• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    2017-01-07 04:18:00LIUWeifengYANGYongzhenLIUXuguangXUBingshe
    新型炭材料 2016年6期
    關(guān)鍵詞:旭光聚苯胺理工大學(xué)

    LIU Wei-feng, YANG Yong-zhen, LIU Xu-guang, XU Bing-she

    (1.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology),Ministry of Education, Taiyuan030024, China;2.Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan030024, China;3.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan030024, China)

    Preparation and electrochemical performance of a polyaniline-carbon microsphere hybrid as a supercapacitor electrode

    LIU Wei-feng1,2, YANG Yong-zhen1,2, LIU Xu-guang1,3, XU Bing-she1,2

    (1.KeyLaboratoryofInterfaceScienceandEngineeringinAdvancedMaterials(TaiyuanUniversityofTechnology),MinistryofEducation,Taiyuan030024,China;2.ResearchCenteronAdvancedMaterialsScienceandTechnology,TaiyuanUniversityofTechnology,Taiyuan030024,China;3.CollegeofChemistryandChemicalEngineering,TaiyuanUniversityofTechnology,Taiyuan030024,China)

    A polyaniline-carbon microsphere (PANI-CMS) hybrid was prepared by an electrochemical deposition method and used as an electrode for supercapacitors. Field emission scanning electron microscopy and Fourier transform infra-red spectroscopy were used to characterize its morphology and structure. The supercapacitive performance of the hybrid was investigated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy and cycling tests. Results indicate that polyaniline is uniformly coated on the outer surfaces of the CMSs by the electrochemical deposition. The hybrid has a specific capacitance of 206 F·g-1at a current density of 1 A·g-1. It has a higher specific capacitance and more stable cycle performance than PANI, which is ascribed to a synergistic effect between the PANI and the CMSs.

    Carbon microspheres; Polyaniline; Electrochemical co-deposition; Supercapacitor

    1 Introduction

    Supercapacitor as a new environment-friendly electrochemical energy storage device, has attracted growing attentions owing to its wide range of application in hybrid electric vehicles, mobile electronic devices, backup power sources for computer memory, etc.[1,2]. As electrode materials for supercapacitor, conducting polymers are recognized as typical representatives because of their unique properties, such as fast charge/discharge kinetics, low cost, mild synthesis condition and suitable morphology. In the series of the conducting polymers, polyaniline (PANI) has been considered as one of the most promising electrode materials for supercapacitors because of its easy synthesis, remarkable environmental stability, simplicity in doping, high electrochemical activity and low cost[3-6]. However, irregular granular or flake PANI films obtained by the conventional polymerization methods show poor cycle stability compared with carbon-based electrodes because the redox sites in its polymer backbone are not sufficiently stable and the backbone can be destroyed within a limited number of charge/discharge cycles. Recently, some researchers used carbons as substrate materials to prepare composites to improve the cycle life of PANI, and there is a number of literature on PANI/carbon composite electrodes such as PANI with activated carbon[7], carbon nanotubes[8], carbon fibers[9]and graphene[10]. For example, Zhu et al.[11]synthesized a PANI-MWCNT hybrid with a capacitance of 515 F·g-1compared to 273 F·g-1of pure PANI and a high cycling stability (below 10% capacity loss after 1 000 cycles). Feng et al.[12]reported a graphene-PANI hybrid prepared by the electrochemical reduction method with a high specific capacitance of 640 F·g-1with a capacitance retention of 90% after 1 000 charge/discharge cycles.

    Although above mentioned PANI-carbon material hybrids have improved electrochemical properties[13,14], the difficulties in the preparation of carbon materials (graphene, carbon nanotubes, or carbon nanofibers) in large scale hinder their industrial applications. Among various carbon materials, carbon miscrospheres (CMSs), with fullerenes-like cage structures composed of fairly concentric graphitic shells, have great potential application in many fields such as reinforcing agents, lubrication, and the support of surface molecularly imprinted polymer[15,16]. What is more, CMSs can be prepared continuously by a simple chemical vapor deposition method. However, there are few reports about CMSs as a electrode material for supercapactors. The combination of conducting PANI with CMSs would be an effective way to improve the capacitance and cycling stability of PANI. Wu et al.[5]prepared a PANI-activated mesocarbon microsbead hybrid by an in situ chemical oxidation polymerization method. The hybrid possessed both high specific capacitance and excellent cycle stability. The specific capacitance stabilizes nearly at a fixed value (110.21 F·g-1) at a current density of 250 mA·g-1. Based on the PANI-activated mesocarbon microsbead hybrid, Wu et al.[7]synthesized the nitrogen-enriched carbon materials by carbonization and HNO3treatment, and the specific capacitance was 385 F·g-1at a current density of 1 A·g-1in 6 M KOH electrolyte.

