向建南,朱永鋼,楊世平
(1. 湖南大學 化學化工學院,湖南 長沙 410082;2. 湖南醫(yī)藥工業(yè)研究所,湖南 長沙 410014)
在離子液體介質(zhì)中催化合成β-羰基膦酸酯
向建南1*,朱永鋼1,楊世平2
(1. 湖南大學 化學化工學院,湖南 長沙 410082;2. 湖南醫(yī)藥工業(yè)研究所,湖南 長沙 410014)
報道了一種由炔基膦酸酯制備β-羰基膦酸酯的簡便、高效新合成方法. 該方法以離子液體為反應(yīng)介質(zhì),質(zhì)子酸為催化劑催化炔基膦酸酯水合制備β-羰基膦酸酯.優(yōu)化實驗條件為:反應(yīng)溫度為60 ℃,離子液體用量3.5 mmol,濃硫酸用量3.5 mmol, 0.5 mmol炔基膦酸酯與1 mmol水反應(yīng)20 h,β-羰基膦酸酯的產(chǎn)率達到98%.該合成方法具有無金屬催化劑、β-羰基膦酸酯產(chǎn)率高以及多種基團適用性等特點.本文合成的化合物2p未見文獻報道.
合成;水合反應(yīng);β-羰基膦酸酯;離子液體
有機磷化合物在有機合成、醫(yī)藥研究方面一直有著重要的應(yīng)用,β-羰基膦酸酯是一類十分重要的有機磷化合物,具有廣泛的生物活性[1-2],可以作為其他很多有機合成反應(yīng)的原料[3-4].β-羰基膦酸酯是通過霍納爾-沃茲沃思-埃蒙斯反應(yīng)[5]制備α,β不飽和羰基化合物的一種不可缺少的底物之一. 同時β-羰基膦酸酯也是制備手性β-氨基[6]和手性β-羥基[7]膦酸化合物的前體.由于β-羰基膦酸酯在化學領(lǐng)域研究中的重要作用,多個實驗室報道了其制備β-羰基膦酸酯的方法[8-12]. 但這些制備β-羰基膦酸酯的方法存在著一些缺點:嚴苛的反應(yīng)條件,復雜的實驗操作步驟,需要使用昂貴的且對環(huán)境有害的金屬催化劑. 其中使用過渡金屬催化炔基磷酸酯水合成β-羰基膦酸酯的方法操作相對簡單[13-14],且水合反應(yīng)的原子利用率高[15]. 隨著不斷的改進,此類水合反應(yīng)所用金屬催化劑從最初的汞鹽[8]到此后的鈀鹽[9]、金化合物[10]及銀鹽[11],但此類方法所使用的金屬催化劑將不可避免地對環(huán)境造成一定污染.
基于此前實驗室對合成β-羰基膦酸酯所做的工作[10-12],我們發(fā)現(xiàn)了一種綠色無污染的方法來制備β-羰基膦酸酯. 離子液體[16]是一種不易損耗且可循環(huán)使用的低熔點鹽,很多有機反應(yīng)在離子液體介質(zhì)中都能很好地進行[17]. Wong實驗組報道了一種新型的離子液體催化介質(zhì),此種介質(zhì)包含有少量的硫酸,能夠在溫和的條件下催化炔烴水合轉(zhuǎn)化成酮類化合物[18].本文探討了一種在溫和無金屬催化劑參與的條件下高效地制備β-羰基膦酸酯的方法.
1.1 試劑與儀器
乙酸乙酯和正己烷及其他部分藥品和試劑均購自九鼎化學試劑公司,藥品和試劑均為分析純,離子液體(N ·(HSO4)2) (結(jié)構(gòu)式見圖1)參照Wong實驗組的方法[18]制備,薄層和柱層析用硅膠均為青島海洋化工廠產(chǎn)品;1H NMR,31P NMR和13C NMR(內(nèi)標為TMS, 溶劑為CDCl3)用Brucker ARX 400 FT型核磁共振儀測定;IR用FD-5DX型紅外儀測定;MS用GCT-TOF型高分辨質(zhì)譜儀測定.
