吳夢(mèng)景,黃栩浩,3,張旭 ,朱玨,趙銀海
(1.寧波大學(xué) 機(jī)械工程與力學(xué)學(xué)院 浙江 寧波 315211;2.浙江省二建鋼結(jié)構(gòu)有限公司 浙江 寧波 315207;3.上海交通大學(xué) 船舶海洋與建筑工程學(xué)院,上海 200240)
?
偏心受壓冷彎薄壁槽鋼的卷邊角度優(yōu)化設(shè)計(jì)
吳夢(mèng)景1,黃栩浩1,3,張旭1,朱玨1,趙銀海2
(1.寧波大學(xué) 機(jī)械工程與力學(xué)學(xué)院 浙江 寧波 315211;2.浙江省二建鋼結(jié)構(gòu)有限公司 浙江 寧波 315207;3.上海交通大學(xué) 船舶海洋與建筑工程學(xué)院,上海 200240)
為了使得鋼結(jié)構(gòu)的性能與用鋼量比達(dá)到最優(yōu),前人對(duì)槽型鋼的截面尺寸優(yōu)化進(jìn)行了較為充分的研究。但是,涉及卷邊角度的優(yōu)化特別是偏心受壓工況下的優(yōu)化分析卻很缺乏。以Yao-Teng偏心受壓計(jì)算公式,結(jié)合遺傳算法,以冷彎卷邊槽鋼柱偏心受壓為例,將槽鋼卷邊角度與偏心距作為設(shè)計(jì)變量,尋找在不同偏心距受壓情況下,達(dá)到最大畸變屈曲臨界應(yīng)力的卷邊角度?;谟邢迼l分析程序,對(duì)兩端簡(jiǎn)支與兩端固支情況下不同截面尺寸構(gòu)件的畸變屈曲臨界應(yīng)力進(jìn)行了計(jì)算分析,最終得出不同偏心距受壓下統(tǒng)一的最優(yōu)卷邊角度。為了方便工程設(shè)計(jì)人員設(shè)計(jì)時(shí)參考,建議卷邊角度統(tǒng)一取為100°。
偏心受壓;斜卷邊槽鋼;有限條;遺傳算法;最優(yōu)卷邊角度
隨著生產(chǎn)技術(shù)的不斷更新發(fā)展,冷彎成型鋼構(gòu)件朝著高強(qiáng)度、薄壁、截面形式復(fù)雜的趨勢(shì)發(fā)展,出現(xiàn)了幾種常見的屈曲模式,分別為:局部屈曲、畸變屈曲和整體屈曲[1]。由于可以用加勁及加支撐的方式來(lái)提高構(gòu)件的局部屈曲和整體屈曲的臨界應(yīng)力,畸變屈曲則很可能成為最終主導(dǎo)構(gòu)件失效的屈曲模式。Lau 和 Hancock等[2-3]提出了簡(jiǎn)化模型,推導(dǎo)出了受壓構(gòu)件彈性畸變屈曲臨界應(yīng)力。學(xué)者Li等[4]考慮翼緣板件彎曲的影響,在 Lau 和 Hancock 的畸變屈曲模型基礎(chǔ)上進(jìn)行修正,并推導(dǎo)出了類似于 Lau 和 Hancock 公式的彈性畸變屈曲臨界應(yīng)力計(jì)算公式。其公式可計(jì)算卷邊槽形、Z 形以及Σ形冷彎薄壁型鋼構(gòu)件的畸變屈曲應(yīng)力。周緒紅等[5]考慮腹板屈曲對(duì)彈簧剛度的影響并提出了折減系數(shù),推導(dǎo)兩端簡(jiǎn)支、固支卷邊槽鋼畸變屈曲臨界應(yīng)力計(jì)算公式。Song等[6]采用了半解析有限條法對(duì)槽鋼截面受剪力荷載進(jìn)行分析。楊娜等[7]通過(guò)有限元與試驗(yàn)相對(duì)比,研究了組合效應(yīng)對(duì)冷彎C型鋼構(gòu)件滯回性能的改善作用。Teng等[8]采用如圖1所示的近似模型,推導(dǎo)出雙向偏心受壓構(gòu)件卷邊槽鋼彈性畸變屈曲荷載的穩(wěn)定方程,并提出了單向偏壓和純彎載荷畸變屈曲計(jì)算公式并對(duì)其公式進(jìn)行相應(yīng)的簡(jiǎn)化。