• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy

    2017-01-07 04:18:02CarotenutoLongoCamerlingoDeNicolaPepe
    新型炭材料 2016年6期
    關鍵詞:透射電鏡雙軸卷曲

    G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G.P. Pepe,3

    (1.CNR-IPCB, Inst. for Polymers, Composites and Biomaterials. National Research Council,Viale Kennedy,54. Mostra d’Oltremare Pad.20-80125 Naples, Italy;2.CNR-SPIN, Inst. for Superconductors, oxides and other innovative materials and devices,National Research Council, C. Univ. M.S. Angelo, Via Cinthia,80126 Naples, Italy.3.Dipartimento Scienze Fisiche, University of Naples Federico II, Via Cinthia,80126 Naples, Italy)

    Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy

    G. Carotenuto1, A. Longo1, C. Camerlingo2, S. De Nicola2, G.P. Pepe2,3

    (1.CNR-IPCB,Inst.forPolymers,CompositesandBiomaterials.NationalResearchCouncil,VialeKennedy,54.Mostrad’OltremarePad.20-80125Naples,Italy;2.CNR-SPIN,Inst.forSuperconductors,oxidesandotherinnovativematerialsanddevices,NationalResearchCouncil,C.Univ.M.S.Angelo,ViaCinthia,80126Naples,Italy.3.DipartimentoScienzeFisiche,UniversityofNaplesFedericoII,ViaCinthia,80126Naples,Italy)

    Carbon nanoscrolls (CNSs) are produced by rolling up the graphite layer in graphene nanoplatelets on a nanofibrous bi-axially oriented polypropylene surface by a shear-friction mechanism. Microstructures of the CNSs are characterized by optical and scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and micro-Raman spectroscopy. Results indicate that the CNSs have a long tubular and fusiform structure with a hollow core surrounded by few graphene layers. The orientation of the graphite lattice with respect to the scroll axis is accurately determined from the split of the vibrational G mode by polarized micro-Raman spectroscopy. Morphological changes produced by the rolling are also described.

    Carbon nanoscrolls; Shear stress; Bi-axially oriented polypropylene; GNP; Micro-Raman spectroscopy

    1 Introduction

    Carbon nanoscrolls (CNSs) are novel carbon nanomaterials that have many useful graphene properties without the disadvantages of stacking phenomena that are observed with graphene. Already in 1960, Bacon[1]described a graphite whisker in which a graphene sheet is rolled into a scroll. However, the scrolled structures have been available in a high purity and large quantities only recently. These carbon nanostructures are generated by wrapping a graphene sheet into a helical structure[2-9]. Because of the scroll topology their properties differ from those of either single or multi-walled carbon nanotubes. In contrast to carbon nanotubes, CNSs contain interlayer galleries. CNSs offer a number of useful physical characteristics (e.g., very high specific surface area, and electrical-thermal conductivity) adequate for applications in different technological fields like, for examples, biomedical (drug-delivery, image contrast agents, hyperthermie, et al.)[10], electrical (high-porous electrodes) and hydrogen storage applications[11-13]. A variety of synthetic approaches have been widely explored to produce large amounts of carbon nanoscrolls and to realize their applications[14-29]. Lithography had been used to synthesize wide ribbons from graphene sheets, but the quality was limited by the lithographic resolution[14]. Chemical and sonochemical methods have been developed to produce narrow carbon nanoscrolls, but with a low yield[15-22]. Nanoscrolls have also been produced by unzipping carbon nanotubes, but the resultant quality and yield also need to be improved[23-25]. Scrolled structures have been obtained by direct rolling up of the graphene monolayers by ball milling[26]. Little amount and low quality CNSs were obtained at the end of the graphite grinding process, and the diameter of these scrolls was quite large (ca. 400 nm)[27]. Tunable carbon nanoscrolls were produced by using Fe3O4nanoparticles as the catalyst precursor based on a chemical vapor deposition method[28]. Recently, we have developed a simple approach for the production of CNSs[29]. This method is based on the application of shear-friction forces to convert graphite nanoplatelets to carbon nanoscrolls using a biaxially oriented polypropylene (BOPP) surface. An important aspect for the assessment of the technique is the morphological investigation of these produced rolled structures. One of the most commonly used techniques to characterize carbon related materials is Raman spectroscopy. It plays a very important role in acquiring information not only on morphological properties but also on physical, chemical properties of graphene and graphene based structures[30, 31]. Herein we report on a polarized micro-Raman spectroscopic technique, which allows to determine the chirality, hence the crystal orientation of the graphite lattice with respect to the scroll axis of the structures produced by the micromechanical method. The technique allows to obtain both qualitative and quantitative information of the graphite lattice orientation by using the split of the vibrational G mode.

    2 Experimental

    2.1 Methods

    An alcoholic (ethanol, Sigma-Aldrich 99.9%) dispersion of nanographite (graphite nanoplatelets, GNP), was slowly rubbed against on the surface of a BOPP (Manucor S.p.a., film thickness = 40 μm) film using a low-density polyethylene (LDPE) piece. The alcoholic suspension was allowed to dry during the rubbing down process. After drying the concentrated liquid suspension was removed from the BOPP film by pouring pure ethanol on it. The resulting black suspension contained a large amount of nanoscrolls. Nanoscrolls were separated from the un-rolled and/or partially rolled graphene-based material by sedimentation in ethanol since their Stokes coefficient value is significantly higher than that for graphene sheets. The high roughness of the BOPP due to the nano-fibers on BOPP surface is able to induce a rolling up process in the graphene sheet. Indeed, the dimension of the nano-fibers is 4.20 ?[32], which is comparable to the graphite interlayer spacing (3.35 ?), thus leading to enhanced mechanical grip between the two sliding surface. The mechanism involved in the CNS formation is schematically depicted in Fig. 1.

