張耀雷,李 昆,張 彥,楊 炯,呼永和
改良法建立內(nèi)膜損傷致大鼠頸動(dòng)脈狹窄模型
張耀雷,李 昆,張 彥,楊 炯,呼永和
目的改良球囊致內(nèi)膜損傷建立大鼠頸動(dòng)脈狹窄模型,并對其發(fā)生機(jī)制作初步探究。方法42只SD大鼠隨機(jī)分為模型組(n=21)和假手術(shù)組(n=21),模型組利用10 m l注射器針頭模擬球囊抽拉致內(nèi)膜損傷建立頸動(dòng)脈狹窄模型;假手術(shù)組除針頭抽拉損傷外,其余處理與模型組一致。伊文思藍(lán)染色觀察兩組(每組3只)術(shù)側(cè)頸總動(dòng)脈內(nèi)膜損傷差異;分別于術(shù)后1、2及3 w取兩組頸總動(dòng)脈(每組每次6只)行HE染色,觀察血管狹窄變化;將2 w頸總動(dòng)脈行α-smooth muscle actin免疫組化染色及二氧乙啶(DHE)測量活性氧(ROS)含量。結(jié)果伊文思藍(lán)染色指示,針頭抽拉區(qū)域內(nèi)膜損傷。HE染色顯示,模型組術(shù)后1 w時(shí)內(nèi)膜開始增殖,2 w時(shí)內(nèi)膜快速增殖達(dá)到1 w時(shí)的6.1倍,血管狹窄形成;3 w時(shí)內(nèi)膜緩慢增值達(dá)到1 w時(shí)的6.8倍。α-smooth muscle actin染色指示新生內(nèi)膜大部分為平滑肌細(xì)胞(VSMCs)。與假手術(shù)組相比,模型組ROS表達(dá)量急劇升高(P<0.01)。結(jié)論利用注射器針頭抽拉成功建立大鼠頸動(dòng)脈狹窄模型,其機(jī)制可能是內(nèi)膜損傷使ROS含量升高,誘導(dǎo)VSMCs由中膜遷移至內(nèi)膜并惡性增殖,從而導(dǎo)致頸動(dòng)脈狹窄發(fā)生。
注射器針頭;頸動(dòng)脈狹窄;大鼠模型;ROS
經(jīng)皮穿刺腔內(nèi)冠狀動(dòng)脈成形術(shù)(percutaneous transluminal coronary angioplasty,PTCA)術(shù)后血管再狹窄(restenosis,RS)是阻礙冠心病介入治療的重大難題,建立一種操作時(shí)間短、手術(shù)材料簡單、穩(wěn)定性高、重復(fù)性好且可控制狹窄程度的血管損傷狹窄模型,對于研究RS有重要意義[1]。以往建立的狹窄模型特別是大鼠模型,很少能同時(shí)具有上述所有的優(yōu)點(diǎn)[2-3]。本研究采用改良法成功建立了一種操作時(shí)間短、手術(shù)材料簡單及重復(fù)性好的內(nèi)膜損傷致頸動(dòng)脈狹窄模型,并對其狹窄發(fā)生機(jī)制作了初步探究。
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物 SPF級SD大鼠42只,雄鼠,體重200 g,購自成都達(dá)碩生物科技有限公司,實(shí)驗(yàn)動(dòng)物許可證號:SCXK(川)2008-24。應(yīng)用隨機(jī)數(shù)字表法隨機(jī)分為:模型組(n=21)和假手術(shù)組(n=21)。按實(shí)驗(yàn)動(dòng)物使用的3R原則給予人道的關(guān)懷。
1.1.2 主要試劑及器材 HE染色試劑盒(Beyotime),免疫組化試劑盒(Beyotime),ROS熒光探針(Invitrogen),Rabbit anti-α-smooth muscle actin(Boster);10 ml一次性使用無菌注射器(36 mm×0.8 mm,山東威高),顯微手術(shù)器械(彎鑷、直鑷、剪刀)。
1.2 實(shí)驗(yàn)方法
1.2.1 頸動(dòng)脈狹窄模型建立 模擬Langberg等[4]的方法,4%水合氯醛1 ml/100 g腹腔注射麻醉大鼠,沿頸部正中線剪開皮膚(3~4 cm)。如圖1、2示,逐層鈍性分離肌肉,暴露左側(cè)頸總動(dòng)脈,向遠(yuǎn)心端尋找頸內(nèi)、外動(dòng)脈分叉。結(jié)扎頸外動(dòng)脈遠(yuǎn)心端,頸內(nèi)動(dòng)脈遠(yuǎn)心端打活結(jié),夾閉頸總動(dòng)脈近心端,頸外動(dòng)脈結(jié)扎處與頸內(nèi)、外動(dòng)脈分叉處中間垂直切口,大小為血管橫截面1/3到1/2。模型組選取10 ml注射器針頭,從該切口插入,與血管內(nèi)膜緊密貼合,保持與血管平行,緩慢進(jìn)入頸總動(dòng)脈至A1處;然后將針頭緩慢退回切口,如此來回抽拉3次,每次抽拉時(shí)針尖順時(shí)針旋轉(zhuǎn)120°。假手術(shù)組除不插刀抽拉針頭外,其余處理和模型組一致。結(jié)扎切口,打開活結(jié)及動(dòng)脈夾恢復(fù)供血。
