• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of PMIA/MWNTs nanofiber via solution blow spinning process

    2016-12-23 03:23:19HuangQianLiJingYuJunrongWangYanZhuJingHuZuming
    合成纖維工業(yè) 2016年6期
    關(guān)鍵詞:力學(xué)性能

    Huang Qian, Li Jing, Yu Junrong, Wang Yan, Zhu Jing, Hu Zuming

    (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620)

    ?

    Preparation of PMIA/MWNTs nanofiber via solution blow spinning process

    Huang Qian, Li Jing, Yu Junrong*, Wang Yan, Zhu Jing, Hu Zuming

    (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620)

    Poly-m-phenylene isophthalamide/multi-wall carbon nanotubes (PMIA/MANTs) nanofibers were prepared via solution blow spinning technique.The change of the surface morphology and diameter distribution of the nanofibers with the spinning parameters was discussed. The effect of MWNTs on the crystallization property and mechanical properties of PMIA nanofibers membrane was discussed.The results showed that the PMIA/MWNTs nanofibers could be produced with good morphology as the drawing air pressure was 0.12 MPa and the inner diameter of the spinneret nozzle was 0.4-0.5 mm;as the load of MWNTs was increased, the average diameter and crystallinity of the nanofibers increased, the tensile strength of the nanofibers membrane increased and the elongation at break decreased; the PMIA/MWNTs nanofibers had uniform morphology and fine diameter with the average value of 372 nm, the tensile strength of the nanofibers membrane reached 41.85 MPa with a growth more than 86% as compared with that of pure PMIA nanofibers membrane as the MWNTs load was optimized as 0.3%.

    poly-m-phenylene isophthalamide; multi-wall carbon nanotubes; solution blow spinning; surface morphology; mechanical properties

    Solution blow spinning is a new method to produce micro and nanofibers from polymer solution[1]. This technique applies a high speed gas through the airjet nozzle on the polymer solution extruded from a spinneret nozzle, then the polymer solution is stretched by the high speed gas flow, and the solvent rapidly evaporates, finally forming a web of micro and nanofibers. The solution blow spinning technique is superior to traditional electrospinning in the commercial production due to its simple process, high efficiency, low energy consumption and high safety[2-3].

    Poly-m-phenylene isophthalamide (PMIA) nanofibers are considered as a satisfying material for high-temperature high-efficiency filtration and lithium battery separator due to its excellent heat resistance, flame resistance, chemical resistance and electrical insulation property[4-5]. But the tensile strength of PMIA nanofibers membrane is low because of its flexible macromolecular structure, restricting its application in the high-performance field. Indeed, it has been reported that a rational amount of multi-wall carbon nanotubes (MWNTs) could well reinforce PMIA nanofibers. He Suwen[6]et al. have produced a PMIA nanofibers membrane with the mechanical properties considerably improved as incorporated with MWNTs during the electrospinning process. And the fiber average diameter is obviously decreased while raising the load of MWNTs. However, the incorporation of MWNTs provides the effect on the solution blow spinning process different from the electrospinning process owing to their different spinning mechanism. Currently, researchers have primarily studied the effects of spinning parameters on the morphology of the produced nanofibers[7]while the stability of the solution jet flow is rarely reported.

    Here we discuss the stability of PMIA/MWNTs solution jet flow under different stretch gas pressure and investigate the effect of the incorporation of MWNTs on the solution blow spinning performance of PMIA solution and the mechanical properties of the nanofibers membrane thereof.

    1 Experiment

    1.1 Raw material

    PMIA solution: 15.66% PMIA by mass fraction, weight average relative molecular mass (MW) 1.04×105, purchased from X-FIPER New Material Co.,Ltd; N,N- dimethylacetamide (DMAc): analytical grade, purchased from Yonghua Chemical Sci & Tech Company;MWNTs:10-15 nm

    in diameter,10-20 μm in length,purchased from Chengdu Organic Chemical Company.

    1.2 Preparation of PMIA/MWNTs spinning solution

    An appropriate amount of acid-treated MWNTs[8]was dispersed in DMAc under ultrasonication, then the MWNTs dispersion was mixed with PMIA solution at a specific ratio and formed PMIA/MWNTs solution in which the mass fraction of PMIA was 12% and the load of MWNTs ranged from 0.1% to 0.5% in PMIA.