圖1 離子液體結(jié)構(gòu)式
1.2 目標產(chǎn)物的合成
在圓底燒瓶中依次加入離子液體N·(HSO4)2(3.5 mmol, 1 565 mg),炔基膦酸酯(0.5 mmol)和水(1.0 mmol, 18 mg). 攪拌5 min后,向混合液中緩慢滴加濃硫酸(3.5 mmol, 98% H2SO4, 350 mg),然后將反應(yīng)體系溫度逐步提升到60 ℃,持續(xù)攪拌20 h,用薄層色譜法監(jiān)測反應(yīng)進程. 反應(yīng)結(jié)束后,向反應(yīng)混合物中加入6 mL水,并用二氯甲烷萃取所得的混合物,水層保留用作循環(huán)使用. 有機層用15 mL水洗滌一次,15 mL飽和食鹽水洗滌2次,分離出的水相用15 mL二氯甲烷萃取3次,合并有機相用無水硫酸鈉干燥,過濾,減壓蒸餾去除溶劑,得到殘留黏稠液體,經(jīng)過柱層析法分離提純得到目標產(chǎn)物2a-2p.
為證明離子液體的良好活性和可回收性,將含有濃硫酸的離子液體體系循環(huán)5次作為反應(yīng)催化體系,每次循環(huán)過程中,將反應(yīng)產(chǎn)物萃取出,分離提純,計算反應(yīng)產(chǎn)率. 剩余部分加入新的反應(yīng)底物炔基膦酸酯和水,繼續(xù)循環(huán). 循環(huán)反應(yīng)的產(chǎn)物平均產(chǎn)率達到94%,這個結(jié)果證明了離子液體的體系能夠循環(huán)使用.
(2-氧代-2-苯乙基)膦酸二乙酯(2a)[10]:黃色油狀物,產(chǎn)率96% (123 mg),1H NMR (400 MHz, CDCl3)δ7.97 (d,J= 7.2 Hz, 2H), 7.57~7.53 (m, 1H), 7.46~ 7.42 (m, 2H), 4.14~4.06 (m, 4H), 3.60 (d,J= 22.8 Hz, 2H), 1.24 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ191.8 (d,J= 6.5 Hz), 136.3, 133.5, 128.9, 128.4, 62.5 (d,J= 6.6 Hz), 38.3 (d,J= 129.1 Hz), 16.1 (d,J= 6.6 Hz);31P NMR (162 MHz, CDCl3)δ20.0.
[2-氧代-2-(4’-甲基苯乙基)]膦酸二乙酯(2b)[11]:黃色油狀物,產(chǎn)率97% (131 mg),1H NMR (400 MHz, CDCl3)δ7.86 (d,J= 8.4 Hz, 2H), 7.24 (d,J= 8.0 Hz, 2H), 4.12~4.05 (m, 4H), 3.56 (d,J= 22.8 Hz, 2H), 2.36 (s, 3H) , 1.23 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ191.3 (d,J=6.5 Hz), 144.5, 134.0, 129.1, 129.0, 62.5 (d,J= 6.6 Hz), 38.1 (d,J= 129.0 Hz), 21.5, 16.0 (d,J= 6.6 Hz);31P NMR (162 MHz, CDCl3)δ20.3.
[2-氧代-2-(4’-甲氧基苯乙基)]膦酸二乙酯(2c)[11]:黃色油狀物,產(chǎn)率98% (140 mg),1H NMR (400 MHz, CDCl3)δ7.95 (d,J= 8.4 Hz, 2H), 6.90 (d,J= 8.4 Hz, 2H), 4.13~4.06 (m, 4H), 3.83 (s, 3H), 3.55 (d,J= 22.8 Hz, 2H), 1.24 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ190.1 (d,J= 6.5 Hz), 163.9, 131.3, 129.4, 113.6, 62.5 (d,J= 5.8 Hz), 55.4, 38.0 (d,J= 129.0 Hz), 16.1 (d,J= 5.9 Hz);31P NMR (162 MHz, CDCl3)δ20.6.
[2-氧代-2-(4’-乙酰氧基苯乙基)]膦酸二乙酯(2d)[12]:黃色油狀物,產(chǎn)率90% (140 mg),1H NMR (400 MHz, CDCl3)δ8.04 (d,J= 8.8 Hz, 2H), 7.20 (d,J= 8.8 Hz, 2H), 4.15~4.08 (m, 4H), 3.60 (d,J= 22.8 Hz, 2H), 2.30 (s, 3H), 1.26 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ190.6 (d,J= 6.6 Hz), 168.6, 154.7, 133.9, 130.6, 121.7, 62.6 (d,J= 6.6 Hz), 38.4 (d,J= 129.1 Hz), 21.0, 16.1 (d,J= 6.6 Hz);31P NMR (162 MHz, CDCl3)δ19.9.