圖1 模型建立示意圖
圖2 模型建立過程略圖
1.2.2 損傷程度及部位觀察 兩組各取3只大鼠,術(shù)后10 min,打開縫線向頸總靜脈注射1 ml伊文思藍(lán),1 min后取下頸總動(dòng)脈,用生理鹽水沖洗3次,縱向切開血管,比較兩組內(nèi)皮損傷程度及部位差異。
1.2.3 血管組織形態(tài)學(xué)觀察 分別在術(shù)后1、2、3 w,兩組各6只大鼠,空氣栓塞法處死大鼠,取下術(shù)側(cè)頸總動(dòng)脈,生理鹽水沖洗血管,每個(gè)時(shí)間點(diǎn)留存3只大鼠頸總動(dòng)脈標(biāo)本做冰凍切片,其余放入4%甲醛固定過夜。固定的頸動(dòng)脈標(biāo)本用石蠟包埋并切片,每只隨機(jī)取6張行HE染色,光學(xué)顯微鏡(200×)下觀察血管新生內(nèi)膜增殖變化,Image-Pro Plus(Media Cybernetics)測量新生內(nèi)膜、中膜面積比。
1.2.4 免疫組化檢測α-actin水平 兩組各3只大鼠頸動(dòng)脈標(biāo)本石蠟切片,每只隨機(jī)取6張常規(guī)脫蠟復(fù)水,新鮮3%H2O2孵育30 min。采用堿修復(fù),電磁爐煮沸5 min,常溫冷卻5 min再煮沸5 min,冷卻至常溫。5%BSA,37℃孵育1 h,Rabbit anti-α-smooth muscle actin 1:800,4℃孵育過夜,羊抗兔二抗1∶1000,37℃孵育30 min,DAB顯色統(tǒng)一10 s,常規(guī)蘇木素復(fù)染核及封片。光學(xué)顯微鏡(200×)下觀察血管α-actin分布,Image-Pro Plus(Media Cybernetics)檢測α-actin水平。
1.2.5 免疫熒光檢測活性氧(ROS)水平 留存的兩組各3只大鼠頸總動(dòng)脈冰凍切片,采用5%BSA、37℃封閉30 min,將DHE終濃度調(diào)整為10 μM,37℃孵育60 min。PBS洗3次,每次5 min。熒光顯微鏡(200×)下488 nm波長激發(fā),Image-Pro Plus(Media Cybernetics,Silver Spring,MD)測量陽性區(qū)域表達(dá)比例。
1.3 統(tǒng)計(jì)學(xué)方法 應(yīng)用SPSS19.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,組間比較采用獨(dú)立樣本t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 伊文思藍(lán)觀察內(nèi)皮損傷結(jié)果 如圖3所示,藍(lán)色深淺代表損傷程度差異。模型組藍(lán)色范圍大且著色很深,自頸內(nèi)、頸外動(dòng)脈分叉處(圖中紅色箭頭指示)向頸總動(dòng)脈近心端延伸,損傷部位與針頭拖動(dòng)位置一致;假手術(shù)組頸總動(dòng)脈兩端離斷處少量著色,其余部位著色較淺。
圖3 針頭抽拉后內(nèi)膜損傷差異(伊文思藍(lán)染色)
2.2 HE染色結(jié)果 從圖4可見,針頭損傷后1 w,內(nèi)膜開始增厚 (內(nèi)膜/中膜為0.7±0.02);2 w時(shí)內(nèi)膜顯著增加(內(nèi)膜/中膜為4.3±0.12),顯著厚于1 w時(shí)(P<0.01);3 w時(shí)內(nèi)膜繼續(xù)緩慢增厚 (內(nèi)膜/中膜為4.8±0.16),顯著厚于2 w時(shí)(P<0.05)。3個(gè)時(shí)間點(diǎn)頸總動(dòng)脈中膜彈性纖維(中膜內(nèi)深紅色條紋)完整。
圖4 頸動(dòng)脈損傷后新生內(nèi)膜變化(HE染色,×200)