    1.3 Preparation of PMIA/MWNTs nanofiber by solution blow spinning

    Fig.1 showed a self-made solution blow spinning experimental apparatus. This apparatus uses a syringe pump to quantitatively deliver a polymer solution. The gas flow unit comprises a nitrogen gas steel container and a decompression buffer tank. The spinneret unit consists of concentric nozzles whereby the polymer solution is pumped out through the inner nozzle while a constant, high speed gas flow is blown out through the outer nozzle of 1.2 mm in inner diameter. The protrusion distance of the inner nozzle was 8 mm. The PMIA/MWNTs nanofibers could be prepared with the thickness of 100 μm by adjusting the gas pressure and spinneret nozzle diameter under the solution injection rate 1.0 mL/h, room temperature, relative humidity about 50%, collection distance 40 cm and rotating drum velocity 200 r/min.

    Fig.1 Diagram of an apparatus preparing nanofiber membrane via solution blow spinning process1—Polymer solution;2—Tee pipe coupling;3—High pressure gas;4—Spinneret nozzle;5—Airjet nozzle;6—Collector

    1.4 Test and characterization

    The morphology of the produced composite nanofibers

    was observed with Quanta-250 scanning electron microscope (SEM) manufactured by FEI Co., Czech. The fiber diameter distribution was measured by taking 100 nanofibers with an Image Tool software. The crystalline structure of the nanofibers was determined with a D/max-2550 PC X-ray diffraction analysis (XRD) manufactured by Rigaku Co., Japan. The determination conditions were as followed: powder diffraction sample making, CuKα target, voltage 40 kV, electric current 300 mA, 2θ range 5°-60° in steps of 2(°)/min. The mechanical properties of the nanofibers membrane were measured with an XQ-1C single fiber tensile tester manufactured by Shanghai New Fiber Instrument Co., Ltd. The clamp distance was 10 mm, drawing speed 10 mm/min, strength 0-200 cN, elongation 100%.

    2 Results and discussion

    2.1 Gas flow pressure

    As shown in Fig.2, the nanofibers was poor in the morphology with droplets and serious doublings and relatively high in diameter at the gas pressure of 0.08 MPa; when the gas pressure was 0.10 MPa, the surface morphology of nanofibers became better, there were still some obvious doublings and the fiber diameter was uneven, which was attributed to the fact that the gas pressure was too low to completely disperse the extruded solution jet and led to low volatilizing speed of solvents, resulting in the adhesion of multiple strands; when the gas pressure was 0.12 MPa, the solution jet was blown into a completely dispersed state and the doublings was greatly depressed, which indicated that the high-speed gas flow could efficiently stretch the solution jet and make the solvents volatilize, and the obtained nanofibers exhibited smooth surface and uniform diameter distribution ranging 300-400 nm; however, the doublings formed again at the gas pressure of 0.14 MPa and the droplets appeared at the gas pressure of 0.16 MPa, which was because the gas speed was so high that the solvents couldn′t volatilize in time and might fall on the collector resulting in the fiber adhesion and poor morphology of nanofibers membrane. Therefore, the optimal gas pressure was considered as 0.12 MPa.

    Fig.2 SEM images of PMIA/MWNTs nanofibers membrane at different gas pressureMWNTs load 0.3%, spinneret nozzle inner diameter 0.51 mm.

    2.2 Spinneret nozzle inner diameter

    As shown in Fig.3,the nanofibers membrane had a high fiber average diameter and a great many doublings at the inner diameter of spinneret nozzle of 0.62 mm because the extruded solution jet was too thick to be dispersed efficiently; the nanofibers exhibited the uniform morphology with no obvious doublings and the diameter ranging 300-400 nm as the inner diameter of the spinneret nozzle was decreased to 0.51 mm or 0.41 mm, because the solution jet was completely dispersed and well stretched so as to acquire fine and uniform fiber diameter; the morphology of the nanofibers became poor and the fiber adhesion and doubling appeared again as the inner diameter of spinneret nozzle was decreased to 0.33 mm, and the doubling phenomenon became serious as the inner diameter of spinneret nozzle was 0.25 mm, which was because smaller spinneret nozzle diameter caused higher extrusion rate of spinning solution and then the relative speed between the gas flow and extruded solution was not so high enough to well stretch the nanofibers. Therefore, the optimal spinneret nozzle diameter was considered as 0.4-0.5 mm.

    Fig.3 SEM images of PMIA/MWNTs nanofibers membrane at different spinneret nozzle inner diameter Gas pressure 0.12 MPa; MWNTs load 0.3%.