    Fig. 1 Scheme of the micromechanical method used transform GNPs to carbon nanoscrolls.

    The displayed time sequence (from top to bottom) illustrates the formation of a rolled nanostructure. The sliding and separation of graphene sheets take place under the weak shear forces acting along the BOPP surface. GNP and CNSs were morphologically characterized by SEM (a FEI quanta 200 FEg equipped whit an Oxford Inca Energy system 250) and TEM (a FEI Tecnai G2 Spirit TWIN whit LaB6 source). The powder containing CNSs was diluted in ethanol (98.8%) and sonicated for 10 minutes. A drop of the liquid was placed on a microscope glass and left in air until the solvent was completely evaporated. Single CNS was identified by optical microscope and analysed by micro-Raman spectroscopy (μ-RS). For the measurements a Jobin-Yvon system from Horiba ISA was used, with a TriAx 180 monochromator, equipped with a liquid nitrogen-cooled charge-coupled detector. The grating of 1 800 grooves/mm allows a final spectral resolution of 4 cm-1. The spectra were recorded in air at room temperature using a 17 mW He-Ne laser source (wavelength 632.8 nm). The spectrum accumulation time was 300 s. The laser light was focused to a 2 μm spot size on the samples through an Olympus confocal microscope with a 100 × optical objective. The laser light beam was polarized along a fixed direction (Y-axis) by a polarizing polymer filter. The same filter was used for polarize the Raman signal. By rotating the sample under the microscope objective by an angleφabout the optical axis (Z-axis), μ-RS was performed at different incidence anglesφof the polarized light with respect to the CNS orientation. The CNS axis was aligned to the Y-axis forφ= 90°. In order to determine the basic vibrational modes that contribute to the Raman signal, the spectra were analyzed in terms of convoluted Lorentzian functions by using a best-fit peak-fitting routine of a GRAMS/AI (2001, Thermo Electron) program, which is based on the Levenberg-Marquardt nonlinear least-square method. Peaks constituting the spectrum were manually selected in order to define the starting conditions for the best-fit procedure. The best-fit was then performed to determine convolution peaks with an optimized intensity, position and width. Its performance was evaluated by means of the χ2parameter. Fourier Transform Infrared (FT-IR) spectroscopy of the CNS samples was performed in the mid infrared range of energy (4 000- 400 cm-1). A FT/IR-6000 spectrometer from JASCO Inc (USA) has been used in transmission mode. An ethanol solution of CNS was dropped on the surface of a thin (thinner than 1 mm) fresh prepared pellet of KBr and left in dry air until the solvent was completely evaporated. The FT-IR spectrum was acquired in transmission mode on a surface area of about 5 mm2. A 100 scan acquisition process has been used with a spectral resolution of 1 cm-1.

    3 Results and discussion

    The nano-fibrous structure of the BOPP film surface was analyzed by atomic force microscopy (AFM) as shown in Fig. 2a. It can be seen that the BOPP surface is made of nanosized polypropylene fibers capable of inducing the opening of the graphite nanocrystal edges, thus causing a scrolling-up process under the effect of the applied shear stress.

    Fig. 2b shows the morphology of the GNP precursor. Flat graphite nano-platelets with sharp edges can be clearly seen. The average size and thickness of the GNP precursor was of a few microns and ca. 20 nm, respectively. After the mechanical treatment the material morphology was completely modified. SEM and TEM analysis of the scrolled structures are shown in Fig. 3. Fig. 3a shows a large amount of tubular structures produced by the rolling-up of carbon sheets. They appear to be distributed all over the examined surface in presence of nanoplatelets of varying size and orientation. The reaction yield was about 14%. The produced CNSs are structurally made of continuous graphene sheets rolled up into a hollow tubular form of length ranging from 0.5 to 2.5 μm and diameter ca. 100 nm.

    Fig. 2 (a) AFM image of the BOPP film nanoporous surface and (b) SEM micrograph of the GNP precursor.

    The produced CNSs have been characterized by FT-IR and micro-Raman spectroscopy. Fig. 4 shows the typical FT-IR spectrum of the CNSs and assignment of the main modes. The presence of hydroxyl groups is evinced by the weak absorption peak at 1 630 cm-1and 3 360 cm-1. The enlarged spectrum in the 2 700- 3 100 cm-1range, where two prominent absorption peaks are featured at 2 849 cm-1and 2 921 cm-1is given in the inset. These modes are generally associat-ed to CH2vibrational modes and are typically obs-erved in FT-IR spectra of carbon nanotubes[35, 36]. Micro-Raman spectroscopy (μ-RS) is widely used as fast, powerful and nondestructive method for characterizing sp3carbon system and can provide information on defects of the structure. Result of the (μ-RS) scattering measurements carried out on an insulated single CNS fabricated by the shear-friction method is shown in Fig. 5 (plot (a) ).

    Fig. 3 (a,b) SEM micrographs and (c, d) TEM images of CNSs.

    Fig. 4 FT-IR spectrum of CNSs. The inset shows the enlarged spectrum in the 2 700- 3 100 cm-1 range.