    Herein, the water-soluble CMSs with a high specific surface area were obtained by a combination of acid-oxidation and heat-treatment[15,17]. PANI-CMS hybrid was synthesized through a one-step electrochemical deposition method in H2SO4solution. The physical and electrochemical properties of the PANI-CMS hybrid were studied.

    2 Experimental

    2.1 Instruments and Materials

    All chemicals were of analytical grade and all solutions were prepared using deionized water. CMSs (~350 nm in diameter) were synthesized by chemical vapor deposition. Aniline was distilled under reduced pressure before use and all other chemical reagents were used as received. Electrochemical experiments were conducted at 25 ℃ on a VMP3 Potentiostat (Princeton, USA) controlled with an EC-Lab software. A standard three-electrode system was used for preparation and characterization of the PANI-CMS hybrid. The hybrid film and platinum plate (10 mm × 10 mm × 0.2 mm) served as the working electrode and the counter electrode, respectively. A saturated calomel electrode (SCE) was used as the reference electrode and all potentials reported herein are referenced to SCE. The morphologies and structures of the products were characterized by field emission scanning electron microscopy (FESEM; JSM-6700F, operated at 10 kV) and Fourier transformation infrared spectroscopy (FTIR; FTS-165).

    2.2 Preparation of the PANI-CMS hybrid

    CMSs (0.5 g) were dispersed in an acid mixture (120 mL, 96 wt% H2SO4and 65 wt% HNO3in volume ratio 3∶1) in a flask under ultrasonication for 20 min. To increase the specific surface area, heat-treatment was conducted on the acid-treated CMSs in temperature ranging from 25 ℃ to 800 ℃ at a heating rate of 20 ℃/min in Ar atmosphere. The specific surface area increased to 179 m2·g-1from 9 m2·g-1[17]. Then, the obtained CMSs (20 mg) was added into a mixed solution (20 mL, 0.1 M aniline and 0.5 M H2SO4), and the mixture was sonicated for another 10 min. The PANI-CMS hybrid was electrochemically prepared in the mixed aqueous solution using potentiost at method at 0.9 V for 10 min. The deposition of PANI on CMSs was performed at 25 ℃ under static conditions.

    2.3 Electrochemical measurement

    Electrochemical performance was determined mainly by the cyclic voltammetry (CV) and galvanostatic charge/discharge in a 0.5 M H2SO4aqueous solution, where the three electrode system was equipped with a platinum plate as a counter electrode and a saturated calomel electrode (SCE) as a reference electrode. The PANI-CMS hybrid on the platinum plate was used as the working electrode. Electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range from 105to 0.01 Hz at open circuit potential with an alternating perturbation of 5 mV. Galvanostatic charge/discharge curves were measured between 0 and 0.6 V at different current densities (1, 5, 10 and 20 A·g-1). Galvanostatic cycling was performed between 0 and 0.6 V at a current density of 5 A·g-1for 2 000 times.

    3 Results and discussion

    3.1 Electrosynthesis of PANI-CMS hybrid

    The formation of the PANI-CMS hybrid is summarized in Fig. 1. There were oxygen-enriched (e.g. carboxyl) functionalities on the surfaces of CMSs as a result of the acid-oxidation. These functional groups acted as anchor sites and enabled the subsequent electrochemical polymerization of PANI on the surfaces of CMSs. Meanwhile, the π-π electron interaction between the CMSs and the aniline was beneficial to the polymerization of aniline on the surfaces of CMSs. Then, the PANI would gradually grow along the initial nuclei of PANI and extend along CMSs to form a network structure.

    Fig. 1 A schematic representation of the formation of the PANI-CMS hybrid.

    3.2 Structural characterization

    Fig. 2 shows the FESEM images of PANI, the PANI-CMS hybrid and CMSs.

    Fig. 2 FESEM images of (a, b) PANI, (c, d, e) PANI-CMS hybrid and (f) CMSs.

    It can be seen that the PANI film (Fig. 2a and b) was flat and smooth. Besides, there were some holes evenly distributed on the surface of PANI film. Unlike the dense PANI film, it is obviously observed that the PANI-CMS hybrid (Fig. 2c, d and e) had a uniform network structure, and CMSs were with a good spherical shape. Compared with the acid-treated CMSs (Fig. 2f), the surfaces of the PANI-CMS hybrid became rough, indicating that the CMSs had been coated with PANI. The network structure caused by the CMSs is favorable to improve the electrochemical properties of the hybrid.

    Fig. 3 FT-IR spectra of (a) CMSs, (b) PANI and (c) PANI-CMS hybrid.