研究表明[9-10],改變卷邊與翼緣的夾角(后簡(jiǎn)稱卷邊角度)θ(如圖2)不僅會(huì)改變斜卷邊槽鋼的截面幾何特性,還會(huì)改變卷邊對(duì)翼緣的約束作用,從而導(dǎo)致斜卷邊槽鋼構(gòu)件發(fā)生畸變屈曲時(shí)臨界應(yīng)力以及畸變屈曲承載力發(fā)生變化。在此基礎(chǔ)上,通過(guò)改變卷邊的角度,從而達(dá)到提高構(gòu)件承載力的目的,這為工程優(yōu)化與改變構(gòu)件截面形式來(lái)提高構(gòu)件的強(qiáng)度與剛度提供了新的思路。
遺傳算法是一種常見的全局優(yōu)化的概率算法,采用遺傳算法對(duì)工程問(wèn)題進(jìn)行優(yōu)化,搜索過(guò)程既不受優(yōu)化函數(shù)連續(xù)性的約束,也沒(méi)有優(yōu)化函數(shù)必須可導(dǎo)的要求,同時(shí)可進(jìn)行對(duì)目標(biāo)優(yōu)化設(shè)計(jì)[11-12]。也避免了給定初始值要求,能夠有效地進(jìn)行全局搜索。本文將姚諫等[13](簡(jiǎn)稱Yao-Teng) 推導(dǎo)得到的卷邊槽鋼畸變屈曲臨界應(yīng)力簡(jiǎn)化計(jì)算公式編成相應(yīng)的程序,再利用遺傳算法對(duì)其卷邊角度進(jìn)行優(yōu)化,得出使構(gòu)件畸變屈曲臨界應(yīng)力最大的卷邊角度。
圖1 畸變屈曲的理論分析模型
圖2 斜卷邊槽鋼截參數(shù)
采用Yao-Teng卷邊槽鋼畸變屈曲臨界應(yīng)力計(jì)算過(guò)程中,需要的斜卷邊槽鋼截面幾何特性可采用王春剛,張耀春[14]計(jì)算研究得到的以卷邊角度為變量的截面幾何特性的計(jì)算公式。
斜卷邊槽鋼截面幾何特性計(jì)算簡(jiǎn)圖如圖2所示:腹板高度為h,翼緣寬度為b,卷邊長(zhǎng)度為d,厚度為t,θ為卷邊角度;以截面的形心軸定義為x軸和y軸;點(diǎn)C和點(diǎn)S分別為截面的形心和剪心;D為腹板中點(diǎn)。
1.1 斜卷邊槽鋼截面幾何特性計(jì)算公式
斜卷邊槽鋼截面幾何特性計(jì)算可采用王海明等[14]總結(jié)的截面幾何特性的計(jì)算公式。
xof=(b2-d2cos θ)/[2(b+d)]
(1)
yof=-d2sin θ/[2(b+d)]
(2)
(3)
(4)
Ixyf=tbd2(b+dcos θ)sin θ/[4(b+d)]
(5)
(6)
8d3sin2θ]
(7)
(8)
(9)
m=t[3h2(b2+2bd+d2cos θ)-2d3(hsin 2θ+
4bsin2θ)]/(12Ix)
(10)
3b2h2d+3bhd2(2bsin θ+hcos θ)+md2·
(8bdsin2θ+2hdsin 2θ-3h2cos θ)-
(11)
1.2 求解偏心受壓畸變屈曲應(yīng)力
1)相關(guān)參數(shù)計(jì)算公式為[13]
S1=EIy
(12)
S2=EIxyb
(13)
S3=EIxb2
(14)
(15)
(16)
γa=A/A0
(17)
αe2=(γays-mη1e)/rj
(18)
(19)
(20)
(21)
(22)
(23)
(24)
am2=muys/rj-mη1
(25)
(mη1βx+mη2(βy+4xs-2b))/rj
(26)
圖3 槽鋼畸變屈曲的理論分析計(jì)算模型Fig 3 The analytical model of channel