    Fig. 5 (a) Raman spectra of a single CNS. Both the excitation light and the Raman signal were polarized along a fixed direction (y-axis) φ=-10° rotated with respect to the strain (x-axis) direction. The spectrum measured from unstrained flat graphene platelets is reported in (b) for comparison. Details of the G mode for both (a) and (b) spectra are reported in the inset, and fitted by Lorentzian functions.

    The spectrum was recorded under ambient conditions using a 632.8 nm laser source. The laser light was focused to a 2 μm spot size on the samples under a low power irradiation to avoid additional heating effect during the measurement. In order to bring out effects related to the lattice orientation of graphene foil in the CNS, both the excitation light and Raman signal were polarized along a fixed direction (y-axis) while the sample was positioned under the microscope objective at an angleφabout the optical axis (z-axis) of the incident light (Y//Y configuration). In the case of Fig. 5, the sample was rotated by an angleφ=-10° with respect to thex-axis, normal to the polarization direction. The CNS axis was aligned to they-axis forφ=90°. The spectrum exhibits sharp features at 1 583 cm-1(Gband), 1 332 cm-1(Dband) and 1 617 cm-1(D′band), typical of disordered graphene[37]and of carbon nanoscrolls[21, 38, 39]. The Raman spectrum of graphene flat platelets has been measured in unpolarized configuration with experimental conditions similar to those used for CNSs and it is reported in Fig. 5 (plot (b)) for comparison. Peak positions are preserved but their relative intensity and shape change significantly. Some similarities occur also in the Raman spectra of CNTs, even if effects of resonantly electronic excited modes affect significantly theGpeak by adding a broad and intense component at 1 550 cm-1strongly dependent on the CNT chirality[40]. In general, theGpeak is assigned to the double degeneratedE2gphonon mode at the Brillouin-zone center while theDpeak is originated by a double resonance process involving phonons near K points and its intensity strongly depends on the disorder degree and on defects[41]. The relatively high intensity of theDandD′modes indicates the presence of disorder that may originate from defects and edges of graphene planes, presumably attributable to the considerable length of rolls. A further broad peak, the 2Dmode, is observed at about 2 650 cm-1. This peak is the second order of theDmode, but, differently from this one, it does not require the presence of disorder for its activation. The center of this mode depends on the graphene layer number, and moves to high wavenumbers when this number increases (blue shift)[42]. In our case, the 2Dmode is centered at about 2 645 cm-1, close to the value expected for graphene monolayer, and it indicates that the sample considered is constituted by a limited number of layers (lower than 5), in good agreement with morphological observations. The 2DRaman peak is expected to follow polarization features ofA1mode because overtone always contains anA1symmetry character[43, 44]. In the polarization configuration used the 2Dsignal is expected to be constant withφ, and its intensity has been used for normalizing the spectra. Similarly, theGmode intensity should not change with polarization because it corresponds to phonons withE2gsymmetry. However, theE2gsymmetry is lowered when graphene is stretched out of equilibrium and strain is induced. This is also the case of CNSs and carbon nanotubes because the curvature of the graphene foil induces a deformation of the C—C bonds that are expected to be lengthened and softened in the direction perpendicular to the axis of curvature. The un-axial strain induces a split of theGmode into two componentsG-andG+with different energies, corresponding to a fixed orientation of the vibration with respect to the strain axis[45]. This energy split is clearly observed in the CNS. When theGpeak is analyzed in terms of convolution of Lorentzian functions, two different components have been evinced (plot (a) in the inset of Fig. 5) centered at 1 573 cm-1and 1 581 cm-1, and assigned to theG-andG+mode respectively. In the case of unstrained graphene platelets (plot (b) in the inset of Fig. 5) theGmode peak can be satisfactorily fitted by a single Lorentzian function. The lower energy subbandG-is generated by phonons directed longitudinally to the strain axis,whileG+is related to phonon mode transverse to the strain axis. In the case of the CNS, the strainx-axis is directed perpendicular to the main axis of the CNS. The intensity of the two subbands depends on the rotation angleφand on the lattice orientation of the graphene sheet with respect to the CNS axis. We assume a reference system with thex-axis directed along the direction of the strain and they-axis along the direction of the CNS and callφSthe angle between they-axis and thex-axis of graphene lattice.

    In the reference system of CNS shown schematically in Fig. 6a, the Raman matrices R+and R-for the two degeneratedE2gmodes can be rewritten as:

    (1)

    (2)

    wheref-andf+are constants depending on the specific Raman scattering cross section. For the considered Y//Y polarization configuration (Fig. 6b), the intensitiesIG-andIG+of theG-andG+modes depend on anglesφandφSaccording to the following simple relations:

    (3)

    (4)

    whereI0G-andI0G+are constants. A set ofμ-RS measurements was performed for different polarization angles on a single CNS, at angles valuesφ= -40°, -20°, 0°, 20°, 40°, 50°, 60°, 80°, 90°. The Raman response in the wavenumber range of 1 525 cm-1and 1 625 cm-1depends on the polarization angleφas shown in Fig. 7. TheGmode peak of the spectra has been analyzed in terms of convolution of Lorentzian functions, by means of a best fitting procedure.G-andG+components have been identified for each angleφ. The peak areas ofG-andG+mode normalized to the peak area of 2Dmode, are reported in Fig. 8. TheGmode intensity measurements of the normalized peak are fitted by the angular intensity distribution given by Eqs. (3) and (4). The fit procedure givesφS=9.6° and it allows to determine the axis orientation of the graphene sheet with respect to the direction normal of the CNS axis.