[2-氧代-2-(4’-氟苯乙基)]膦酸二乙酯(2e)[12]:黃色油狀物,產(chǎn)率87% (118 mg),1H NMR (400 MHz, CDCl3)δ8.05~8.02 (m, 2H), 7.15~7.10 (m, 2H), 4.15~4.08 (m, 4H), 3.58 (d,J= 22.8 Hz, 2H), 1.26 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ190.2 (d,J= 6.5 Hz), 166.0 (d,J= 254.4 Hz), 132.8, 131.4 (d,J= 9.5 Hz), 115.6 (d,J= 21.9 Hz), 62.6 (d,J= 6.5 Hz), 38.5 (d,J= 129.1 Hz), 16.1 (d,J= 6.5 Hz);31P NMR (162 MHz, CDCl3)δ19.7.
[2-氧代-2-(4’-乙?;揭一?]膦酸二乙酯(2f)[12]:黃色油狀物,產(chǎn)率86% (128 mg),1H NMR (400 MHz, CDCl3)δ8.08 (d,J= 8.0 Hz, 2H), 8.02 (d,J= 8.0 Hz, 2H), 4.16~4.09 (m, 4H), 3.64 (d,J= 22.8 Hz, 2H), 2.63 (s, 3H), 1.27 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ197.3, 191.4 (d,J= 6.6 Hz), 140.4, 139.5, 129.2, 128.3, 62.7 (d,J= 6.5 Hz), 38.8 (d,J= 128.4 Hz), 26.8, 16.1 (d,J= 5.8 Hz);31P NMR (162 MHz, CDCl3)δ19.2.
[2-氧代-2-(4’-三氟甲基苯乙基)]膦酸二乙酯(2g)[11]:黃色油狀物,產(chǎn)率81% (131 mg),1H NMR (400 MHz, CDCl3)δ8.12 (d,J= 8.4 Hz, 2H), 7.74 (d,J= 8.4 Hz, 2H), 4.17~4.10 (m, 4H), 3.64 (d,J= 23.2 Hz, 2H), 1.28 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ191.0 (d,J= 6.5 Hz), 139.0, 134.7 (dd,J= 32.8 Hz, 32.6 Hz), 129.3, 125.5 (q,J=3.7 Hz), 122.0, 62.7 (d,J= 6.5 Hz), 38.7 (d,J= 128.3 Hz), 16.0 (d,J= 6.5 Hz);31P NMR (162 MHz, CDCl3)δ19.0.
[2-氧代-2-(3’-甲基苯乙基)]膦酸二乙酯(2h)[10]:黃色油狀物,產(chǎn)率90% (120 mg),1H NMR (400 MHz, CDCl3)δ7.76 (d,J= 7.6 Hz, 2H), 7.36~7.29 (m, 2H), 4.12~4.05 (m, 4H), 3.57 (d,J= 22.8 Hz, 2H), 2.36 (s, 3H), 1.23 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ191.9 (d,J= 6.6 Hz), 138.2, 136.4, 134.3, 129.2, 128.3, 126.1, 62.4 (d,J= 6.6 Hz), 38.2 (d,J= 129.1 Hz), 21.1, 16.0 (d,J= 5.8 Hz);31P NMR (162 MHz, CDCl3)δ20.1.
[2-氧代-2-(2’-甲基苯乙基)]膦酸二乙酯(2i)[11]:黃色油狀物,產(chǎn)率75% (100 mg),1H NMR (400 MHz, CDCl3)δ7.67 (d,J= 7.6 Hz, 1H), 7.34~7.30 (m, 1H), 7.23~7.17 (m, 2H), 4.08~4.00 (m, 4H), 3.52 (d,J= 22.8 Hz, 2H), 2.44 (s, 3H), 1.19 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ195.0 (d,J= 6.6 Hz), 138.8, 137.1 (d,J= 2.2 Hz), 131.9, 131.8, 129.5, 125.6, 62.4 (d,J= 6.6 Hz), 40.9 (d,J= 128.3 Hz), 21.2, 16.1 (d,J=5.8 Hz);31P NMR (162 MHz, CDCl3)δ20.2.
