• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一種改進(jìn)的GFDM時(shí)頻同步算法*

      2017-01-03 02:06:51穆巍煒徐錫燕馬肖旭李欣然
      電訊技術(shù) 2016年12期
      關(guān)鍵詞:均方時(shí)頻載波

      吳 虹,王 沖,劉 兵,穆巍煒,徐錫燕,馬肖旭,李欣然

      (1.南開(kāi)大學(xué) 電子信息與光學(xué)工程學(xué)院,天津 300071;2.天津市光電傳感器與傳感網(wǎng)絡(luò)技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300071)

      一種改進(jìn)的GFDM時(shí)頻同步算法*

      吳 虹**1,2,王 沖1,2,劉 兵1,2,穆巍煒1,2,徐錫燕1,2,馬肖旭1,2,李欣然1,2

      (1.南開(kāi)大學(xué) 電子信息與光學(xué)工程學(xué)院,天津 300071;2.天津市光電傳感器與傳感網(wǎng)絡(luò)技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300071)

      針對(duì)廣義頻分復(fù)用(GFDM)系統(tǒng)對(duì)符號(hào)定時(shí)同步要求較高的問(wèn)題,提出了一種新的基于前綴碼的同步算法。在接收端,在獲取粗略定時(shí)信息的基礎(chǔ)上,利用前綴碼前后兩部分的相位差實(shí)現(xiàn)載波頻偏估計(jì),并對(duì)接收序列的頻率偏移進(jìn)行糾正,然后通過(guò)糾正后序列與已知發(fā)射前綴的互相關(guān)函數(shù)實(shí)現(xiàn)精確的符號(hào)定時(shí)估計(jì)。由于該前綴碼具有共軛對(duì)稱(chēng)的特性,使其避免了“平頂效應(yīng)”的出現(xiàn)。結(jié)合5G中低時(shí)延高可靠場(chǎng)景,在頻率選擇性信道中對(duì)其進(jìn)行仿真,并通過(guò)均方誤差對(duì)其性能進(jìn)行了評(píng)估。理論分析及仿真結(jié)果表明,該算法相對(duì)于原算法具有更好的定時(shí)同步性能和更低的復(fù)雜度,提升了GFDM系統(tǒng)的整體性能。

      廣義頻分復(fù)用;定時(shí)偏移;載波頻偏;同步算法

      1 引 言

      隨著第五代移動(dòng)通信(The Fifth Generation Mobile Communication System,5G)逐漸成為全球移動(dòng)通信領(lǐng)域研究的熱點(diǎn),5G愿景與關(guān)鍵能力需求已基本明確。低時(shí)延高可靠場(chǎng)景是5G新拓展的場(chǎng)景,主要面向物聯(lián)網(wǎng)業(yè)務(wù),為用戶提供可靠的網(wǎng)絡(luò)連接、低的接入延遲及更好的移動(dòng)支持性。文獻(xiàn)[1]介紹了幾種新的多載波調(diào)制方式,更好地滿足下一代移動(dòng)通信的需求。廣義頻分復(fù)用(Generalized Frequency Division Multiplexing,GFDM)[2-3]是由德國(guó)5G非正交波束復(fù)形 (5G Non-Orthogonal Waveforms for Asynchronous Signalling,5GNOW)項(xiàng)目于2009年提出的一種多載波調(diào)制方案,由于其具有低時(shí)延、低帶外輻射等優(yōu)點(diǎn),并在頻率選擇性衰落信道中具有良好的性能[4],因此將成為未來(lái)5G新場(chǎng)景需求的一個(gè)非常靈活的解決辦法。