    Fig. 6 (a) Schematic view of graphene with strain directed along x-axis direction. (b) Coordinate systems adopted: both excitation and signal beams are directed along thez- (Z-) axis direction, and they are polarized in the plane Y-Z.

    Fig. 7 Raman spectra of an insulated CNS in the wavenumber range of G mode. Both the excitation light and the Raman signal were polarized along a fixed direction (y-axis) while the sample was rotated by an angle φ with respect to the X-axis direction.

    Fig. 8 Dependence on the angle φ of the peak area of the Raman mode G- (a) and G+ (b). The data are fitted by Eq.3 and Eq.4 respectively, for the fit parameter value φS=-9.6°.

    4 Conclusions

    Theoretical and experimental investigations have shown that carbon nanoscrolls are nanostructures, which offer a number of advantages compared to planar graphene and are of potential interest in many applications. A convenient method for the massive production of carbon nanoscrolls is based on the shear-friction mechanism using a nanofibrous BOPP surface to transform the graphite nano-platelets to carbon nanoscrolls through rolling up the graphite layer. TEM studies have shown that the fabricated CNSs have a long tubular and fusiform structure with a hollow core surrounded by few layers of graphene. We have used micro-Raman spectroscopy to investigate the morphological changes undergone by the rolled structure. Micro-Raman analysis have allowed an accurate determination of the orientation of the graphite lattice with respect to the scroll axis from the angular distribution of the intensities of the G subbands.

    [1] Bacon R. Growth, structure, and properties of graphite whiskers [J]. Journal of Applied Physics, 1960, 31(2): 283-290.

    [2] Braga S F, Coluci V R, Legoas S B et al. Structure and dynamics of carbon nanoscrolls [J]. Nano Letters, 2004, 4(5): 881-884.

    [3] Shi X, Pugno N M, Gao H. Mechanics of carbon nanoscrolls: A review [J]. Acta Mechanica Solida Sinica, 2010, 23(6): 484-497.

    [4] Xu Z, Buehler M J. Geometry controls conformation of graphene sheets: Membranes, ribbons, and scrolls [J]. ACS Nano, 2010, 4(5): 3869-3876.

    [5] Chuvilin A L, Kuznetsov V L, Obraztsov A N. Chiral carbon nanoscrolls with a polygonal cross-section [J]. Carbon, 2009, 47(13): 3099-3105.

    [6] Chivilikhin S A, Popov I Y. Formation and evolution of nanoscroll ensembles based on layered-structure compounds [J]. Doklady Physics, 2009, 54(11): 491-493.

    [7] Shi X, Pugno N M, Gao H. Constitutive behavior of pressurized carbon nanoscrolls [J]. International Journal of Fracture, 2011, 171: 163-168.

    [8] Xia D, Xue Q, Xie J, et al. Fabrication of carbon nanoscrolls from monolayer graphene [J]. Small, 2010, 6(18): 2010-2019.

    [9] Li T S, Lin M F. Quantum transport in carbon nanoscrolls [J]. Physics Letters A, 2012, 376(4): 515-520.

    [10] Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines: From toxicology to pharmacology [J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1460-1470.

    [11] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: A promising material for hydrogen storage [J]. Nano Letters, 2007, 7(7): 1893-1897.

    [12] Coluci V R, Braga S F, Baughman R H, et al. Prediction of the hydrogen storage capacity of carbon nanoscrolls [J]. Physical Review B, 2007, 75(12): 125404.

    [13] Braga S F, Coluci V R, Baughman R H, et al. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study [J]. Chemical Physics Letters, 2007, 441(1-3): 78-82.

    [14] Tapasztó L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography [J]. Nature Nanotechnology, 2008, 3(7): 397-401.

    [15] Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene [J]. Nano Letters, 2008, 8(7): 1912-1915.

    [16] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene [J]. Nano Letters, 2009, 9(7): 2600-2604.

    [17] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science, 2008, 319(5867): 1229-1232.

    [18] Wu Z S, Ren W, Gao L, et al. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets [J]. Nano Research, 2010, 3(1): 16-22.

    [19] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls [J]. Science, 2003, 299(5611): 1361.

    [20] Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene [J]. Nano Letters, 2009, 9(7): 2565-2570.

    [21] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen [J]. Advanced Materials, 2011, 23(21): 2460-2463.

    [22] Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds [J]. Carbon, 2007, 45(14): 2797-2800.

    [23] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872876.

    [24] Jiao L, Zhang L, Wang X et al. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 87780.

    [25] Zhang Z, Sun Z, Yao J, et al. Transforming carbon nanotube devices into nanoribbon devices [J]. Journal of the American Chemical Society, 2009, 131(37): 1346013463.

    [26] Li J L, Peng Q , Bai G Z, et al. Carbon scrolls produced by high Energy ball milling of graphite [J]. Carbon, 2005, 43(13): 2830-2833.

    [27] Spreadborough J. The frictional behavior of graphite [J]. Wear, 1962, 5(1): 18-30.

    [28] Chen X L, Li Li, Sun X M et al. A novel synthesis of graphene nanoscrolls with tunable dimension at a large scale [J]. Nanotechnology, 2012, 23(5): 055603.