    3.3 Electrochemical characterization

    To evaluate the electrochemical characteristics of the PANI-CMS hybrid, the CV curves in 0.5 M H2SO4electrolyte at different scan rates were recorded at the potential window of -0.2- 0.6 V versus SCE (Fig. 4).

    Fig. 4 Cyclic voltammograms of (a) PANI and (b) PANI-CMS hybrid.

    Notably, it can be seen that because of the existence of polarization, a positive shift of oxidation peaks and a negative shift of reduction peaks were observed with the increase of the scan rate. Also, the curve shape is steady, indicating the good electrochemical stability of the electrode material. The two couples (at ca. 0/0.2 and 0.4/0.5 V) of apparent redox peaks were attributed to the redox transition of PANI between a semiconducting state (leucoemeraldine form) and a conducting state (polaronic emeraldine form) and the emeraldine-pernigraniline transformation. In addition, the PANI-CMS hybrid electrode exhibited a higher current value and more obvious redox peaks compared with PANI under the same conditions. The results reveal that the electroactivity of PANI was effectively improved by the introduction of CMSs during the quick charge/discharge process.

    For further understanding electrochemical behavior of the PANI-CMS hybrid, the galvanostatic charge/discharge measurements at different current densities within a potential window (-0.2- 0.6 V vs. SCE) were carried out, and the results are shown in Fig. 5. As can be seen, the charge/discharge curves of PANI and the PANI-CMS hybrid were almost linear and presented a typical symmetrical triangle shape, indicating that the hybrid had a good double-layer capacitive behavior[18,19]. Besides, it can be noted that the discharge time increased distinctly with decreasing current density, the reason is that the electrolyte ions could not penetrate well into the inner of active materials as a result of low diffusion at large current density. Although the charge/discharge curves of PANI are similar to those of the PANI-CMS hybrid, but the latter would have much longer charge/discharge duration and larger charge storage capacity than the former.

    Fig. 5 Galvanostatic charge/discharge curves of (a) PANI and (b) PANI-CMS hybrid.

    The specific capacitance (Cs) values may be calculated from the charging and discharging curves according toCs=(I·Δt)/(ΔV·m), whereIis the discharge current,Δtis the discharge time,ΔVis the potential drop in the discharge process (in our experimentsΔV=0.6 V), and m is the mass of active material. Specific capacitances increased from 146 to 206 F·g-1with current densities from 1 to 20 A·g-1for the PANI-CMS hybrid, which were higher than those of PANI (88-135 F·g-1). The highCsof the PANI-CMS hybrid may be attributed to the uniform coating of PANI around CMSs, which could help to provide a large electrolyte-accessible surface area to improve utilization of PANI for redox reactions. Besides, electrical conductivity was increased with the introduction of CMSs, resulting in a increased specific capacitance. In addition, with the increase of current density, the PANI-CMS hybrid has only a 29%Csreduction from 1 to 20 A·g-1, which is less than that of PANI (35%). It suggests that the hybrid exhibited a better electrochemical stability. The capacitances of the PANI-CMS hybrid are even higher than those of previously reported graphene/PANI composite[20]. The reason is that a stable structure was formed by the chemical linking of PANI and CMSs, and CMSs provide a good framework for the hybrid. These results support the formation mechanism of the PANI-CMS hybrid proposed in Fig. 1, and are consistent with the structural characterization (Fig. 2).

    The Nyquist plots of PANI and the PANI-CMS hybrid are demonstrated in Fig. 6. The electrochemical resistances of PANI and the PANI-CMS hybrid electrodes were small, whereas the electrochemical resistance of the pure PANI was larger than that of the hybrid, which may result in the excellent capacitive behaviors of the hybrid. In addition, these plots did not show semicircle regions, probably due to the low faradaic resistances of these films.

    Fig. 6 Nyquist diagrams for the PANI-CMS hybrid and PANI.

    The lack of stability of the capacitors based on conducting polymer films (especially PANI) during long-term charge/discharge cycling is one of their most fatal deficiencies. As shown in Fig. 7, the pure PANI lost 28% (from 129 to 93 F·g-1) of its capacitance after 2 000 charging/discharging cycles at a current density of 5 A·g-1. However, under the same conditions, the capacitance of the PANI-CMS hybrid decreased only 21% (from 192 to 151 F·g-1). In addition, the capacitance of the PANI-CMS hybrid maintained a good stability after 500 cycles while the capacitance for PANI electrode showed a decreasing trend. The enhanced specific capacitance is due to the synergistic effect between PANI and CMSs. On one hand, CMSs undertake some mechanical deformation in the redox process of the PANI-CMS hybrid, which avoids destroying the electrode material and thus benefits a better stability. On the other hand, the pseudocapacitance of PANI in the hybrid film is enhanced by the highly conductive CMSs. The results indicate that the high stability of the PANI-CMS hybrid film and its potential prospect as an electrode active material for long-term supercapacitor applications.