    2.3 MWNTs load

    As shown in Fig.4, the PMIA/MWNTs nanofibers possessed the fairly good surface morphology and uniform diameter distribution with the average diameter below 400 nm as the MWNTs load was lower than 0.3%; the nanofibers became thicker and the doublings appeared as the MWNTs load was increased to 0.4%; the doubling phenomenon became serious, the fiber morphology was poor and the droplets formed as the load was increased to 0.5%, which was because the solution viscosity was increased to a specific degree due to the polar interaction between PMIA molecules and carboxyl group on the surface of acid-treated MWNTs[9], making the solution blow spinning difficult and the fiber thicker; moreover, the aggregation of MWNTs was not obviously observed on the surface of PMIA/MWNTs nanofibers, which indicated that acid-treated MWNTs could be well dispersed in PMIA solution.

    Fig.4 SEM images of PMIA/MWNTs nanofibers membrane under different MWNTs load Gas pressure 0.12 MPa; spinneret nozzle inner diameter 0.51 mm.

    It can be seen from Fig.5 that the PMIA/MWNTs nanofibers with different MWNTs load had similar XRD patterns and each showed an obvious diffraction peak at 2θ of about 24°, which indicated that the incorporation of MWNTs did not change the crystalline structure of PMIA; the diffraction peaks profoundly became intensive and the crystallinity of the nanofibers rose as the MWNTs load was increased to more than 0.2%, which indicated that MWNTs promoted the crystallization of PMIA molecules as a nucleating agent.

    It can be seen from Tab.1 that the strength of the nanofibers membrane was gradually increased and the elongation at break was gradually decreased as the MWNTs load was increased; the tensile strength of the nanofibers membrane was increased to 41.85 MPa with a growth of more than 86% as compared with that of pure PMIA nanofibers membrane at the MWNTs load of 0.3%,which proved that incorporated MWNTs contributed a good reinforcement effect to the PMIA nanofibers; when continuously increased the MWNTs load, the mechanical properties of the nanofibers membrane did not change, but the fiber got thicker and the morphology became poor with doublings and droplets. Therefore, the optimal MWNTs load was considered as 0.3% for preparing PMIA/MWNTs nanofibers.

    Fig.5 XRD patterns of PMIA/MWNTs nanofibers under different MWNTs load1—0;2—0.1%;3—0.2%;4—0.3%;5—0.4%;6—0.5%

    Tab.1 Mechanical properties and average diameter of PMIA/MWNTs nanofiber with different MWNTs load

    MWNTsload,%Fiberaveragediameter/nmTensilestrength/MPaElongationatbreak,%034322.4864.400.134631.2863.640.236329.0161.880.337241.8538.160.442742.7339.530.543240.1539.58

    3 Conclusions

    a. The stability of the spinning jet was gradually improved when the gas flow pressure was increased during the solution blow spinning process. The PMIA/MWNTs nanofibers membrane could be produced with fairly good morphology and average diameter of 372 nm when the gas flow pressure was 0.12 MPa and the inner diameter of the spinneret nozzle was 0.51 mm.

    b. The diameter, crystallinity and mechanical properties of the nanofibers were increased when the MWNTs load was increased. The tensile strength of the nanofibers membrane was increased by 86% and above when the MWNTs load was up to 0.3%, as compared with that of pure PMIA nanofibers membrane. The nanofibers got thick and the nanofibers membrane became poor in morphology while continuously increasing MWNTs load.

    [1] Medeiros E S, Glenn G M, Klamczynski A P, et al. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions[J]. J Appl Polym Sci,2009,113(4):2 322-2 330.

    [2] Zhang Lifeng,Kopperstad P,West M,et al.Generation of polymer ultrafine fibers through solution (air-) blowing[J].J Appl Polym Sci,2009,114(6):3 479-3 486.

    [3] Zhuang Xupin, Yang Xiaocan, Shi Lei, et al. Solution blowing of submicron-scale cellulose fibers[J]. Carbohyd Polym, 2012,90(2):982-987.

    [4] Ding Bin,Wang Xiaoru,Wang Xianfeng,et al.A preparation method of PMIA nanofibers web: CN, 102704028[P]. 2012-10-03.

    [5] Xiao Ke. Fabrication and application of PMIA-based nanofiber memberane as separators for lithiumion batteries [D]. Shanghai:Donghua University, 2016.