    [29] Carotenuto G, Longo A, De Nicola S, et al. A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets [J]. Nanoscale Research Letters, 2013, 8: 403.

    [30] Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes [J]. Advances in Physics, 2000, 49(6): 705-814.

    [31] Reich S, Thomsen C. Raman spectroscopy of graphite [J]. Philosophical Transactions of the Royal Society Ser A, 2004, 362(1824): 2271-2288.

    [32] Nie H Y, Walzak M J, McIntyre N S. Atomic force microscopy study of biaxially-oriented polypropylene films [J]. Journal of Materials Engineering and Performance, 2004, 13(4): 451-460.

    [33] Wang X, Yang D P, Huang G, et al. Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation [J]. Journal of Materials Chemistry, 2012, 22(34): 17441-17444.

    [34] Carotenuto G, De Nicola S, Palomba M, et al. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets [J]. Nanotechnology, 2012, 23(48): 485705.

    [35] Kim U J, Liu X M, Furtado C A, et al. Infrared-active vibrational modes of single-walled carbon nanotubes [J]. Physical Review Letters, 2005, 95(15): 157402.

    [36] Kim U J, Furtado C A, Liu X et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes [J]. Journal of the American Chemical Society, 2005, 127(44): 15437-15445.

    [37] Martins Ferreira E H, Moutinho M V O, Stavale F, et al. Evolution of the Raman spectra from single, few, and many-layer graphene with increasing disorder [J]. Physical Review B, 2010, 82(12): 125429.

    [38] Roy D, Angeles-Tactay E, Brown R J C, et al. Synthesis and Raman spectroscopic characterization of carbon nanoscrolls [J]. Chemical Physics Letters, 2008, 465(4-6): 254-257.

    [39] Zhou H Q, Qiu C Y, Yang H C, et al. Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls [J]. Chemical Physics Letters, 2011, 501(4-6): 475-479.

    [40] Duesberg G S, Loa I, Burghard M, et al. Polarized raman spectroscopy on isolated single-wall carbon nanotubes [J]. Physical Review Letters, 2000, 85(25): 5436.

    [41] Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystal of graphite [J]. Physical Review B, 1979, 20(2): 392-401.

    [42] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401.

    [43] Yoon D, Moon H, Son Y W et al. Strong polarization dependence of double-resonant Raman intensity in graphene [J]. Nano Letters, 2008, 8(12): 4270-4274.

    [44] Sahoo S, Palai R, Katiyar S. Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene [J]. Journal of Applied Physics, 2011, 110(4): 044320.

    [45] Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation [J]. Physical Review B, 2009, 79(20): 205433.

    1007-8827(2016)06-0621-07

    炭納米卷的極性微-拉曼光譜研究

    G. Carotenuto1, A. Longo1, C. Camerlingo2, S. De Nicola2, G.P. Pepe2,3

    (1.CNR-IPCB,Inst.forPolymers,CompositesandBiomaterials.NationalResearchCouncil,VialeKennedy, 54.Mostrad’OltremarePad. 20-80125Naples,Italy;2.CNR-SPIN,Inst.forSuperconductors,oxidesandotherinnovativematerialsanddevices,NationalResearchCouncil,C.Univ.M.S.Angelo,ViaCinthia,80126Naples,Italy;3.DipartimentoScienzeFisiche,UniversityofNaplesFedericoII,ViaCinthia,80126Naples,Italy)

    采用剪切-摩擦機理,通過卷曲將雙軸取向聚丙烯纖維表面轉變成石墨納米片,從而制備出炭納米卷。通過光學和掃描電鏡、透射電鏡和紅外光譜儀等手段對炭納米卷的形貌進行分析。微-拉曼測試表征了卷曲結構的形貌變化。從振動的G模式分裂可知,石墨片取向度與卷曲軸有關。