2.3 免疫組化α-actin染色結(jié)果 從圖5可見,假手術(shù)組中膜細(xì)胞完全著色;模型組中膜著色且新生內(nèi)膜細(xì)胞大部分著色,分布均勻。
圖5 術(shù)后2 w鑒定新生內(nèi)膜中VSMCs成分(免疫組化染色,×200)
2.4 免疫熒光檢測ROS含量結(jié)果 紅色為ROS表達(dá)區(qū)域,實(shí)驗(yàn)結(jié)果顯示,模型組ROS比例為4.2±0.04顯著高于假手術(shù)組的1.0±0.05(P<0.01,圖6)。
圖6 術(shù)后2 w模型組與假手術(shù)組ROS表達(dá)水平 (DHE染色,×200)
PTCA術(shù)后易導(dǎo)致血管再狹窄,嚴(yán)重的阻礙介入手術(shù)的發(fā)展[5]。因此,建立能夠很好反映血管損傷至狹窄的動(dòng)物模型顯得十分必要[6]。Van Osselaer等[7]用硅橡膠圈放置于頸動(dòng)脈旁誘導(dǎo)內(nèi)膜增厚,雖然成功建立家兔頸動(dòng)脈狹窄模型,但沒有硅橡膠圈標(biāo)準(zhǔn)的規(guī)格(大小、長短、形狀)可參考,重復(fù)性不好。沈長銀和Limin[8-9]等用氮?dú)馑ㄈi總動(dòng)脈聯(lián)合高脂飼料(1.5%膽固醇)喂養(yǎng)成功建立家兔頸動(dòng)脈狹窄模型,但手術(shù)復(fù)雜,且狹窄區(qū)域不好控制差異很大。有研究利用電刺激頸動(dòng)脈外膜,間斷恒定脈沖聯(lián)合高膽固醇喂養(yǎng)28 d成功建立家兔頸動(dòng)脈狹窄模型,但操作復(fù)雜且成模率低[10]。目前運(yùn)用最多的是球囊損傷法[11],利用導(dǎo)絲將球囊送入頸總動(dòng)脈,球囊充滿2~4個(gè)大氣壓反復(fù)拖動(dòng)3次成功建立大鼠頸動(dòng)脈狹窄模型。但此法球囊消耗很快,價(jià)格昂貴,且易造成血管中膜彈性纖維斷裂。
本研究采用改良Tsuruta等[12]的球囊損傷法,將球囊換成大小適中的注射器針頭,結(jié)果發(fā)現(xiàn)10 ml注射器針頭正好與成年SD大鼠(200 g)頸動(dòng)脈內(nèi)膜貼合,且不損傷血管中膜彈性纖維。術(shù)后伊文思藍(lán)染色,伊文思藍(lán)與損傷內(nèi)皮細(xì)胞循環(huán)蛋白結(jié)合而著色,附著于血管內(nèi)壁,但完整的內(nèi)皮可阻止這兩者的結(jié)合,結(jié)果顯示針頭拖動(dòng)部位血管內(nèi)膜損傷。HE染色顯示,1 w時(shí)內(nèi)膜開始增殖,2 w增殖速度最快,3 w增殖仍緩慢增加,3個(gè)時(shí)間點(diǎn)血管中膜彈性纖維完整,提示針頭大小適中,損傷后新生內(nèi)膜增殖速度是先慢后快再變慢的趨勢。Anti-α-smooth muscle actin特異的結(jié)合血管內(nèi)平滑肌細(xì)胞肌動(dòng)蛋白,用于指示和鑒定VSMCs分布及含量。利用α-actin對損傷部位頸動(dòng)脈染色,發(fā)現(xiàn)新生內(nèi)膜增殖主要成分為VSMCs。ROS介導(dǎo)多種疾?。◥盒栽鲋场⑦w移、炎癥等)發(fā)生,尤其是在RS過程中具有關(guān)鍵作用[13-14]。已有研究表明,ROS可以活化細(xì)胞外信號轉(zhuǎn)導(dǎo)激酶、C-Jun N-末端激酶、p38絲裂原活化的蛋白酶通路,進(jìn)而激活凋亡蛋白酶激活因子。同時(shí)還可以通過調(diào)節(jié)VSMCs胞外基質(zhì)降解,導(dǎo)致VSMCs的惡性增殖和遷移[15-16]。術(shù)后2 w模型組 ROS含量顯著高于假手術(shù)組(P<0.01),提示針頭損傷導(dǎo)致ROS升高,可能使VSMCs由中膜遷移至內(nèi)膜,并惡性增殖導(dǎo)致血管狹窄發(fā)生。
由于針尖是斜面,為避免損傷后血管新生內(nèi)膜的偏心性增殖出現(xiàn),每抽拉1次就換個(gè)方向繼續(xù)抽拉;針尖鋒利,抽拉時(shí)一定緩慢進(jìn)行,且一直保持頸總動(dòng)脈處于拉直狀態(tài),防止直接穿破血管;術(shù)后無需高脂或高膽固醇喂養(yǎng);整個(gè)過程時(shí)間短,操作簡單,材料造價(jià)便宜。