    [6] He Suwen,Liu Liqi,Gao Baoshan,et al.Study on morphology and characterization of poly(mphenylene isophtalamide)/multi-walled carbon nanotubes composite nanofibers by electrospinning[J].J Nanosci Nanotech,2011,11(5):4 004-4 010.

    [7] Wu Shiting,Huang Kai,Shi Enzheng,et al.Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control[J].ACS Nano,2014,8(4):3 522-3 530.

    [8] Shaffer M S P,Fan Xiujun,Windle A H.Dispersion and packing of carbon nanotubes[J].Carbon,1998,36(11):1 603-1 612.

    [9] He Suwen.Analysis and verification on influencing factors of nanofiber morphology by electrospinning[D].Shanghai:Donghua University,2011.

    溶液噴射紡絲制備PMIA/MWNTs納米纖維的研究

    黃 千,李 靜,于俊榮,王 彥,諸 靜,胡祖明

    (東華大學(xué)材料科學(xué)與工程學(xué)院纖維材料改性國家重點實驗室,上海 201620)

    采用溶液噴射紡絲技術(shù)制備間位芳綸/多壁碳納米管(PMIA/MWNTs)納米纖維,探討了不同工藝參數(shù)下納米纖維表觀形貌和直徑分布的變化,研究了MWNTs對PMIA納米纖維膜結(jié)晶性能和力學(xué)性能的影響。結(jié)果表明:在拉伸風(fēng)壓為0.12 MPa、噴絲孔內(nèi)徑為0.4~0.5 mm時,可以制得形貌較好的PMIA/MWNTs納米纖維;隨MWNTs負(fù)載量的增加,制得納米纖維的平均直徑變粗,結(jié)晶度變大,纖維膜拉伸強度增大,斷裂伸長率則下降;MWNTs的最佳負(fù)載量為0.3%,此時可制得形貌結(jié)構(gòu)均勻,直徑較細(xì)的PMIA/MWNTs納米纖維,纖維平均直徑為372 nm,纖維膜拉伸強度達(dá)到41.85 MPa,較純PMIA納米纖維膜提高了86%以上。關(guān)鍵詞:間位芳綸多壁碳納米管 溶液噴射紡絲 表觀形貌 力學(xué)性能

    Foundation item: Natural Science Foundation of Shanghai (15ZR1401100). * Corresponding author: yjr@dhu.edu.cn.

    TQ342+.72 Document code:A Article ID: 1001- 0041(2016)05- 0046- 04

    Received date:09- 10- 2016; revised date: 25- 10- 2016.

    Biography: Huang Qian(1992-),male, postgraduate, is engaged in nanofibers membrane. E-mail:hq65743889@163.com.