    Fig. 7 Variations of the capacitance with cycle number for PAN and PANI/CMSs.

    4 Conclusions

    A novel PANI-CMS hybrid was prepared by electrochemical deposition method and its supercapacitive performance was systematically investigated. The PANI was grown on the external surfaces of CMSs. And the network structure was formed for the PANI-CMS hybrid. A drastically enhanced gravimetric capacitance of the PANI-CMS hybrid compared with PANI was detected in H2SO4aqueous solution, which could be ascribed to the synergistic effect between CMSs and PANI. A maximum specific capacitance of 206 F·g-1was achieved at a current density of 1 A·g-1, which was much higher than that of PANI at the same current density. Compared with PANI, the PANI-CMS hybrid possessed both a high specific capacitance and excellent cycle stability. The PANI-CMS hybrid is promising for supercapacitor applications.

    [1] Yan Y F, Cheng Q L, Wang G C, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application[J]. J Power Sources, 2011, 196: 7835-7840.

    [2] Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Materials, 2016, 2: 69-75.

    [3] WU Ming-bo, LI Ling-yan, LIU Jun, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.

    [4] Liu W X, Liu N, Song H H, et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors[J]. New Carbon Materials, 2011, 26: 217-223.

    [5] Yan Y F, Cheng Q L, Zhu Z J, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes[J]. J Power Sources, 2013, 240: 544-550.

    [6] Wang Q, Li J L, Gao F, et al. Activated carbon coated with polyaniline as an electrode material in supercapacitors[J]. New Carbon Materials, 2008, 23: 275-280.

    [7] Wu C, Wang X Y, Ju B W, et al. Supercapacitive performance of nitrogen-enriched carbons from carbonization of polyaniline/activated mesocarbon microbeads[J]. J Power Sources, 2013, 227: 1-7.

    [8] Yoon S B, Yoon E H, Kim K B. Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications[J]. J Power Sources, 2011, 196: 10791-10797.

    [9] Bal Sydulu S, Palaniappan S, Srinivas P. Nano fiber polyaniline containing long chain and small molecule dopants and carbon composites for supercapacitor[J]. Electrochim Acta, 2013, 95: 251-259.

    [10] Li J, Xie H Q, Li Y, et al. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors[J]. J Power Sources, 2011, 196: 10775-10781.

    [11] Zhu Z Z, Wang G C, Sun M Q, et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications[J]. Electrochim Acta, 2011, 56: 1366-1372.

    [12] Feng X M, Li R M, Ma Y W, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications[J]. Adv Funct Mater, 2011, 21: 2989-2996.

    [13] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38: 2520-2531.

    [14] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. J Power Source, 2006, 157: 11-27.

    [15] Liu W F, Zhao H J, Yang Y Z, et al. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer[J]. Appl Surf Sci, 2013, 277: 146-154.

    [16] Yang Y Z, Zhang Y, Li S, et al. Grafting molecularly imprinted poly( 2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres[J]. Appl Surf Sci, 2012, 258: 6441-6450.

    [17] Liu W F, Yang Y Z, Luan C H, et al. Thermal stability and surface chemistry evolution of oxidized carbon microspheres[J]. Fullerenes Nanotubes Carbon Nanostruct, 2014, 22, 7: 670-678.

    [18] Chen S, Zhu J W, Wu X D, et al. Graphene oxide-MnO2nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4: 2822-2830.

    [19] An H F, Wang Y, Wang X Y, et al. Polypyrrole/carbon aerogel composite materials for supercapacitor[J]. J Power Sources, 2010, 195: 6964-6969.

    [20] Li Z F, Zhang H Y, Liu Q, et al. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors[J]. ACS Appl Mater Interfaces, 2013, 5: 2685-2691.

    1007-8827(2016)06-0594-06

    聚苯胺-炭微球復(fù)合材料的制備及其電化學(xué)性能

    劉偉峰1,2, 楊永珍1,2, 劉旭光1,3, 許并社1,2

    (1.新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室(太原理工大學(xué)),山西 太原030024;2.太原理工大學(xué) 新材料工程技術(shù)研究中心,山西 太原030024;3.太原理工大學(xué) 化學(xué)化工學(xué)院,山西 太原030024)

    通過電化學(xué)沉積法制備得到聚苯胺/炭微球(PANI/CMS)復(fù)合電極材料,通過場發(fā)射掃描電子顯微鏡和紅外光譜對PANI/CMS復(fù)合材料進(jìn)行形貌和結(jié)構(gòu)表征。并采用循環(huán)伏安、恒電流充放電、電化學(xué)阻抗譜及循環(huán)壽命測試等技術(shù)考察其電化學(xué)行為。結(jié)果表明:PANI均勻包覆于CMSs表面;在電流密度為1 A·g-1時(shí),復(fù)合材料的比電容達(dá)到206 F·g-1;PANI/CMS復(fù)合材料表現(xiàn)出優(yōu)異的電化學(xué)穩(wěn)定性。說明PANI/CMS復(fù)合材料有望作為電極材料用于超級電容器。