綜上所述,采用改良法成功建立大鼠頸動(dòng)脈狹窄模型,模型操作時(shí)間短、手術(shù)材料簡單且重復(fù)性好。形成頸動(dòng)脈狹窄的機(jī)制可能是內(nèi)膜損傷致ROS含量上升,誘導(dǎo)胞內(nèi)信號通路,使VSMCs由中膜向內(nèi)膜遷移并惡性增殖。
[1] Lee Jong Y ung,Lee Cheol Whan,Kim WonJang,et al. Antiatherosclerotic effects of the novel angiotensin receptor antagonist Fimasartan on plaque progression and stability in a rabbit model:a double-blind placebo-controlled trial[J].Journal of Cardiovascular Pharmacology,2013,62(2):229-236.
[2] Zhang G,Li M,Li L,et al.The immunologic injury composite with balloon injury leads to dyslipidemia:a robust rabbit model of human atherosclerosis and vulnerable plaque [J].Biomed Research International,2011,2012(4):249129.
[3] Hilda Merino,Sampath Parthasarathy,Dinender K Singla.Partial ligation-induced carotid artery occlusion induces leukocyte recruitment and lipid accumulation-a shear stress model of atherosclerosis[J].Molecular&Cellular Biochemistry,2012,372 (1-2):267-273.
[4] Langberg CW,Solheim S,Hagen S.Can radiotherapy reduce the frequency of restenosis after coronary angioplasty[J]?Tidsskrift for Den Norske Legeforening Tidsskrift for Praktisk Medicin Ny Rekke,2000,120(6):707-710.
[5] Bauters C,Meurice T,Hamon M,et al.Mechanisms and prevention of restenosis:from experimental models to clinical practice[J]. Cardiovascular Research,1996,31(6):835-846.
[6] Lee JY,Lee CW,Kim WJ,et al.Antiatherosclerotic effects of the novel angiotensin receptor antagonist Fimasartan on plaque progression and stability in a rabbit model:a double-blind placebo-controlled trial[J].Journal of Cardiovascular Pharmacology, 2013,62(2):229-236.
[7] I Van Osselaer N,Van Put D,De Meyer GR.Role of polymophonuclear leukocytes in collar-induced intimal thickening in the rabbit carotid artery[J].Arterioscler Thromb Vasc Boil, 1998,18(6):915-921.
[8] 沈長銀,石蓓,趙然尊,等.兔頸動(dòng)脈粥樣硬化狹窄動(dòng)物模型的制備[J].四川大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2009,40(5):923-926.