(2-氧代-2-萘乙基)膦酸二乙酯(2j)[12]:黃色油狀物,產(chǎn)率83% (126 mg),1H NMR (400 MHz, CDCl3)δ8.53 (s, 1H), 8.03 (d,J= 8.8 Hz, 1H), 7.96 (d,J= 8.0 Hz, 1H), 7.88~7.83 (m, 2H), 7.60~7.51 (m, 2H), 4.16~4.09 (m, 4H), 3.74 (d,J= 22.8 Hz, 2H), 1.25 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ191.7 (d,J= 6.6 Hz), 135.6, 133.7, 132.2, 131.3, 129.6, 128.7, 128.3, 127.6, 126.8, 124.0, 62.6 (d,J= 6.6 Hz), 38.4 (d,J= 129.1 Hz), 16.1 (d,J= 6.5 Hz);31P NMR (162 MHz, CDCl3)δ20.2.
[2-氧代-2-(2’-乙基噻吩基)]膦酸二乙酯(2k)[12]:黃色油狀物,產(chǎn)率84% (109 mg),1H NMR (400 MHz, CDCl3)δ7.79 (d,J= 3.6 Hz, 1H), 7.66 (d,J= 4.8 Hz, 1H), 7.12~7.10 (m, 1H), 4.14~4.07 (m, 4H), 3.51 (d,J= 22.8 Hz, 2H), 1.25 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ184.1 (d,J= 6.6 Hz), 143.7, 135.0, 134.1, 128.2, 62.6 (d,J= 6.6 Hz), 39.2 (d,J= 129.1 Hz), 16.1 (d,J= 6.5 Hz);31P NMR (162 MHz, CDCl3)δ19.4.
[2-氧代-2-(3’-乙基噻吩基)]膦酸二乙酯(2l)[10]:黃色油狀物,產(chǎn)率87% (113 mg),1H NMR (400 MHz, CDCl3)δ8.16~8.15 (m, 1H), 7.50 (d,J= 5.2 Hz, 1H), 7.25~7.24 (m, 1H), 4.10~4.03 (m, 4H), 3.46 (d,J= 22.8 Hz, 2H), 1.22 (t,J= 7.2 Hz, 6H);13C NMR (100 MHz, CDCl3)δ185.5 (d,J= 6.6 Hz), 141.7, 134.2, 127.1, 126.3, 62.5 (d,J= 6.5 Hz), 39.8 (d,J= 128.4 Hz), 16.0 (d,J= 6.6 Hz);31P NMR (162 MHz, CDCl3)δ19.9.
2-氧代癸基膦酸二乙酯(2m)[10]:無色油狀物,產(chǎn)率30% (43 mg),1H NMR (400 MHz, CDCl3)δ4.17~4.09 (m, 4 H), 3.05 (d,J= 22.8 Hz, 2 H), 2.60 (t,J= 7.2 Hz, 2 H), 1.56 (t,J= 7.2 Hz, 2 H), 1.34~1.25 (m, 16 H), 0.86 (t,J= 7.2 Hz, 3 H);13C NMR (100 MHz, CDCl3)δ202.2 (d,J= 5.8 Hz), 62.5 (d,J= 5.9 Hz), 44.0, 42.2 (d,J= 126.9 Hz), 31.7, 29.2, 29.0, 28.9, 23.4, 22.5, 16.2 (d,J= 5.8 Hz), 14.0;31P NMR (162 MHz, CDCl3)δ20.1.
(2-氧代-2-新戊酰氧基丙基)膦酸二乙酯(2n)[11]:無色油狀物,產(chǎn)率35% (52 mg),1H NMR (400 MHz, CDCl3)δ4.77 (s, 2 H), 4.18~4.10 (m, 4 H), 3.09 (d,J= 22.8 Hz, 2 H), 1.32 (t,J= 7.2 Hz, 6 H), 1.24 (s, 9H);13C NMR (100 MHz, CDCl3)δ195.2 (d,J= 5.8 Hz), 177.6, 68.0, 62.8 (d,J= 5.9 Hz), 39.0 (d,J= 128.3 Hz), 38.6, 27.0, 16.2 (d,J= 6.6 Hz);31P NMR (162 MHz, CDCl3)δ18.4.