    猜你喜歡
    力學(xué)性能
    反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
    Pr對20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復(fù)合變質(zhì)劑提高ZG30MnSi力學(xué)性能
    碳纖維增強PBT/ABS—g—MAH復(fù)合材料的力學(xué)性能和流變行為
    中國塑料(2016年6期)2016-06-27 06:34:16
    紡織纖維彎曲力學(xué)性能及其應(yīng)用
    MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
    中國塑料(2015年12期)2015-10-16 00:57:14
    EHA/PE復(fù)合薄膜的力學(xué)性能和阻透性能
    中國塑料(2015年9期)2015-10-14 01:12:26
    PA6/GF/SP三元復(fù)合材料的制備及其力學(xué)性能研究
    中國塑料(2015年4期)2015-10-14 01:09:18
    INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
    焊接(2015年9期)2015-07-18 11:03:53
    国产一区有黄有色的免费视频| 欧美一级a爱片免费观看看| 少妇人妻 视频| av免费观看日本| 国产精品无大码| 日日摸夜夜添夜夜添av毛片| 伊人久久国产一区二区| 成人二区视频| 麻豆精品久久久久久蜜桃| 国产精品嫩草影院av在线观看| 日本av手机在线免费观看| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清| 久久人人爽人人爽人人片va| 亚洲av.av天堂| 国产欧美日韩综合在线一区二区 | 99精国产麻豆久久婷婷| 十八禁网站网址无遮挡 | 日韩av不卡免费在线播放| 亚洲av日韩在线播放| 波野结衣二区三区在线| 亚洲人成网站在线观看播放| 国产一区有黄有色的免费视频| 黄色视频在线播放观看不卡| 91精品伊人久久大香线蕉| 日本猛色少妇xxxxx猛交久久| 精品一区二区免费观看| 日本av免费视频播放| 亚洲激情五月婷婷啪啪| 成年美女黄网站色视频大全免费 | 午夜免费观看性视频| 国产在线一区二区三区精| 亚洲不卡免费看| 国产精品久久久久成人av| 亚洲精品国产av成人精品| 日日爽夜夜爽网站| 国产黄片视频在线免费观看| 亚洲情色 制服丝袜| av一本久久久久| 噜噜噜噜噜久久久久久91| 亚洲国产av新网站| 少妇被粗大猛烈的视频| 欧美日韩在线观看h| 五月伊人婷婷丁香| 大话2 男鬼变身卡| 精品国产一区二区三区久久久樱花| 国产探花极品一区二区| 午夜福利,免费看| 国产成人午夜福利电影在线观看| 亚洲丝袜综合中文字幕| 久久毛片免费看一区二区三区| 中文字幕久久专区| 在线观看人妻少妇| 99久久人妻综合| 中文字幕人妻熟人妻熟丝袜美| 极品教师在线视频| 少妇熟女欧美另类| 亚洲欧美日韩另类电影网站| 久久久久国产精品人妻一区二区| 免费观看性生交大片5| 亚洲精品久久午夜乱码| 国产av国产精品国产| 啦啦啦中文免费视频观看日本| 成人特级av手机在线观看| 国国产精品蜜臀av免费| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 精品久久国产蜜桃| 免费久久久久久久精品成人欧美视频 | 国产日韩欧美在线精品| 欧美97在线视频| 国产av一区二区精品久久| 在线观看免费视频网站a站| 新久久久久国产一级毛片| 少妇精品久久久久久久| 精品视频人人做人人爽| 秋霞伦理黄片| 国产av一区二区精品久久| 欧美人与善性xxx| 精品少妇黑人巨大在线播放| 18+在线观看网站| 亚洲精品一区蜜桃| 久久狼人影院| 日韩精品免费视频一区二区三区 | av天堂中文字幕网| 日韩熟女老妇一区二区性免费视频| 亚洲无线观看免费| 国产av一区二区精品久久| 国产一区二区三区综合在线观看 | 免费人妻精品一区二区三区视频| 在线看a的网站| 22中文网久久字幕| 最黄视频免费看| 国产精品国产三级国产av玫瑰| 又大又黄又爽视频免费| 国产欧美日韩综合在线一区二区 | 在线观看美女被高潮喷水网站| 在线观看三级黄色| 五月玫瑰六月丁香| 日韩不卡一区二区三区视频在线| 看非洲黑人一级黄片| 搡女人真爽免费视频火全软件| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品自产自拍| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲精品一区在线观看| h日本视频在线播放| 国产免费一级a男人的天堂| 国产在线男女| 国产精品蜜桃在线观看| kizo精华| 亚洲av欧美aⅴ国产| 国产成人免费观看mmmm| 国产午夜精品久久久久久一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲精品日韩在线中文字幕| 深夜a级毛片| 免费高清在线观看视频在线观看| 