    炭微球; 聚苯胺; 電化學(xué)聚合; 超級電容器

    TB332

    A

    國家自然科學(xué)基金(21176169,51152001);國家國際科技合作專項(xiàng)項(xiàng)目(2012DFR50460);山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)(2015013002-10);山西省自然科學(xué)青年基金(201601D021043);太原理工大學(xué)?;?2014TD015).

    劉旭光,教授,博士生導(dǎo)師. E-mail: liuxuguang@tyut.edu.cn; 楊永珍,教授,博士生導(dǎo)師. E-mail: yyztyut@126.com

    劉偉峰,講師. E-mail: lwf061586@yeah.net

    Foundationitems: National Natural Science Foundation of China (21176169, 51152001); International Science & Technology Cooperation Program of China (2012DFR50460); Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10); Natural Science Foundation of Shanxi Province (201601D021043); Special/Youth Foundation of Taiyuan University of Technology (2014TD015).

    LIU Xu-guang, Ph. D., Professor. E-mail: liuxuguang@tyut.edu.cn; YANG Yong-zhen, Ph. D., Professor. E-mail: yyztyut@126.com.

    Authorintroduction: LIU Wei-feng, Lecturer. E-mail: lwf061586@yeah.net

    10.1016/S1872-5805(16)60035-5

    Receiveddate: 2016-07-26;Reviseddate: 2016-10-29

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    旭光聚苯胺理工大學(xué)
    孫旭光
    昆明理工大學(xué)
    董旭光永濟(jì)調(diào)研農(nóng)牧產(chǎn)業(yè)項(xiàng)目
    城市軌道交通供電系統(tǒng)及電力技術(shù)探析
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    三維鎳@聚苯胺復(fù)合電極的制備及其在超級電容器中的應(yīng)用
    聚苯胺導(dǎo)電復(fù)合材料研究進(jìn)展
    中國塑料(2015年7期)2015-10-14 01:02:34
    聚苯胺復(fù)合材料研究進(jìn)展
    中國塑料(2014年11期)2014-10-17 03:07:18
    亚洲国产欧美网| 最近中文字幕高清免费大全6| 亚洲人成77777在线视频| 我要看黄色一级片免费的| 色视频在线一区二区三区| 国产极品天堂在线| 哪个播放器可以免费观看大片| 国产极品粉嫩免费观看在线| 七月丁香在线播放| 国产男人的电影天堂91| 日韩不卡一区二区三区视频在线| 久久这里只有精品19| 免费播放大片免费观看视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品,欧美精品| 久久精品亚洲av国产电影网| 26uuu在线亚洲综合色| 日本vs欧美在线观看视频| 搡女人真爽免费视频火全软件| 日韩不卡一区二区三区视频在线| 亚洲成国产人片在线观看| 国产精品三级大全| 成人漫画全彩无遮挡| 欧美国产精品一级二级三级| 精品久久蜜臀av无| 美女国产视频在线观看| 各种免费的搞黄视频| 美女高潮到喷水免费观看| 一区二区三区乱码不卡18| 2021少妇久久久久久久久久久| av线在线观看网站| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 成人漫画全彩无遮挡| 欧美成人午夜精品| 国产成人午夜福利电影在线观看| 亚洲激情五月婷婷啪啪| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 国产成人精品一,二区| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 看免费成人av毛片| av福利片在线| 国产精品久久久久久av不卡| 亚洲美女搞黄在线观看| 亚洲成色77777| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 如何舔出高潮| 国产成人精品福利久久| 久久久精品国产亚洲av高清涩受| 亚洲成人手机| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 亚洲,一卡二卡三卡| 亚洲精品中文字幕在线视频| 不卡视频在线观看欧美| 男人操女人黄网站| 天堂8中文在线网| 激情视频va一区二区三区| 黄片小视频在线播放| 汤姆久久久久久久影院中文字幕| 国产精品一区二区在线不卡| 少妇 在线观看| 80岁老熟妇乱子伦牲交| 午夜日本视频在线| 精品第一国产精品| 国产精品久久久久久精品古装| 国产在线视频一区二区| 又大又黄又爽视频免费| 人妻人人澡人人爽人人| 国产色婷婷99| 