(2-氧代-2-苯乙基)膦酸二異丙酯(2o)[12]:黃色油狀物,產(chǎn)率96% (136 mg),1H NMR (400 MHz, CDCl3)δ7.96 (d,J= 7.6 Hz, 2H), 7.53~7.50 (m, 1H), 7.42~7.39 (m, 2H), 4.71~4.62 (m, 2H), 3.54 (d,J= 22.8 Hz, 2H), 1.21 (q,J= 4.0 Hz, 12H);13C NMR (100 MHz, CDCl3)δ191.9 (d,J= 6.5 Hz), 136.4, 133.3, 128.9, 128.3, 71.3 (d,J= 7.3 Hz), 39.4 (d,J=129.8 Hz), 23.7 (d,J= 4.3 Hz), 23.5 (d,J=5.1 Hz);31P NMR (162 MHz, CDCl3)δ17.7.
(2-氧代-2-苯乙基)膦酸二異丁酯(2p):黃色油狀物,產(chǎn)率94% (146 mg),1H NMR (400 MHz, CDCl3)δ7.94 (d,J= 7.2 Hz, 2H), 7.53~7.50 (m, 1H), 7.42~7.38 (m, 2H), 3.78~3.74 (m, 4H), 3.58 (d,J= 23.2 Hz, 2H), 1.86~1.76 (m, 2H), 0.80 (d,J= 6.8 Hz, 12H);13C NMR (100 MHz, CDCl3)δ191.8 (d,J= 6.6 Hz), 136.5, 133.5, 128.9, 128.5, 72.3 (d,J= 7.3 Hz), 38.0 (d,J= 129.1 Hz), 29.0 (d,J= 6.6 Hz), 18.5 (d,J= 1.5 Hz);31P NMR (162 MHz, CDCl3)δ19.7; IR (neat): 2 958, 1 685, 1 594, 1 465, 1 273, 1 026, 1 004, 905 cm-1; HRMS (ESI):m/z[M + H]+calcd for C16H26O4P: 313.156 9, found: 313.156 4.
2.1 反應(yīng)條件的優(yōu)化
為高產(chǎn)率地合成目標產(chǎn)物,我們進行了一系列的實驗,尋找最佳反應(yīng)條件. 2-苯乙炔基膦酸二乙酯(1a)作為模型底物來進行實驗,得到目標產(chǎn)物(2a)的分離產(chǎn)率為44% (Table 1, Entry 1). 當加入的濃硫酸的量由3摩爾逐漸提高到7摩爾時目標產(chǎn)物(2a)的產(chǎn)率逐漸提高到了83% (Entries 2~6). 不向反應(yīng)體系中加入濃硫酸時,反應(yīng)不能正常進行,沒有目標產(chǎn)物生成,回收物為初始投入原料(Entry 7), 因而濃硫酸加入的量對反應(yīng)的產(chǎn)率有很大影響. 溫度的變化也會影響反應(yīng)的進程,對反應(yīng)溫度進行了篩查,將反應(yīng)溫度由25 ℃升高至60 ℃,產(chǎn)率由83%升高到91% (Entries 5, 8, 9). 但繼續(xù)將溫度提高到80 ℃,產(chǎn)率沒有繼續(xù)升高(Entry 10).從表1中的條目8~10的結(jié)果可以看出,最佳反應(yīng)溫度為 60 ℃. 同時篩選了反應(yīng)時間 (Entries 11~14),反應(yīng)時間縮短到8 h時,產(chǎn)率下降到86%(Entry 11). 當反應(yīng)時間逐漸延長時,反應(yīng)產(chǎn)率在逐漸升高,反應(yīng)時間超過20 h,反應(yīng)產(chǎn)率趨于平穩(wěn)(Entries 12~14),因而最佳反應(yīng)時間為20 h(Entry14).
在最優(yōu)的反應(yīng)條件下,我們對各種芳香族和脂肪族的炔基膦酸酯進行探究,來考察底物上取代基團對于反應(yīng)的影響. 這些反應(yīng)的結(jié)果都統(tǒng)計在表2中.
表1 反應(yīng)條件優(yōu)化a
Tab.1 Examination of reaction conditions
EntrynH2SO4/molTemp/℃Time/hYield/%b13.025124424.025125335.025126246.025127557.025128368.0251282702512087.040128797.0601291107.0801290117.060886127.0601694137.0602096147.0602496
a反應(yīng)條件:0.5 mmol炔基膦酸酯,3.5 mmol離子液體,1.0 mmol水. b柱層析法得到分離產(chǎn)率.