      多載波通信系統(tǒng)的一個(gè)重要問(wèn)題即同步問(wèn)題[5]。文獻(xiàn)[6]對(duì)GFDM在存在符號(hào)定時(shí)偏移(Symbol Timing Offset,STO)及載波頻率偏移(Carrier Frequency Offset,CFO)情況下的性能進(jìn)行了分析,表明GFDM系統(tǒng)對(duì)于定時(shí)偏移比正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing,OFDM)更為敏感,因此,必須對(duì)其進(jìn)行非常精確的符號(hào)定時(shí)同步。與OFDM眾多的同步技術(shù)[7]相比,目前GFDM的同步方法非常少,其主要方法可分為基于數(shù)據(jù)輔助型及非基于數(shù)據(jù)輔助型兩種。文獻(xiàn)[8]介紹了一種非基于數(shù)據(jù)輔助的同步算法,在非常嚴(yán)重的多徑條件下,為GFDM系統(tǒng)提供了一種粗略頻偏估計(jì)的方法?;跀?shù)據(jù)輔助型算法主要是通過(guò)增加訓(xùn)練序列,并利用訓(xùn)練序列的相關(guān)性來(lái)實(shí)現(xiàn)GFDM的時(shí)頻同步[9-11],該類(lèi)算法估計(jì)精度更高,應(yīng)用更廣。文獻(xiàn)[9]介紹了一種基于前綴碼的時(shí)頻同步算法,但其實(shí)現(xiàn)過(guò)程中會(huì)出現(xiàn)“平頂效應(yīng)”。

      本文提出了一種改進(jìn)的同步算法,實(shí)現(xiàn)了GFDM系統(tǒng)中符號(hào)定時(shí)及載波頻偏的準(zhǔn)確估計(jì),并驗(yàn)證了其在頻率選擇性衰落信道中的性能。

      2 GFDM的基本模型

      GFDM是5GNOW項(xiàng)目組針對(duì)下一代移動(dòng)通信提出的一種新的物理層方案。與OFDM使用矩形脈沖濾波器不同,GFDM是一種采用非矩形脈沖成型的多載波調(diào)制系統(tǒng),其發(fā)送端的系統(tǒng)模型如圖1所示。

      圖1 GFDM系統(tǒng)發(fā)送端框圖

      Fig.1 Block diagram of the GFDM transmitter

      (1)

      圖2 GFDM數(shù)據(jù)塊結(jié)構(gòu)

      Fig.2 Structure of the GFDM data block

      定義T0為每個(gè)子符號(hào)周期,TCP為循環(huán)前綴的周期,整個(gè)GFDM的符號(hào)周期TGFDM=TCP+MT0,可以看出由于GFDM的數(shù)據(jù)塊結(jié)構(gòu),使其相對(duì)OFDM使用更少的CP,具有更高的頻譜效率。

      3 時(shí)頻同步算法

      文獻(xiàn)[9]介紹了一種基于前綴碼的GFDM同步方案,但由于循環(huán)前綴的影響,定時(shí)度量曲線會(huì)出現(xiàn)“平頂效應(yīng)”,需要使用文獻(xiàn)[12]中提出的辦法來(lái)消除其影響,導(dǎo)致系統(tǒng)復(fù)雜度的增加。本文結(jié)合OFDM中定時(shí)同步算法[13],將一種新的前綴碼引入到GFDM系統(tǒng)中。

      假定GFDM的前綴碼塊由Mp=2個(gè)子符號(hào)及Kp個(gè)子載波組成。該數(shù)據(jù)塊中,一個(gè)長(zhǎng)度為Kp且關(guān)于中心點(diǎn)共軛對(duì)稱(chēng)的偽隨機(jī)(Pseudo-Noise,PN)序列c=(c[0],…,c[Kp/2-1],c[Kp/2],…,c[Kp-1])T被傳輸兩次,得到該前綴碼承載的數(shù)據(jù)向量

      dp=(c[0],…,c[Kp-1],c[0],…,c[Kp-1])T。

      時(shí)域內(nèi),該前綴碼滿足前后重復(fù)特性的同時(shí),前后兩部分還具有關(guān)于各自中心點(diǎn)呈共軛對(duì)稱(chēng)的特點(diǎn),其時(shí)域結(jié)構(gòu)如圖3所示,其中B*與A呈共軛對(duì)稱(chēng)。

      圖3 前綴碼時(shí)域結(jié)構(gòu)