亚洲精品亚洲一区二区| 久久热精品热| 日韩一本色道免费dvd| 国产午夜精品久久久久久一区二区三区| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 亚洲av成人精品一二三区| 国产男人的电影天堂91| 欧美日韩视频高清一区二区三区二| 一二三四中文在线观看免费高清| 91精品伊人久久大香线蕉| 男人和女人高潮做爰伦理| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区 | 大片电影免费在线观看免费| 成人影院久久| 天堂8中文在线网| 国产av国产精品国产| 亚洲va在线va天堂va国产| 秋霞在线观看毛片| 亚洲不卡免费看| 涩涩av久久男人的天堂| 久久这里有精品视频免费| 99国产精品免费福利视频| 人人妻人人澡人人爽人人夜夜| 久久鲁丝午夜福利片| 成人亚洲欧美一区二区av| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| 亚洲美女视频黄频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产自在天天线| 欧美bdsm另类| 亚州av有码| 一级a做视频免费观看| 亚洲色图综合在线观看| 大香蕉97超碰在线| 免费在线观看成人毛片| 十八禁高潮呻吟视频 | 欧美xxⅹ黑人| 91aial.com中文字幕在线观看| 精华霜和精华液先用哪个| 我的女老师完整版在线观看| 亚洲内射少妇av| 国产成人精品婷婷| 国产视频首页在线观看| 精品国产国语对白av| a级毛色黄片| 97在线人人人人妻| 久久久欧美国产精品| 性高湖久久久久久久久免费观看| 大陆偷拍与自拍| 22中文网久久字幕| 久久久久久久久大av| 爱豆传媒免费全集在线观看| 免费大片18禁| 午夜免费鲁丝| 99久久精品国产国产毛片| 亚洲精品成人av观看孕妇| 成年av动漫网址| 国产日韩欧美在线精品| 亚洲性久久影院| 欧美区成人在线视频| 国产av码专区亚洲av| 亚洲av欧美aⅴ国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲经典国产精华液单| 国产高清三级在线| 中文在线观看免费www的网站| 91在线精品国自产拍蜜月| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| .国产精品久久| 最近中文字幕2019免费版| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 成人漫画全彩无遮挡| av不卡在线播放| 纯流量卡能插随身wifi吗| 黄色欧美视频在线观看| 欧美激情国产日韩精品一区| 黄色配什么色好看| 夜夜看夜夜爽夜夜摸| 如日韩欧美国产精品一区二区三区 | 狂野欧美白嫩少妇大欣赏| 成人二区视频| 黄色欧美视频在线观看| www.av在线官网国产| 在线观看av片永久免费下载| 欧美xxⅹ黑人| 欧美精品一区二区免费开放| 亚洲自偷自拍三级| 国产精品欧美亚洲77777| 亚洲,一卡二卡三卡| 国产精品久久久久久精品电影小说| 国产精品一二三区在线看| 精品亚洲成国产av| 日韩,欧美,国产一区二区三区| 国产免费福利视频在线观看| 欧美bdsm另类| 久久人人爽人人爽人人片va| av卡一久久| 日产精品乱码卡一卡2卡三| 在线观看av片永久免费下载| 伊人久久精品亚洲午夜| 亚洲精品乱码久久久v下载方式| 99热全是精品| 日韩亚洲欧美综合| 在现免费观看毛片| 最近2019中文字幕mv第一页| 99久国产av精品国产电影| 少妇熟女欧美另类| 成人二区视频| 国产一级毛片在线| 老女人水多毛片| 国产深夜福利视频在线观看| 丰满少妇做爰视频| 下体分泌物呈黄色| 久久精品国产鲁丝片午夜精品| 蜜桃久久精品国产亚洲av| 99久久人妻综合| 欧美变态另类bdsm刘玥| 国产精品99久久久久久久久| 尾随美女入室| 欧美三级亚洲精品| 日韩不卡一区二区三区视频在线| 99久久中文字幕三级久久日本| 精品久久国产蜜桃| 亚洲欧洲精品一区二区精品久久久 | www.av在线官网国产| h日本视频在线播放| 大话2 男鬼变身卡| 国产精品成人在线| 国产熟女午夜一区二区三区 | 亚洲精品,欧美精品| 国产熟女午夜一区二区三区 | 久久久久国产网址| 免费观看在线日韩| 午夜av观看不卡| 黑人高潮一二区| 一级二级三级毛片免费看| av国产久精品久网站免费入址| 插阴视频在线观看视频| 日本黄色片子视频| 亚洲图色成人| 久久av网站| 人体艺术视频欧美日本| 亚洲天堂av无毛| 啦啦啦在线观看免费高清www| 97在线视频观看| 一级毛片我不卡| 婷婷色av中文字幕| 一个人免费看片子| 麻豆成人av视频| 全区人妻精品视频| 日韩人妻高清精品专区| 最新的欧美精品一区二区| 精品久久久久久久久亚洲| 在线观看三级黄色| 久久国产亚洲av麻豆专区| 久久精品国产亚洲网站| 亚洲av在线观看美女高潮| 熟女av电影| 寂寞人妻少妇视频99o| 国内揄拍国产精品人妻在线| 亚洲精品乱久久久久久| 91久久精品国产一区二区成人| 热re99久久国产66热| 午夜激情福利司机影院| 国产一区有黄有色的免费视频| 国产又色又爽无遮挡免| 