供電子基團取代的β-羰基膦酸酯都能容易地合成且產(chǎn)率高(Tab.2, Entries 1~3),同時吸電子基團取代的β-羰基膦酸酯也能夠在較高的產(chǎn)率下制備(Entries 4~6),但其產(chǎn)率略低于供電子基團取代. 然而由于位阻效應(yīng)間位取代和鄰位取代的β-羰基膦酸酯的產(chǎn)率都比對位取代的β-羰基膦酸酯的產(chǎn)率低(Entries 7, 8). 萘環(huán)取代的β-羰基膦酸酯也能順利地制備(Entry 9),十分重要的、具有生物活性的噻吩取代的β-羰基膦酸酯也同樣能夠合成(Entries 10, 11). 結(jié)果表明,盡管β-羰基膦酸酯的產(chǎn)率會受到取代基的電子效應(yīng)和位阻效應(yīng)的影響,但很多芳香取代的β-羰基膦酸酯都能容易地合成(Entries 1~11). 脂肪族取代的炔基膦酸酯也同樣能進行此反應(yīng),但反應(yīng)的產(chǎn)率偏低(Entries 12, 13).其他的膦酸酯底物也能順利地進行水合反應(yīng)得到相應(yīng)的β-羰基膦酸酯(Entries 14, 15).
為了探討大量反應(yīng)的可行性,將模型反應(yīng)底物的量增大到20 mmol,同樣也得到了92%的高產(chǎn)率,結(jié)果與預想的一致,能夠用離子液體體系制備大量的β-羰基膦酸酯產(chǎn)物.
表2 反應(yīng)范圍a
Tab.2 Substrate scope of the reaction
EntryR1=R2=ProductYield/%b14?(CH3)C6H4Et2b9724?(CH3O)C6H4Et2c9834?(CH3COO)C6H4Et2d9044?FC6H4Et2e8754?(CH3CO)C6H4Et2f8664?CF3C6H4Et2g8173?(CH3)C6H4Et2h9082?(CH3)C6H4Et2i759Et2j8310Et2k8411Et2l8712CH3(CH2)6CH2Et2m3013PivOEt2n3514PhiPr2o9615PhiBu2p94
a反應(yīng)條件:0.5 mmol炔基膦酸酯,3.5 mmol離子液體,1.0 mmol水,3.5 mmol濃硫酸. b柱層析法得到分離產(chǎn)率.
2.2 機理探究
此反應(yīng)的機理一般認為是通過碳碳三鍵的限速質(zhì)子化,然后水快速地連接上來,形成烯醇結(jié)構(gòu),通過烯醇結(jié)構(gòu)的轉(zhuǎn)換最終得到羰基化合物[19-20]. 我們的實驗結(jié)果及得到的相應(yīng)產(chǎn)物也印證了這一反應(yīng)機制.
我們成功地發(fā)展了一種利用酸性離子液體在溫和的條件下合成β-羰基膦酸酯的綠色、實用的方法.該方法對于反應(yīng)底物的取代基團具有很好的兼容性,在體系中無論是缺電子還是富電子的芳香族取代炔基磷酸酯都能得到非常高的產(chǎn)率. 更值得一提的是,這種方法避免了使用昂貴且復雜的金屬催化劑,是一種環(huán)境友好的合成方法.
[1] BALG C, BLAIS S P, BERNIER S,etal. Synthesis of beta-ketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyl-tRNA synthetases[J]. Bioorganic & Medicinal Chemistry, 2007,15(1):295-304.
[2] PERUMAL S K, ADEDIRAN S A, PRATT R F. Beta-ketophosphonates as beta-lactamase inhibitors: Intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase[J]. Bioorganic & Medicinal Chemistry, 2008,16(14):6987-6994.
[3] DEBROUWER W, HEUGEBAERT T S, VAN HECKE K,etal. Synthetic entry into 1-Phosphono-3-azabicyclo[3.1.0]hexanes[J]. The Journal of Organic Chemistry, 2013,78(17):8232-8241.
[4] ESSID I, TOUIL S. β-Ketophosphonates as substrates in the Biginelli multicomponent reaction: an efficient and straightforward synthesis of phosphorylated dihydropyrimidinones[J]. ARKIVOC, 2013,4:98-106.
[5] WADSWORTH W S, EMMONS W D. The utility of phosphonate carbanions in olefin synthesis[J]. Journal of the American Chemical Society, 1961,83(7):1733-1738.