    炭納米卷; 剪切應力; 雙軸取向聚丙烯; 石墨納米片; 微-拉曼光譜

    TQ127.1+1

    A

    C. Camerlingo. E-mail: carlo.camerlingo@spin.cnr.it

    C. Camerlingo. E-mail: carlo.camerlingo@spin.cnr.it

    10.1016/S1872-5805(16)60036-7

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    透射電鏡雙軸卷曲
    電子顯微學專業(yè)課的透射電鏡樣品制備實習課
    透射電子顯微鏡在實驗教學研究中的應用
    山東化工(2020年15期)2020-02-16 01:00:12
    基于大數據的透射電鏡開放共享實踐與探索
    汽車冷沖壓U形梁卷曲的控制
    簡易雙軸立銑頭裝置設計與應用
    基于SolidWorks對雙軸攪拌機的靜力學分析
    透射電鏡中正空間—倒空間轉換教學探討
    夜讀
    詩林(2016年5期)2016-10-25 06:24:48
    雙軸太陽能跟蹤與市電互補的路燈控制系統(tǒng)
    DCS550卷曲宏在復卷機退紙輥控制中的應用
    中國造紙(2015年7期)2015-12-16 12:40:50
    日韩一本色道免费dvd| 伊人久久国产一区二区| 亚洲va在线va天堂va国产| 午夜激情福利司机影院| 亚洲va在线va天堂va国产| 能在线免费观看的黄片| 国产精品国产三级国产专区5o| 丝瓜视频免费看黄片| videos熟女内射| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 午夜视频国产福利| 久久久久久久久中文| 九九爱精品视频在线观看| 18禁动态无遮挡网站| 国产久久久一区二区三区| 欧美日韩亚洲高清精品| 国产在视频线在精品| 国产精品麻豆人妻色哟哟久久 | 亚洲成人中文字幕在线播放| 色综合亚洲欧美另类图片| xxx大片免费视频| 99九九线精品视频在线观看视频| 国产高清有码在线观看视频| 国产在视频线精品| 国产麻豆成人av免费视频| 国产精品蜜桃在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人午夜福利电影在线观看| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 欧美潮喷喷水| 麻豆久久精品国产亚洲av| 国产成人91sexporn| 一个人观看的视频www高清免费观看| 成人二区视频| 白带黄色成豆腐渣| 久久精品夜夜夜夜夜久久蜜豆| 两个人视频免费观看高清| 女人被狂操c到高潮| 欧美日本视频| 亚洲国产精品sss在线观看| 亚洲最大成人av| 乱系列少妇在线播放| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 亚洲自偷自拍三级| 深爱激情五月婷婷| 白带黄色成豆腐渣| 亚洲av电影在线观看一区二区三区 | 女的被弄到高潮叫床怎么办| 国产成人a区在线观看| 人妻一区二区av| 插逼视频在线观看| 免费高清在线观看视频在线观看| 亚洲美女视频黄频| 少妇的逼好多水| 亚洲欧美日韩卡通动漫| 亚洲av免费高清在线观看| 蜜桃亚洲精品一区二区三区| 国产激情偷乱视频一区二区| 伊人久久精品亚洲午夜| 黄片wwwwww| 女人十人毛片免费观看3o分钟| 99久国产av精品| 尾随美女入室| 少妇丰满av| 69av精品久久久久久| 中文字幕制服av| 日韩国内少妇激情av| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 真实男女啪啪啪动态图| 天堂中文最新版在线下载 | 搡老乐熟女国产| 亚洲欧美一区二区三区国产| 免费av观看视频| 免费看a级黄色片| 青春草亚洲视频在线观看| 成年免费大片在线观看| 一个人看视频在线观看www免费| 精品人妻一区二区三区麻豆| 国产精品一及| 国产亚洲91精品色在线| 一级毛片电影观看| 亚洲aⅴ乱码一区二区在线播放| 在线 av 中文字幕| 亚洲av电影不卡..在线观看| 联通29元200g的流量卡| 成人高潮视频无遮挡免费网站| 男的添女的下面高潮视频| 婷婷六月久久综合丁香| 久久久精品欧美日韩精品| 日韩欧美精品免费久久| 欧美3d第一页| 成人午夜精彩视频在线观看| 精品国产露脸久久av麻豆 | 69人妻影院| 国产片特级美女逼逼视频| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 亚洲久久久久久中文字幕| 蜜桃亚洲精品一区二区三区| av黄色大香蕉| 欧美日本视频| 精品熟女少妇av免费看| 少妇人妻一区二区三区视频| 亚洲熟妇中文字幕五十中出| 免费观看无遮挡的男女| 非洲黑人性xxxx精品又粗又长| 国产v大片淫在线免费观看| 韩国高清视频一区二区三区| 亚洲精品中文字幕在线视频 | 国产男女超爽视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品国产精品| 国产精品综合久久久久久久免费| 欧美性感艳星| 久热久热在线精品观看| 精品国产露脸久久av麻豆 | 99久久人妻综合| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 美女xxoo啪啪120秒动态图| 久久久久久久大尺度免费视频| 在线a可以看的网站| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 国产精品一及| 欧美丝袜亚洲另类| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 日本免费a在线| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品人妻久久久久久| 人人妻人人澡欧美一区二区| 一级毛片我不卡| 青春草视频在线免费观看| 久久久午夜欧美精品| 国产黄片视频在线免费观看| 中文字幕久久专区| 日本午夜av视频| 一区二区三区乱码不卡18| 国产探花在线观看一区二区| 日本午夜av视频| 久久久久九九精品影院| 久久久欧美国产精品| 日韩中字成人| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 国产精品熟女久久久久浪| 六月丁香七月| 国产有黄有色有爽视频| 人人妻人人澡欧美一区二区| 九色成人免费人妻av| 一本久久精品| 亚洲国产精品国产精品| 看十八女毛片水多多多| 美女主播在线视频| 免费看美女性在线毛片视频| 免费黄色在线免费观看| 久久精品熟女亚洲av麻豆精品 | 大陆偷拍与自拍| 日韩av在线免费看完整版不卡| 精华霜和精华液先用哪个| xxx大片免费视频| 日韩亚洲欧美综合| 又黄又爽又刺激的免费视频.