全区人妻精品视频| 精华霜和精华液先用哪个| 亚洲av电影在线观看一区二区三区| 2021少妇久久久久久久久久久| 午夜精品国产一区二区电影| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 91久久精品国产一区二区成人| 亚洲精品第二区| 91精品一卡2卡3卡4卡| 在线观看av片永久免费下载| 黑人高潮一二区| 国产精品熟女久久久久浪| 国产色爽女视频免费观看| 波野结衣二区三区在线| 国产 一区精品| 午夜福利视频精品| 99热这里只有精品一区| 黄色配什么色好看| 亚洲熟女精品中文字幕| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 久久久久久久久久成人| 亚洲av欧美aⅴ国产| 色哟哟·www| 一本大道久久a久久精品| 中文字幕人妻熟人妻熟丝袜美| 性高湖久久久久久久久免费观看| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 少妇熟女欧美另类| 国产成人一区二区在线| 三级经典国产精品| 亚洲天堂av无毛| 日日爽夜夜爽网站| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 极品人妻少妇av视频| 一本一本综合久久| 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| 国产一区亚洲一区在线观看| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看| 如日韩欧美国产精品一区二区三区 | 日本欧美视频一区| 免费观看av网站的网址| 亚洲av福利一区| 欧美精品亚洲一区二区| kizo精华| 日韩伦理黄色片| 我要看黄色一级片免费的| 精品视频人人做人人爽| av播播在线观看一区| 啦啦啦视频在线资源免费观看| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 国产欧美日韩一区二区三区在线 | 一个人看视频在线观看www免费| 日本av免费视频播放| 大片免费播放器 马上看| 久久国产精品男人的天堂亚洲 | 最近手机中文字幕大全| 久久这里有精品视频免费| 亚洲精品视频女| 一二三四中文在线观看免费高清| 99热这里只有精品一区| 国产av精品麻豆| 人妻一区二区av| 精品一区二区免费观看| 亚洲四区av| 欧美最新免费一区二区三区| 久久国产亚洲av麻豆专区| 久久久久国产网址| 99久久综合免费| 三级经典国产精品| 日韩欧美精品免费久久| 肉色欧美久久久久久久蜜桃| 久久久久网色| 久久免费观看电影| 国产乱来视频区| 一区二区三区精品91| 一级黄片播放器| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 纵有疾风起免费观看全集完整版| 大香蕉97超碰在线| 中文天堂在线官网| 久久人人爽人人片av| 久久99精品国语久久久| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 乱系列少妇在线播放| a级毛片在线看网站| 免费黄色在线免费观看| 深夜a级毛片| 妹子高潮喷水视频| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 视频区图区小说| 内地一区二区视频在线| 精品国产一区二区久久| 99热这里只有是精品50| 啦啦啦在线观看免费高清www| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 男人添女人高潮全过程视频| 日韩强制内射视频| 亚洲,欧美,日韩| 久久人人爽av亚洲精品天堂| www.av在线官网国产| 精品少妇内射三级| 国产成人精品久久久久久| 在现免费观看毛片| 伊人亚洲综合成人网| 午夜激情福利司机影院| 久久国产乱子免费精品| 久久久久久久国产电影| 十分钟在线观看高清视频www | 美女主播在线视频| 高清毛片免费看| 99久久中文字幕三级久久日本| 中文字幕人妻熟人妻熟丝袜美| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 一级片'在线观看视频| 少妇被粗大的猛进出69影院 | 亚洲精品乱码久久久久久按摩| 熟女人妻精品中文字幕| 最新的欧美精品一区二区| 欧美3d第一页| 99热国产这里只有精品6| 日日啪夜夜爽| 一级片'在线观看视频| 国产成人午夜福利电影在线观看| 久久久久人妻精品一区果冻| 伊人久久精品亚洲午夜| av卡一久久| 免费观看av网站的网址| 免费黄色在线免费观看| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放 | 一个人免费看片子| 丰满乱子伦码专区| 日韩成人伦理影院| 六月丁香七月| 国产精品一区二区性色av| 亚洲四区av| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻一区二区| 最新的欧美精品一区二区| 嘟嘟电影网在线观看| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 免费久久久久久久精品成人欧美视频 | 亚洲av二区三区四区| 激情五月婷婷亚洲| 99国产精品免费福利视频| 久久6这里有精品| 国产在线免费精品| 午夜福利影视在线免费观看| 久久热精品热| 妹子高潮喷水视频| 日日撸夜夜添| 成人午夜精彩视频在线观看| 天美传媒精品一区二区| 国产精品.