一级片免费观看大全| 亚洲欧洲日产国产| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区大全| 久久久精品94久久精品| 国产亚洲一区二区精品| 亚洲精品美女久久久久99蜜臀 | 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 超色免费av| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 熟女av电影| 在线观看免费日韩欧美大片| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 欧美激情极品国产一区二区三区| 搡女人真爽免费视频火全软件| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 久久人人爽人人片av| 黄片小视频在线播放| 亚洲天堂av无毛| 亚洲精品av麻豆狂野| 精品99又大又爽又粗少妇毛片| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 国产黄色视频一区二区在线观看| 熟女av电影| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| videosex国产| 中文字幕色久视频| 国产黄色视频一区二区在线观看| 亚洲男人天堂网一区| 哪个播放器可以免费观看大片| 亚洲成人手机| 男人添女人高潮全过程视频| 亚洲精品日韩在线中文字幕| 看免费av毛片| av在线app专区| 久久午夜福利片| 国产亚洲一区二区精品| 久久久国产精品麻豆| 七月丁香在线播放| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 成人国产麻豆网| 人人妻人人添人人爽欧美一区卜| 午夜老司机福利剧场| 国产又爽黄色视频| 汤姆久久久久久久影院中文字幕| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 伦理电影免费视频| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 一区二区av电影网| av卡一久久| 热re99久久精品国产66热6| 午夜福利乱码中文字幕| kizo精华| 久久国产精品大桥未久av| 制服诱惑二区| 一级片'在线观看视频| 久久青草综合色| 亚洲精品日本国产第一区| www.自偷自拍.com| av视频免费观看在线观看| 国产成人精品福利久久| 2022亚洲国产成人精品| 少妇人妻 视频| 久久ye,这里只有精品| 日日爽夜夜爽网站| 欧美成人午夜精品| 国产xxxxx性猛交| 国产高清不卡午夜福利| 91aial.com中文字幕在线观看| 高清不卡的av网站| 午夜影院在线不卡| 亚洲精品,欧美精品| 午夜日韩欧美国产| 亚洲精品久久成人aⅴ小说| 国产一区二区三区av在线| 大片免费播放器 马上看| 美女中出高潮动态图| 日本av免费视频播放| 在线观看免费高清a一片| tube8黄色片| 男女啪啪激烈高潮av片| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 街头女战士在线观看网站| 免费观看无遮挡的男女| 精品一区二区三卡| 亚洲熟女精品中文字幕| 免费在线观看视频国产中文字幕亚洲 | 永久免费av网站大全| 男女国产视频网站| 日韩制服丝袜自拍偷拍| av网站免费在线观看视频| 综合色丁香网| 欧美av亚洲av综合av国产av | 制服人妻中文乱码| 成年av动漫网址| 亚洲av日韩在线播放| 丰满乱子伦码专区| 自线自在国产av| videosex国产| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 91成人精品电影| 大香蕉久久成人网| 免费日韩欧美在线观看| 久久久久精品人妻al黑| 中文精品一卡2卡3卡4更新| 成人二区视频| 久久精品国产亚洲av高清一级| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 大片免费播放器 马上看| 考比视频在线观看| 极品人妻少妇av视频| 国产精品99久久99久久久不卡 | 亚洲欧美成人综合另类久久久| 五月天丁香电影| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站 | 自线自在国产av| 美女大奶头黄色视频| 亚洲色图综合在线观看| 日韩一区二区视频免费看| 欧美日韩一级在线毛片| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 久久久精品94久久精品| 91成人精品电影| 制服诱惑二区| 亚洲欧美一区二区三区国产| 国产av码专区亚洲av| 中国国产av一级| av在线老鸭窝| 日韩中字成人| 久久久久国产精品人妻一区二区| 最近中文字幕2019免费版| 亚洲情色 制服丝袜| 91成人精品电影| 日本av免费视频播放| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 日韩制服丝袜自拍偷拍| 两性夫妻黄色片| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| 两个人看的免费小视频| 国产成人精品一,二区| av福利片在线| 黄网站色视频无遮挡免费观看| 丝袜美腿诱惑在线| 最近中文字幕高清免费大全6| 一区福利在线观看| 色吧在线观看| 中文字幕亚洲精品专区| 在线观看免费日韩欧美大片| 黄色视频在线播放观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 在线看a的网站| 