      Fig.3 Time domain structure of the preamble

      在接收端,接收序列r[n]中,發(fā)射的前綴碼必須至少被接收到一次,用于估計(jì)時(shí)間及頻率偏移。根據(jù)接收序列r[n],得到其自相關(guān)函數(shù)

      (2)

      進(jìn)而可以得到其歸一化自相關(guān)函數(shù)

      (3)

      (4)

      (5)

      得到的頻偏信息可以用來(lái)糾正接收序列的頻率偏移,糾正后的接收序列信息為

      (6)

      該算法相對(duì)于文獻(xiàn)[9]中算法不會(huì)出現(xiàn)“平頂效應(yīng)”,但由于其訓(xùn)練序列是共軛對(duì)稱(chēng)的,導(dǎo)致與正確定時(shí)位置相距N/4處出現(xiàn)兩個(gè)比較大的旁峰,影響定時(shí)的準(zhǔn)確性,需對(duì)其做進(jìn)一步的優(yōu)化。本文利用糾正后的接收序列與已知發(fā)射前綴的互相關(guān)函數(shù),得到更精確的定時(shí)估計(jì)。其互相關(guān)函數(shù)為

      (7)

      式中:px=Adp,A為發(fā)射矩陣;px即將前綴碼通過(guò)發(fā)射矩陣后得到的序列。由于前綴碼由相同的兩部分組成,因此在ρC[n]中,與最高峰相距N/2的位置有兩個(gè)次高峰。于是將ρC[n]與μS[n]結(jié)合起來(lái),較好地抑制了旁峰的影響:

      (8)

      圖4 本文算法中STO精確估計(jì)

      Fig.4 The accurate estimation of STO in this paper

      該算法與文獻(xiàn)[9]中算法相比,通過(guò)引進(jìn)共軛對(duì)稱(chēng)序列,構(gòu)造出新的前綴碼,實(shí)現(xiàn)了符號(hào)定時(shí)及載波頻偏的準(zhǔn)確估計(jì)。從整個(gè)同步算法實(shí)現(xiàn)的過(guò)程可以看出,兩種算法均需要進(jìn)行自相關(guān)函數(shù)的計(jì)算、自相關(guān)函數(shù)的歸一化處理,以及修正后序列與發(fā)射前綴互相關(guān)函數(shù)的計(jì)算,但本文算法由于不會(huì)出現(xiàn)“平頂效應(yīng)”,較原算法復(fù)雜度更低。

      在理想信道情況下,由μA[n]尖銳的峰值可以得到精確的符號(hào)定時(shí)信息,但在頻率選擇性衰落信道中,初始信道的抽頭增益會(huì)受到影響,其峰值可能會(huì)比其他回波低,影響符號(hào)定時(shí)的準(zhǔn)確性。

      為了在頻率選擇性衰落信道中實(shí)現(xiàn)符號(hào)定時(shí)同步,可以采用門(mén)限準(zhǔn)則的方法[14],根據(jù)設(shè)定的錯(cuò)誤報(bào)警概率pFA,在找到最大峰值之前識(shí)別出其他的多徑峰值。門(mén)限值通過(guò)瑞利累積分布函數(shù)來(lái)獲取,其值如下式所示:

      (9)

      (10)

      4 同步算法的性能分析

      為了驗(yàn)證本文提出算法的性能,在頻率選擇性衰落信道中,對(duì)未知量時(shí)間偏移θ及頻率偏移ε進(jìn)行估計(jì),并通過(guò)STO及CFO估計(jì)的均方誤差,對(duì)本文算法及文獻(xiàn)[9]算法的性能進(jìn)行比較。仿真參數(shù)的設(shè)置如下:碼元符號(hào)采用16QAM;為了降低計(jì)算的復(fù)雜度,子載波數(shù)目K取256,子符號(hào)數(shù)目M取2,循環(huán)前綴長(zhǎng)度取32;多徑搜索參數(shù)λ取32;錯(cuò)誤報(bào)警概率設(shè)定為10-6。綜合考慮仿真結(jié)果的準(zhǔn)確性及系統(tǒng)的運(yùn)行效率,在每個(gè)信噪比(Signal-to-Noise Ratio,SNR)值上仿真了500次,具體的仿真結(jié)果如圖5和圖6所示。