久久久| 国产精品久久久久成人av| 美女大奶头黄色视频| 麻豆乱淫一区二区| 日韩精品有码人妻一区| 99热这里只有是精品50| 欧美少妇被猛烈插入视频| 久久久久久久久久成人| 一二三四中文在线观看免费高清| 欧美最新免费一区二区三区| 人妻少妇偷人精品九色| 五月伊人婷婷丁香| 涩涩av久久男人的天堂| 午夜久久久在线观看| 国产伦在线观看视频一区| 王馨瑶露胸无遮挡在线观看| 欧美精品人与动牲交sv欧美| 香蕉精品网在线| 极品人妻少妇av视频| 成年女人在线观看亚洲视频| 国产综合精华液| av福利片在线观看| 成年人午夜在线观看视频| 国产精品成人在线| 精品亚洲成a人片在线观看| 2018国产大陆天天弄谢| 国产在线视频一区二区| 国内精品宾馆在线| 亚洲美女黄色视频免费看| 国产深夜福利视频在线观看| 国产亚洲午夜精品一区二区久久| 中文资源天堂在线| 亚洲婷婷狠狠爱综合网| 欧美精品人与动牲交sv欧美| 亚洲av不卡在线观看| 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看 | 国产有黄有色有爽视频| 午夜激情福利司机影院| 九九久久精品国产亚洲av麻豆| 亚洲第一av免费看| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 亚洲国产色片| 国产精品无大码| 精品亚洲成国产av| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品aⅴ在线观看| 三级国产精品片| 国产精品秋霞免费鲁丝片| av专区在线播放| 丰满迷人的少妇在线观看| 成人亚洲欧美一区二区av| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 亚洲av成人精品一区久久| 国产精品欧美亚洲77777| 久久鲁丝午夜福利片| 国产精品嫩草影院av在线观看| 国产精品国产三级专区第一集| 中文字幕亚洲精品专区| 大码成人一级视频| 亚洲欧美日韩东京热| 亚洲精品国产av成人精品| a级毛片在线看网站| 亚洲美女搞黄在线观看| 国国产精品蜜臀av免费| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 人人澡人人妻人| 久久人妻熟女aⅴ| 18禁在线无遮挡免费观看视频| 国产黄片美女视频| 狂野欧美激情性bbbbbb| 国产极品粉嫩免费观看在线 | 人人妻人人看人人澡| 18禁在线无遮挡免费观看视频| 91久久精品电影网| 国产一级毛片在线| 久久久国产一区二区| 久久久久国产网址| 国产精品99久久99久久久不卡 | 亚洲色图综合在线观看| 国产成人精品无人区| 亚洲国产成人一精品久久久| √禁漫天堂资源中文www| 成人亚洲精品一区在线观看| 一级黄片播放器| 国产极品粉嫩免费观看在线 | 国产成人一区二区在线| 男人和女人高潮做爰伦理| 国产极品天堂在线| av在线app专区| 久久久久人妻精品一区果冻| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 亚洲av男天堂| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 黑人巨大精品欧美一区二区蜜桃 | 美女国产视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 黄色配什么色好看| 一本一本综合久久| 国产欧美日韩综合在线一区二区 | 女人精品久久久久毛片| 色5月婷婷丁香| 国产在视频线精品| 国产真实伦视频高清在线观看| 精品亚洲成国产av| 久久久久久久精品精品| 天天操日日干夜夜撸| 老熟女久久久| 免费大片18禁| 亚洲电影在线观看av| 免费看av在线观看网站| 九色成人免费人妻av| 看免费成人av毛片| 水蜜桃什么品种好| av免费在线看不卡| 国产在线视频一区二区| 国产精品99久久99久久久不卡 | 精品少妇久久久久久888优播| 国产精品久久久久久久电影| 国产精品一二三区在线看| 97超视频在线观看视频| 久久亚洲国产成人精品v| 大香蕉97超碰在线| 最新中文字幕久久久久| 国产欧美日韩精品一区二区| 91精品伊人久久大香线蕉| 亚洲真实伦在线观看| 又黄又爽又刺激的免费视频.| 人人妻人人添人人爽欧美一区卜| 国产免费福利视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲内射少妇av| 久久久久久久久久久免费av| 亚洲精品成人av观看孕妇| 桃花免费在线播放| 国产一区二区三区综合在线观看 | 美女内射精品一级片tv| 国产精品偷伦视频观看了| 久久狼人影院| 午夜老司机福利剧场| 一区二区三区精品91| 国产淫语在线视频| 人妻人人澡人人爽人人| 少妇被粗大猛烈的视频| 日韩电影二区| 人妻人人澡人人爽人人| 日韩伦理黄色片|