天堂8中文在线网| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 在线观看美女被高潮喷水网站| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 母亲3免费完整高清在线观看 | videosex国产| 亚洲精品国产一区二区精华液| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 一级爰片在线观看| 欧美xxⅹ黑人| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 免费播放大片免费观看视频在线观看| 成人二区视频| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 国产福利在线免费观看视频| 咕卡用的链子| 五月开心婷婷网| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 亚洲国产日韩一区二区| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 午夜福利一区二区在线看| 制服诱惑二区| 午夜免费鲁丝| 伊人久久大香线蕉亚洲五| 精品人妻熟女毛片av久久网站| 观看av在线不卡| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 男男h啪啪无遮挡| 国产又爽黄色视频| 国产精品99久久99久久久不卡 | 久久久久久久亚洲中文字幕| 午夜免费观看性视频| 亚洲在久久综合| 久久免费观看电影| 久久久久久伊人网av| xxxhd国产人妻xxx| 国产精品免费视频内射| 91成人精品电影| 国产又爽黄色视频| 另类亚洲欧美激情| 中文天堂在线官网| 国产又色又爽无遮挡免| 久久精品aⅴ一区二区三区四区 | 老熟女久久久| 黑人巨大精品欧美一区二区蜜桃| 超碰97精品在线观看| 97精品久久久久久久久久精品| 亚洲欧美色中文字幕在线| 精品少妇黑人巨大在线播放| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 大片免费播放器 马上看| 好男人视频免费观看在线| 亚洲国产看品久久| 一区二区三区精品91| 久久这里只有精品19| 久久人人爽av亚洲精品天堂| 最近的中文字幕免费完整| 精品亚洲成a人片在线观看| 日韩电影二区| 欧美人与善性xxx| 精品国产乱码久久久久久男人| 免费女性裸体啪啪无遮挡网站| 精品久久蜜臀av无| 亚洲国产精品成人久久小说| 少妇被粗大的猛进出69影院| 亚洲人成电影观看| 精品少妇久久久久久888优播| 飞空精品影院首页| 国产免费现黄频在线看| 女人精品久久久久毛片| 99久国产av精品国产电影| 欧美97在线视频| 18+在线观看网站| 久久人妻熟女aⅴ| 亚洲av福利一区| 国产成人aa在线观看| 国产精品不卡视频一区二区| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 精品亚洲乱码少妇综合久久| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 亚洲国产成人一精品久久久| 精品国产露脸久久av麻豆| 一区二区三区精品91| 大码成人一级视频| 两个人看的免费小视频| 国产黄色视频一区二区在线观看| 女的被弄到高潮叫床怎么办| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久成人aⅴ小说| 日韩视频在线欧美| 人人妻人人澡人人爽人人夜夜| 91午夜精品亚洲一区二区三区| 桃花免费在线播放| 18禁裸乳无遮挡动漫免费视频| 在线观看美女被高潮喷水网站| 欧美日韩精品网址| 亚洲第一青青草原| 亚洲精品自拍成人| 中国三级夫妇交换| 国产精品熟女久久久久浪| 日韩电影二区| 交换朋友夫妻互换小说| 18禁裸乳无遮挡动漫免费视频| 久久国产亚洲av麻豆专区| 精品人妻一区二区三区麻豆| 色网站视频免费| 成年女人毛片免费观看观看9 | 久久久久久久久久久免费av| 嫩草影院入口| 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| av.在线天堂| 免费在线观看视频国产中文字幕亚洲 | 日本wwww免费看| 男人舔女人的私密视频| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 亚洲综合色网址| 日本欧美视频一区| 国产精品免费大片| 国产精品国产av在线观看| 一级毛片电影观看| 人人妻人人爽人人添夜夜欢视频| 日本爱情动作片www.在线观看| 久久国产精品男人的天堂亚洲| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| videos熟女内射| 超色免费av| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 日韩视频在线欧美| 国产精品av久久久久免费| 日韩大片免费观看网站| www日本在线高清视频| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| videossex国产| 国产乱人偷精品视频| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 国产极品天堂在线| 18禁动态无遮挡网站| 亚洲av成人精品一二三区| 国产日韩欧美亚洲二区| 欧美精品国产亚洲| 18禁国产床啪视频网站| 久久99热这里只频精品6学生| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 久久99一区二区三区| 