      圖5 頻率選擇性信道下STO估計(jì)均方誤差曲線

      Fig.5 MSE curve of the STO estimation in frequency-selective channel

      圖6 頻率選擇性信道下CFO估計(jì)均方誤差曲線

      Fig.6 MSE curve of the CFO estimation in frequency-selective channel

      圖5給出了兩種算法符號(hào)定時(shí)同步的均方誤差曲線。由圖中可以看出,本文算法的均方誤差在信噪比變化的過(guò)程中低于文獻(xiàn)[9]算法,其定時(shí)同步性能更優(yōu),定時(shí)同步的準(zhǔn)確性得到了提升,解決了GFDM系統(tǒng)對(duì)時(shí)間偏移更為敏感的問(wèn)題。圖6的仿真結(jié)果表明,在信噪比低的情況,本文算法中頻偏估計(jì)的均方誤差曲線較文獻(xiàn)[9]算法性能稍差,但隨信噪比的增加,本文算法的性能提高較為明顯,這主要是因?yàn)槠漕l偏估計(jì)的精度受定時(shí)同步性能的影響,隨著SNR的增加,定時(shí)同步性能明顯優(yōu)于原算法,其頻偏估計(jì)精度也明顯提高。

      5 結(jié)束語(yǔ)

      本文在基于前綴碼同步算法的基礎(chǔ)上,將一種具有共軛對(duì)稱(chēng)性的前綴碼引入到GFDM系統(tǒng)中,介紹了一種新的時(shí)頻同步算法。仿真結(jié)果表明,該算法可以獲得與經(jīng)典的OFDM方案相近的性能,且不會(huì)產(chǎn)生原算法中出現(xiàn)的“平頂效應(yīng)”,降低了系統(tǒng)的復(fù)雜度。該算法還可較好地適應(yīng)頻率選擇性衰落信道,面臨實(shí)際復(fù)雜的信道環(huán)境,具有重要的實(shí)際意義。GFDM作為下一代移動(dòng)通信熱門(mén)的候選,該算法主要解決了其同步問(wèn)題,提升了其整體性能,使其可以在未來(lái)5G新場(chǎng)景中得到廣泛的應(yīng)用。未來(lái)計(jì)劃將與多載波同步技術(shù)結(jié)合緊密的相關(guān)技術(shù)引入GFDM系統(tǒng)中,進(jìn)一步提升系統(tǒng)性能。

      [1] WUNDER G,JUNG P,KASPARICK M,et al. 5GNOW:non-orthogonal,asynchronous waveforms for future mobile applications[J]. IEEE Communications Magazine,2014,52(2):97-105.

      [2] FETTWEIS G,KRONDORF M,BITTNER S. GFDM - generalized frequency division multiplexing[C]// Proceedings of IEEE 69th Vehicular Technology Conference. Barcelona:IEEE,2009:1-4.

      [3] MICHAILOW N,MATTHE M,GASPAR I S,et al. Generalized frequency division multiplexing for 5th generation cellular networks[J]. IEEE Transactions on Communications,2014,62(9):3045-3061.

      [4] MICHAILOW N,MENDES L,MATTHé M,et al. Robust WHT-GFDM for the next generation of wireless networks[J]. IEEE Communications Letters,2015,19(1):106-109.

      [5] BAHAI A R S,SALTZBERG B R. Multi-carrier digital communications-theory and applications of OFDM[M]. New York:Springer,2004:83-101.

      [6] CHOI J H,LIM B J,KIM Y J,et al. Effect of timing and frequency synchronization errors on GFDM systems[C]// Proceedings of 2015 International Conference on Information and Communication Technology Convergence. Jeju:IEEE,2015:1322-1325.