| 日本免费在线观看一区| 一夜夜www| 在线观看人妻少妇| 97人妻精品一区二区三区麻豆| 插阴视频在线观看视频| 国产一区二区三区综合在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 人妻一区二区av| av免费在线看不卡| 一级av片app| 亚洲国产高清在线一区二区三| or卡值多少钱| 99热这里只有精品一区| 国产av在哪里看| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 国内揄拍国产精品人妻在线| 日韩不卡一区二区三区视频在线| 波多野结衣巨乳人妻| 欧美人与善性xxx| 永久免费av网站大全| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3| 熟女电影av网| 丰满人妻一区二区三区视频av| 午夜老司机福利剧场| 直男gayav资源| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 国产成人a∨麻豆精品| 中文字幕免费在线视频6| 国内精品一区二区在线观看| 久久精品久久久久久噜噜老黄| 在线观看免费高清a一片| 成人亚洲精品av一区二区| 国产有黄有色有爽视频| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 777米奇影视久久| 超碰97精品在线观看| 国产一级毛片七仙女欲春2| 午夜亚洲福利在线播放| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 久久久亚洲精品成人影院| 嫩草影院入口| 久久久久国产网址| 成人漫画全彩无遮挡| 国产综合懂色| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频| 岛国毛片在线播放| 一级二级三级毛片免费看| 免费黄频网站在线观看国产| 国产精品av视频在线免费观看| 久久精品国产亚洲网站| 一区二区三区高清视频在线| 2021少妇久久久久久久久久久| 日韩国内少妇激情av| 九色成人免费人妻av| 亚洲不卡免费看| 免费观看在线日韩| 久久久成人免费电影| 能在线免费看毛片的网站| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 日韩成人伦理影院| 亚洲激情五月婷婷啪啪| 国产精品爽爽va在线观看网站| 99热6这里只有精品| 尾随美女入室| 日韩伦理黄色片| 97热精品久久久久久| 日本一本二区三区精品| 成人毛片a级毛片在线播放| 久久精品综合一区二区三区| 最近的中文字幕免费完整| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 大片免费播放器 马上看| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 激情五月婷婷亚洲| 亚洲国产成人一精品久久久| 精品熟女少妇av免费看| 国产精品一区二区三区四区久久| 乱码一卡2卡4卡精品| 久久国产乱子免费精品| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 免费无遮挡裸体视频| 国产高清国产精品国产三级 | 久久久久久久国产电影| av免费观看日本| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 蜜桃久久精品国产亚洲av| 国产精品福利在线免费观看| a级毛色黄片| 久久久久久九九精品二区国产| 一本久久精品| 精品不卡国产一区二区三区| 欧美成人a在线观看| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 久久亚洲国产成人精品v| 国产成人精品婷婷| 国产色婷婷99| 国产成年人精品一区二区| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 国产综合懂色| 伦理电影大哥的女人| 国产av在哪里看| 日韩强制内射视频| 三级国产精品片| 国产毛片a区久久久久| 国产一区亚洲一区在线观看| 人妻系列 视频| 欧美最新免费一区二区三区| 国产成年人精品一区二区| 日韩一区二区三区影片| 三级经典国产精品| 久久人人爽人人爽人人片va| 久久精品国产亚洲网站| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 97精品久久久久久久久久精品| 一个人看视频在线观看www免费| 国产精品久久久久久精品电影| 日韩 亚洲 欧美在线| 黄色配什么色好看| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 三级毛片av免费| 天堂av国产一区二区熟女人妻| 国产69精品久久久久777片| 成人一区二区视频在线观看| 国产乱人视频| av卡一久久| 亚洲精华国产精华液的使用体验| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx性猛交bbbb| 国产精品.久久久| 亚洲精品色激情综合| 能在线免费观看的黄片| 欧美日本视频| 草草在线视频免费看| 精品人妻熟女av久视频| 人妻一区二区av| 国产永久视频网站| 青春草亚洲视频在线观看| 欧美日韩亚洲高清精品| 中文字幕av成人在线电影| 欧美成人a在线观看| 国产成人a区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产色片| 亚洲欧美日韩东京热| 美女脱内裤让男人舔精品视频| 成人一区二区视频在线观看| 亚洲国产高清在线一区二区三| 日本猛色少妇xxxxx猛交久久| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| 国产黄色小视频在线观看| 韩国av在线不卡| 精品一区二区三卡| 国产黄频视频在线观看| 欧美zozozo另类| 大又大粗又爽又黄少妇毛片口| 亚洲乱码一区二区免费版| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 精品一区二区免费观看| 在线免费观看不下载黄p国产| 在线a可以看的网站| 中国国产av一级| 国产精品麻豆人妻色哟哟久久 | 色播亚洲综合网| 亚洲av中文字字幕乱码综合| 精品久久久久久电影网| 精品人妻熟女av久视频| 精品酒店卫生间| 啦啦啦中文免费视频观看日本| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 老司机影院毛片| 丰满少妇做爰视频| 永久网站在线| 国产麻豆成人av免费视频| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 国产黄色免费在线视频| 国产精品伦人一区二区| 成人国产麻豆网| 国产在线一区二区三区精| 久久久久久伊人网av| 日韩欧美国产在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av成人精品一区久久| 