[6] RYGLOWSKI A, KAFARSKI P. Preparation of 1-aminoalkylphosphonic acids and 2-aminoalkylphosphonic acids by reductive amination of oxoalkylphosphonates[J]. Tetrahedron, 1996,52(32):10685-10692.
[7] KITAMURA M, TOKUNAGA M, NOYORI R. Asymmetric hydrogenation of .beta.-keto phosphonates: a practical way to fosfomycin[J]. Journal of the American Chemical Society, 1995, 117(10): 2931-2932.
[8] POSS A J, BELTER R K. Diethyl 3-iodopropynylphosphonate: an alkylative .beta.-keto phosphonate equivalent[J]. The Journal of Organic Chemistry, 1987,52(21):4810-4812.
[9] LI X, HU G, LUO P,etal. Palladium(II)-catalyzed hydration of alkynylphosphonates to β-Ketophosphonates[J]. Advanced Synthesis & Catalysis, 2012,354(13):2427-2432.
[10]XIE L, YUAN R, WANG R,etal. Gold(I)-catalyzed hydration of alkynylphosphonates: efficient access to β-ketophosphonates[J]. European Journal of Organic Chemistry, 2014,2014(13):2668-2671.
[11]XIANG J, YI N, WANG R,etal. Synthesis of β-ketophosphonates via AgNO3-catalyzed hydration of alkynylphosphonates: a rate-enhancement effect of methanol[J]. Tetrahedron, 2015,71(4):694-699.
[12]YI N, WANG R, ZOU H,etal. Copper/iron-catalyzed aerobic oxyphosphorylation of terminal alkynes leading to β-ketophosphonates[J]. The Journal of Organic Chemistry, 2015, 80(10):5023-5029.
[13]BAIDOSSI W, LAHAV M, BLUM J. Hydration of alkynes by a PtCl4CO catalyst[J]. The Journal of Organic Chemistry, 1997, 62(3): 669- 672.
[14]SUZUKI T, TOKUNAGA M, WAKATSUKI Y. Ruthenium complex-catalyzed anti-Markovnikov hydration of terminal alkynes[J]. Organic Letters, 2001,3(5):735-737.
[15]HINTERMANN L, LABONNE A. Catalytic hydration of alkynes and its application in synthesis[J]. Synthesis, 2007(8):1121-1150.
[16]STEINRüCK H P, WASSERSCHEID P. Ionic liquids in catalysis[J]. Catalysis Letters, 2014,145(1):380-397.
[17]PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008,37(1):123-150.
[18]WONG W L, HO K P, LEEL Y S,etal. Sulfuric acid-catalyzed conversion of alkynes to ketones in an ionic liquid medium under mild reaction conditions[J]. ACS Catalysis, 2011,1(2):116-119.
[19]MAMEDA N, PERAKA S, MARRI M R,etal. Solvent-free hydration of alkynes over Hβ zeolite[J]. Applied Catalysis A: General, 2015,505:213-216.
[20]NOYCE D S, SCHIAVELLI M D. Acid-catalyzed hydration of phenylacetylene. evidence for the vinyl cation intermediate[J]. Journal of the American Chemical Society, 1968,90(4):1020-1022.
A Simple and Efficient Strategy to Synthesis ofβ-Ketophosphonates Based on Ionic Liquids
XIANG Jian-nan1?, ZHU Yong-gang1, YANG Shi-ping2
(1. College of Chemistry and Chemical Engineering, Hunan Univ, Changsha, Hunan 410082, China; 2. Hunan Institute of Pharmaceutical Industry, Changsha, Hunan 410014, China)
A simple and efficient synthesis ofβ-ketophosphonates was described. The hydrolysis reactions of alkynylphosphonates in the presence of sulphuric acid (3.5 mmol) as a catalyst in the recyclable ionic liquid N·(HSO4)2afforded the desiredβ-ketophosphonates in excellent yields(98%). This method has the advantages of metal-free and tolerance of multifunctional groups. Synthesized compound 2p has not been reported.
synthesis; hydration reaction;β-ketophosphonates; ionic liquid
1674-2974(2016)12-0076-05
2016-04-21 基金項目:湖南省科技計劃項目(2015WK3003) 作者簡介:向建南(1958-),男,湖南南縣人,湖南大學教授,博士生導師 ?通訊聯(lián)系人,E-mail:jnxiang@hnu.edu.cn
O622.4
A