      [7] 羅仁澤. OFDM 系統(tǒng)中同步算法的分析與比較[J]. 電訊技術(shù),2006,46(4):150-155. LUO Renze. Analysis and comparison among the synchronization schemes for OFDM systems[J].Telecommunication Engineering,2006,46(4):150-155.(in Chinese)

      [8] KADUR T,GASPAR I,MICHAILOW N,et al. Non-data aided frequency synchronization exploiting ICI in non-orthogonal systems[C]//Proceedings of 2014 IEEE 80th Vehicular Technology Conference. Vancouver:IEEE,2014:1-5.

      [9] GASPER I S,MENDES L L,MICHAILOW N,et al. A synchronization technique for generalized frequency division multiplexing[J]. Eurasip Journal on Advances in Signal Processing,2014(1):1-10.

      [10] GASPAR I,FESTAG A,FETTWEIS G. Synchronization using a pseudo-circular preamble for generalized frequency division multiplexing in vehicular communication[C]// Proceedings of 2015 IEEE 82nd Vehicular Technology Conference.Boston:IEEE,2015:1-5.

      [11] GASPAR I,FETTWEIS G.An embedded midamble synchronization approach for generalized frequency division multiplexing[C]//Proceedings of 2015 IEEE Global Communications Conference. San Diego:IEEE,2015:1-5.

      [12] MINN H,ZENG M,BHARGAVA V K. On timing offset estimation for OFDM systems[J]. IEEE Communications Letters,2000,4(7):242-244.

      [13] PARK B,CHEON H,KANG C,et al. A novel timing estimation method for OFDM systems[J]. IEEE Communications Letters,2003,7(5):239-241.

      [14] KASPARIS C. A cross-correlation approach for improved timing estimation in OFDM broadcasting systems[C]// Proceedings of 24th AIAA International Communications Satellite Systems Conference. San Diego:IEEE,2006:1039-1048.

      WU Hong was born in Tianjin,in 1967. She is now a professor and also the Ph. D. supervisor. Her research concerns wireless communication techniques.

      Email:wuhong@nankai.edu.cn

      王 沖(1986—),男,湖北襄陽(yáng)人,2007年于解放軍信息工程大學(xué)獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)槎噍d波通信中的同步技術(shù);

      WANG Chong was born in Xiangyang,Hubei Province,in 1986. He received the B. S. degree from PLA Information Engineering University in 2007. He is now a graduate student. His research concerns synchronization techniques in multicarrier communications.

      劉 兵(1979—),男,河南人,2001年于西安郵電大學(xué)獲學(xué)士學(xué)位,現(xiàn)為博士研究生,主要研究方向?yàn)闊o(wú)線通信;

      LIU Bing was born in Henan Province,in 1979. He received the B.S. degree from Xi'an University of Posts and Telecommunications in 2001. He is currently working toward the Ph.D. degree. His research concerns wireless communications.

      穆巍煒(1981—),男,遼寧錦州人,2005年于解放軍重慶通信學(xué)院獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)闊o(wú)線通信;

      MU Weiwei was born in Jinzhou,Liaoning Province,in 1981. He received the B. S. degree from PLA Chongqing Institute of Communications in 2005. He is now a graduate student. His research concerns wireless communications.

      徐錫燕(1991—),女,江蘇徐州人,2014年于南開(kāi)大學(xué)獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)闊o(wú)線通信技術(shù);

      XU Xiyan was born in Xuzhou,Jiangsu Province,in 1991. She received the B. S. degree from Nankai University in 2014. She is now a graduate student. Her research concerns wireless communications.

      馬肖旭(1991—),女,重慶人,2014年于南開(kāi)大學(xué)獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)闊o(wú)線通信技術(shù);

      MA Xiaoxu was born in Chongqing,in 1991. She received the B.S. degree from Nankai University in 2014. She is now a graduate student. Her research concerns wireless communications.

      李欣然(1990—),男,天津人,2013年于南開(kāi)大學(xué)獲學(xué)士學(xué)位,現(xiàn)為碩士研究生,主要研究方向?yàn)闊o(wú)線通信技術(shù)。

      LI Xinran was born in Tianjin,in 1990. He received the B. S. degree from Nankai University in 2013. He is now a graduate student. His research concerns wireless communications.

