷水抽搐| 国产成人av激情在线播放 | 久久国产亚洲av麻豆专区| 亚洲精品亚洲一区二区| 日本91视频免费播放| 午夜免费鲁丝| 永久免费av网站大全| 中文字幕制服av| 激情五月婷婷亚洲| 熟女电影av网| 国产精品蜜桃在线观看| √禁漫天堂资源中文www| 久久女婷五月综合色啪小说| 韩国高清视频一区二区三区| 欧美精品国产亚洲| 久久精品人人爽人人爽视色| a级毛色黄片| 中文精品一卡2卡3卡4更新| av有码第一页| 国产视频内射| 亚洲国产欧美在线一区| 久久久久久久久久久免费av| 建设人人有责人人尽责人人享有的| 亚州av有码| 成年人免费黄色播放视频| 51国产日韩欧美| 久久久久久伊人网av| 国产一区二区三区综合在线观看 | 亚洲欧美成人精品一区二区| 热99国产精品久久久久久7| 成人国产麻豆网| 国产成人一区二区在线| a 毛片基地| av免费在线看不卡| 看免费成人av毛片| 99热全是精品| 久久人人爽人人爽人人片va| 夫妻性生交免费视频一级片| 亚洲精品中文字幕在线视频| 97在线视频观看| 肉色欧美久久久久久久蜜桃| 久久久久久人妻| 久久人人爽av亚洲精品天堂|