在线免费观看的www视频| 午夜久久久久精精品| 日本wwww免费看| 色尼玛亚洲综合影院| 99热这里只有是精品50| 五月玫瑰六月丁香| 可以在线观看毛片的网站| a级毛片免费高清观看在线播放| av专区在线播放| 淫秽高清视频在线观看| 搞女人的毛片| 亚洲精品久久午夜乱码| 精品酒店卫生间| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 国产精品熟女久久久久浪| 亚洲精品aⅴ在线观看| 51国产日韩欧美| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 99久久中文字幕三级久久日本| 免费黄频网站在线观看国产| 精品久久国产蜜桃| 色5月婷婷丁香| av在线播放精品| 日本熟妇午夜| 性插视频无遮挡在线免费观看| 国产精品一区二区在线观看99 | 国产成人freesex在线| 久久6这里有精品| 国产成人freesex在线| 91精品伊人久久大香线蕉| 九九在线视频观看精品| 熟女人妻精品中文字幕| 免费看a级黄色片| 特大巨黑吊av在线直播| 亚洲av.av天堂| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 99re6热这里在线精品视频| 国产免费视频播放在线视频 | 国产成人精品久久久久久| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 日韩一区二区三区影片| eeuss影院久久| 亚洲图色成人| 亚洲18禁久久av| 午夜免费男女啪啪视频观看| 国精品久久久久久国模美| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 蜜桃久久精品国产亚洲av| 亚洲精品乱久久久久久| 秋霞伦理黄片| 欧美一区二区亚洲| .国产精品久久| 日韩亚洲欧美综合| 国产精品福利在线免费观看| 色尼玛亚洲综合影院| 欧美精品国产亚洲| 国产伦在线观看视频一区| av在线天堂中文字幕| a级一级毛片免费在线观看| 国产成人精品婷婷| 久久久久久久久久黄片| 麻豆av噜噜一区二区三区| 99视频精品全部免费 在线| 成人午夜高清在线视频| 在线a可以看的网站| 在线免费十八禁| 国产av在哪里看| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 小蜜桃在线观看免费完整版高清| 两个人视频免费观看高清| 全区人妻精品视频| 99热全是精品| 99久久精品热视频| 国产伦精品一区二区三区四那| 午夜亚洲福利在线播放| 全区人妻精品视频| 国产乱来视频区| 亚洲欧美成人综合另类久久久| 又黄又爽又刺激的免费视频.| 亚洲精品国产成人久久av| 亚洲最大成人中文| 国语对白做爰xxxⅹ性视频网站| 日韩欧美 国产精品| 亚洲成人一二三区av| 久久久久久伊人网av| 成人午夜精彩视频在线观看| 免费观看无遮挡的男女| 一区二区三区高清视频在线| 晚上一个人看的免费电影| 久久久久精品久久久久真实原创| 精品一区二区三卡| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 天堂俺去俺来也www色官网 | 久久久久网色| 亚洲国产精品sss在线观看| 老师上课跳d突然被开到最大视频| 有码 亚洲区| 内射极品少妇av片p| 美国免费a级毛片| 午夜日本视频在线| 久久精品国产鲁丝片午夜精品| 男女边吃奶边做爰视频| 性高湖久久久久久久久免费观看| 亚洲国产精品成人久久小说| 一区在线观看完整版| 一级爰片在线观看| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 三级国产精品片| 日本vs欧美在线观看视频| 国产精品国产av在线观看| 热re99久久国产66热| 伊人亚洲综合成人网| 亚洲精品国产av蜜桃| 亚洲综合色网址| 国产一区二区三区综合在线观看| 老司机亚洲免费影院| 91aial.com中文字幕在线观看| av在线app专区| 一级毛片电影观看| 波野结衣二区三区在线| 秋霞在线观看毛片| 久久这里只有精品19| 亚洲人成网站在线观看播放| 嫩草影院入口| 最新的欧美精品一区二区| 欧美成人午夜免费资源| 国产片内射在线| 国产精品一区二区在线观看99| 狂野欧美激情性bbbbbb| 亚洲伊人久久精品综合| 亚洲精华国产精华液的使用体验| 性色avwww在线观看| 一区二区三区精品91| 午夜福利视频在线观看免费| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 人人妻人人爽人人添夜夜欢视频| 久久国内精品自在自线图片| 亚洲天堂av无毛| 国产淫语在线视频| 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| 自线自在国产av| 久久久精品94久久精品| 欧美日韩综合久久久久久| 韩国高清视频一区二区三区| 久久久久久伊人网av| 免费在线观看完整版高清| 国产精品久久久久成人av| av免费观看日本| 一区福利在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品,欧美精品| 欧美精品高潮呻吟av久久| 久久青草综合色| 老鸭窝网址在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品一区在线观看国产| 精品国产乱码久久久久久男人| 成人二区视频| www.精华液| 国产免费现黄频在线看| 国产乱来视频区| 十分钟在线观看高清视频www| 国产伦理片在线播放av一区| 色婷婷久久久亚洲欧美| 国产国语露脸激情在线看| 精品人妻在线不人妻| 99九九在线精品视频| 欧美日韩成人在线一区二区| tube8黄色片| 国产av国产精品国产| 天天躁夜夜躁狠狠久久av| av在线app专区| 观看美女的网站| 美女大奶头黄色视频| 乱人伦中国视频| 丰满迷人的少妇在线观看| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| 欧美中文综合在线视频| 国产男女超爽视频在线观看| 亚洲av综合色区一区| 欧美中文综合在线视频| 叶爱在线成人免费视频播放| 久热久热在线精品观看| 免费av中文字幕在线| 国产有黄有色有爽视频| 久久久久久人人人人人| 中文字幕最新亚洲高清| 男女免费视频国产| 日韩制服丝袜自拍偷拍| 人人澡人人妻人| 久久久久久久久久久久大奶| videos熟女内射| 啦啦啦在线免费观看视频4| freevideosex欧美| 久久国产精品男人的天堂亚洲| 国产成人免费无遮挡视频| 欧美日韩成人在线一区二区| 美女中出高潮动态图| 亚洲国产最新在线播放| 成人黄色视频免费在线看| 少妇被粗大的猛进出69影院| 超碰成人久久| 亚洲国产av新网站| 亚洲男人天堂网一区| 777久久人妻少妇嫩草av网站| 成人国产av品久久久|