[9] Limin Ren,Caijin Li,Fengtao Fan,et al.Developing a rabbit model of neointimal stenosis and atherosclerotic fibrous plaque rupture [J].Journal of Tehran Heart Center,2011,6(3):117-125.
[10] Zhuang Z,Khurana R,Bhardwaj S.Angiogenesis-dependent and independent phases of intimal hyperplasia[J].Circulation,2004, 110(16):2436-2443.
[11] 崔麗,張恩園,李廣平,等.兔頸動(dòng)脈球囊損傷后動(dòng)脈內(nèi)膜、中膜厚度及面積的時(shí)相性變化[J].山東醫(yī)藥,2015,55(17):26-28.
[12] Tsuruta W,Yamamoto T,Suzuki K,et al.Simple new method for making a rat carotid artery post-angioplasty stenosis model[J]. Neurol Med Chir(Tokyo),2007,47(11):525-529.
[13] San Martín Alejandra,Kathy K Griendling.Redox control of vascular smooth muscle migration [J].Antioxidants&Redox Signaling,2010,12(5):625-640.
[14] Satoh K,Nigro P,Berk BC.Oxidative stress and vascular smooth muscle cell growth:a mechanistic linkage by cyclophilin A[J]. Antioxidants&Redox Signaling,2009,12(5):675-682.
[15] Svineng G,Ravuri C,Rikardsen O,et al.The role of reactive oxygen species in integrin and matrix metalloproteinase expression and function[J].Connective Tissue Research,2008,49(49):197-202.
[16] Weiwei Yin,Eberhard O Voit.Function and design of the Nox1 system in vascular smooth muscle cells[J].Bmc Systems Biology, 2013,7(1):1-20.
Establishment of model for carotid artery stenosis caused by intimal injury in rats by modified method
Zhang Yaolei1,Li Kun1,Zhang Yan2,Yang Jiong2,Hu Yonghe31.Central Laboratory,General Hospital of Chengdu Military Command, Chengdu,Sichuan,610083,China;2.Department of Cardiology,General Hospital of Chengdu Military Command,Chengdu,Sichuan, 610083,China;3.Department of TCM,General Hospital of Chengdu Military Command,Chengdu,Sichuan,610083,China
Objective To establish a model for carotid artery stenosis caused by intimal injury in rats by modified method and to preliminarily explore the occurrence mechanism.MethodsA total of 42 SD rats were randomly divided into two groups:the model group and the sham-operation group(n=21,respectively).A model for carotid artery stenosis was established in the model group by use of a 10 m l syringe needle to simulate the intimal injury caused by balloon drawing;except for needle drawing injury,other treatments in the sham-operation group were the same as that in the model group.Evans blue stain was used to observe the difference in the common carotid artery injury on the operation side in the two groups(three rats in each group);the cephalic artery in the two groups (six rats in each group)was sampled one,two and three weeks after the operation for HE stain to observe the change of angiostenosis; the two-week cephalic artery was received α-smooth muscle actin immunohistochemical staining and DHE to measure the content of ROS.ResultsEvans blue stain showed that intimal injury was caused in the needle drawing area.HE stain indicated that the intima began to increase within one week after the operation in the model group and increased to 6.1 times of that in one week upon two weeks,and angiostenosis is formed;the intima slowly increased to 6.8 times of that in one week upon three weeks.α-smooth muscle actin stain indicated that most of the new intima was VSMCs.Compared with the sham-operation group,the ROS in the model group increased greatly(P<0.01).ConclusionCarotid artery stenosis model in rats may be easily established by drawing of syringe needle. The mechanism may be that the intimal injury causes the increase of ROS,induces VSMCs to migrate from the media to the intima and proliferate malignantly,causing carotid artery stenosis.
syringe needle;carotid artery stenosis;rat model;ROS
R 543.4
A
1004-0188(2016)12-1409-04
10.3969/j.issn.1004-0188.2016.12.016
2016-05-15)
全軍醫(yī)學(xué)科技“十二五”重點(diǎn)項(xiàng)目(BWS11J067)
610083成都,成都軍區(qū)總醫(yī)院中心實(shí)驗(yàn)室(張耀雷,李 昆),心內(nèi)科(張 彥,楊 炯),中醫(yī)科(呼永和)
呼永河,E-mail:huyonghe@vip.126.com