9热在线视频观看99| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 一边亲一边摸免费视频| 考比视频在线观看| 黄色怎么调成土黄色| 黄色配什么色好看| 亚洲国产最新在线播放| 国产成人精品无人区| 精品少妇一区二区三区视频日本电影 | 亚洲男人天堂网一区| xxxhd国产人妻xxx| 美女脱内裤让男人舔精品视频| 国产精品久久久久成人av| 男女下面插进去视频免费观看| 一级爰片在线观看| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线观看播放| 人人妻人人添人人爽欧美一区卜| 在线精品无人区一区二区三| 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 亚洲国产精品成人久久小说| 青草久久国产| 免费黄网站久久成人精品| 日日撸夜夜添| 精品一品国产午夜福利视频| 国产一区二区 视频在线| 久久久久国产网址| 美国免费a级毛片| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的| 午夜av观看不卡| 久久精品国产鲁丝片午夜精品| 可以免费在线观看a视频的电影网站 | 在线观看一区二区三区激情| 久久久精品94久久精品| 欧美日本中文国产一区发布| 天天躁日日躁夜夜躁夜夜| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 久久精品久久久久久噜噜老黄| 波多野结衣av一区二区av| www.精华液| 亚洲久久久国产精品| 国产精品久久久久久av不卡| 边亲边吃奶的免费视频| 国产成人欧美| 亚洲av.av天堂| 久久狼人影院| 久久人人爽av亚洲精品天堂| 国产av精品麻豆| 久久久久网色| 中文欧美无线码| 97在线人人人人妻| av一本久久久久| 国产一区二区激情短视频 | 只有这里有精品99| 久久人人97超碰香蕉20202| 免费不卡的大黄色大毛片视频在线观看| 欧美变态另类bdsm刘玥| 国精品久久久久久国模美| 黄频高清免费视频| 国产精品一二三区在线看| 精品国产一区二区久久| 男人添女人高潮全过程视频| 久久综合国产亚洲精品| 国产有黄有色有爽视频| 日韩一区二区三区影片| 少妇人妻 视频| 欧美在线黄色| 久久综合国产亚洲精品| 在线天堂最新版资源| 亚洲欧美精品综合一区二区三区 | 久久久久国产精品人妻一区二区| 欧美日韩精品成人综合77777| 亚洲欧美色中文字幕在线| 丰满迷人的少妇在线观看| 亚洲经典国产精华液单| 亚洲国产精品成人久久小说| 婷婷色综合大香蕉| 日本欧美视频一区| 日本av手机在线免费观看| av.在线天堂| 丰满饥渴人妻一区二区三| 亚洲av男天堂| 久久毛片免费看一区二区三区| 啦啦啦在线免费观看视频4| 日本免费在线观看一区| 人妻系列 视频| 中文字幕人妻熟女乱码| 免费少妇av软件| 欧美日韩视频高清一区二区三区二| 精品国产露脸久久av麻豆| 少妇熟女欧美另类| 精品国产一区二区久久| 午夜免费男女啪啪视频观看| 王馨瑶露胸无遮挡在线观看| 丝袜人妻中文字幕| 精品亚洲成a人片在线观看| 久久久久人妻精品一区果冻| 欧美最新免费一区二区三区| 久久人人爽人人片av| 国产成人91sexporn| 国产不卡av网站在线观看| 国产免费一区二区三区四区乱码| 日韩av不卡免费在线播放| 日韩制服丝袜自拍偷拍| 激情五月婷婷亚洲| 国产成人精品福利久久| 下体分泌物呈黄色| 人人妻人人澡人人看| 日韩电影二区| 91精品伊人久久大香线蕉| 91午夜精品亚洲一区二区三区| 丝瓜视频免费看黄片| 一级毛片电影观看| 亚洲成人av在线免费| 免费黄色在线免费观看| 亚洲国产av影院在线观看| 少妇的逼水好多| 男男h啪啪无遮挡| 亚洲精品日韩在线中文字幕| 老熟女久久久| 亚洲av电影在线观看一区二区三区| 欧美最新免费一区二区三区| 亚洲三区欧美一区| 日韩三级伦理在线观看| 亚洲成av片中文字幕在线观看 | 久久国产精品大桥未久av| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片| 宅男免费午夜| 夜夜骑夜夜射夜夜干| 欧美日韩视频精品一区| 国产又爽黄色视频| 一二三四中文在线观看免费高清| 一级,二级,三级黄色视频| 国产乱人偷精品视频| 精品第一国产精品| 黄频高清免费视频| 纯流量卡能插随身wifi吗| 国产激情久久老熟女| 女人久久www免费人成看片| 国产 精品1| 精品一区二区免费观看| 宅男免费午夜| 日本欧美国产在线视频| 少妇被粗大猛烈的视频| 久久精品aⅴ一区二区三区四区 | 久久久久国产网址| 亚洲欧美精品综合一区二区三区 | 久久久久久久大尺度免费视频| √禁漫天堂资源中文www| 色94色欧美一区二区| 青春草国产在线视频| 亚洲成国产人片在线观看| 亚洲在久久综合| 午夜激情av网站| 亚洲国产av影院在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜福利视频精品| 免费女性裸体啪啪无遮挡网站| 9热在线视频观看99| 人成视频在线观看免费观看| 久久久久精品性色| 永久免费av网站大全| 国产亚洲一区二区精品| 日本色播在线视频| 久久久久久人妻| 99热网站在线观看| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站 | av卡一久久| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 大陆偷拍与自拍| 中文字幕精品免费在线观看视频| 永久网站在线| 婷婷色综合www| 午夜福利在线观看免费完整高清在| 一本久久精品| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 亚洲av国产av综合av卡|