      An Improved Timing and Frequency Synchronization Algorithm for Generalized Frequency Division Multiplexing Systems

      WU Hong1,2,WANG Chong1,2,LIU Bing1,2,MU Weiwei1,2,XU Xiyan1,2,MA Xiaoxu1,2,LI Xinran1,2

      (1.College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300071,China; 2.Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology,Tianjin 300071,China)

      According to the higher requirements of generalized frequency division multiplexing(GFDM) system for symbol timing synchronization,a synchronization algorithm is proposed based on a new preamble. At the receiver,after obtaining the coarse timing synchronization,the carrier frequency offset is estimated through the phase difference between the two halves of the preamble.Then the carrier frequency offset in the received signal is corrected. And a more accurate estimation of symbol timing offset is obtained by the cross-correlation with the transmitted preamble. Due to the conjugate symmetry characteristic of the preamble,this algorithm can avoid the plateau effect. In the low-latency high-reliability scenario of 5G,simulations are done in frequency-selective channels,and the performance of the scheme is evaluated in terms of mean squared error(MSE) of the frequency and time offset estimation. Theoretical analysis and simulation results show that the new algorithm has a better timing synchronization performance and can reduce the complexity of the system,thus enhancing the overall performance of system.

      generalized frequency division multiplexing(GFDM);timing offset;carrier frequency offset;synchronization algorithm

      10.3969/j.issn.1001-893x.2016.12.004

      吳虹,王沖,劉兵,等.一種改進(jìn)的GFDM時(shí)頻同步算法[J].電訊技術(shù),2016,56(12):1322-1326.[WU Hong,WANG Chong,LIU Bing,et al.An improved timing and frequency synchronization algorithm for generalized frequency division multiplexing systems[J].Telecommunication Engineering,2016,56(12):1322-1326.]

      2016-05-18;

      2016-07-11 Received date:2016-05-18;Revised date:2016-07-11

      國(guó)家自然科學(xué)基金資助項(xiàng)目(61571244)

      Foundation Item:The National Natural Science Foundation of China(No.61571244)

      TN919.3

      A

      1001-893X(2016)12-1322-05

      吳 虹(1967—),女,天津人,教授、博士生導(dǎo)師,主要研究方向?yàn)闊o(wú)線通信技術(shù);

      **通信作者:wuhong@nankai.edu.cn Corresponding author:wuhong@nankai.edu.cn

      猜你喜歡
      均方時(shí)頻載波
      一類(lèi)隨機(jī)積分微分方程的均方漸近概周期解
      Beidou, le système de navigation par satellite compatible et interopérable
      應(yīng)急廣播系統(tǒng)中副載波的構(gòu)建與應(yīng)用
      基于抗差最小均方估計(jì)的輸電線路參數(shù)辨識(shí)
      基于隨機(jī)牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
      基于時(shí)頻分析的逆合成孔徑雷達(dá)成像技術(shù)
      低壓載波通訊測(cè)試儀的開(kāi)發(fā)與應(yīng)用
      對(duì)采樣數(shù)據(jù)序列進(jìn)行時(shí)頻分解法的改進(jìn)
      雙線性時(shí)頻分布交叉項(xiàng)提取及損傷識(shí)別應(yīng)用
      基于最優(yōu)化搜索的迭代載波同步算法
      龙山县| 全州县| 黑水县| 南和县| 永泰县| 禹城市| 和田市| 西充县| 镶黄旗| 内江市| 玉门市| 神农架林区| 石棉县| 平顺县| 金阳县| 喀什市| 阿荣旗| 石台县| 织金县| 内乡县| 平远县| 金沙县| 建湖县| 耒阳市| 南充市| 华蓥市| 鄂尔多斯市| 绥宁县| 平阳县| 舟山市| 南京市| 大英县| 青神县| 体育| 高台县| 巫山县| 内乡县| 遵义市| 吉安市| 霍州市| 澄城县|