(27)
(28)
(29)
(30)
(31)
kφ=kφ0+cp×P0
(32)
2)求解畸變屈曲荷載Pcrd,臨界應(yīng)力σcrd[13]
(33a)
(33b)
(33c)
σcrd=Pcrd/A
(33d)
式中,各參數(shù)按式(34)確定
k1=S2(π/λcr)2
(34a)
k2=αe2rj
(34b)
k3=S1(π/λcr)2
(34c)
k4=S3(π/λcr)2+GJ+
(34d)
(34e)
γm=mu/rj
(34f)
2.1 優(yōu)化的目標(biāo)文件及函數(shù)
將Yao-Teng編成計(jì)算槽鋼偏心受壓畸變屈曲臨界應(yīng)力目標(biāo)函數(shù)文件。以槽鋼的偏心受壓畸變屈曲臨界應(yīng)力作為目標(biāo)函數(shù)P= -minσcrd。
2.2 變量及變量的約束條件
以卷邊角度θ和偏心距e為變量,卷邊角度取值范圍為30° 到160°。則約束條件為30°<θ<160°,偏心距e則針對(duì)不同截面分別取10、20、30、40 mm。
3.1 斜卷邊槽鋼屈曲應(yīng)力計(jì)算結(jié)果
為了確定構(gòu)件最后主導(dǎo)的屈曲模式,觀察卷邊角度變化分別對(duì)畸變屈曲、局部與整體相關(guān)屈曲的影響,本節(jié)選取部分試樣尺寸進(jìn)行計(jì)算。按角度θ由30°到160°,每間隔5°~10°計(jì)算其畸變、局部與整體相關(guān)屈曲承載力,計(jì)算結(jié)果如圖4~5所示。
圖4 偏心受壓時(shí)構(gòu)件卷邊角度與畸變、局部與整體相關(guān)屈曲承載力變化圖(簡(jiǎn)支)Fig 4 Ultimate bearing capacity change with angel between flange and lip of members under eccentric compression (simple support)
圖5 偏心受壓時(shí)構(gòu)件卷邊角度與畸變、局部與整體相關(guān)屈曲承載力變化圖(固支)Fig 5 Ultimate bearing capacity change with angel between flange and lip of members under
由圖4、5可觀察出卷邊角度變化對(duì)構(gòu)件局部與整體相關(guān)屈曲臨界應(yīng)力影響不大,且局部與整體相關(guān)屈曲臨界應(yīng)力均大于畸變屈曲臨界應(yīng)力,構(gòu)件失穩(wěn)模式以畸變屈曲為主。故本文只計(jì)算斜卷邊角度對(duì)槽鋼畸變屈曲臨界應(yīng)力的影響,如圖6、7所示。從圖中可觀察出構(gòu)件在簡(jiǎn)支與固支情況下卷邊角度位于[30°~160°]區(qū)間,偏心距e取10、20、25、30、40 mm時(shí)。構(gòu)件受壓時(shí)的畸變屈曲臨界應(yīng)力峰值主要集中在95°~105°。
圖6 偏心受壓時(shí)構(gòu)件卷邊角度與畸變屈曲應(yīng)力變化曲線圖(簡(jiǎn)支)Fig 6 The distortional buckling ultimate bearing capacity change with angel between flange and lip of members under eccentric compression (simple support)
圖7 偏心受壓時(shí)構(gòu)件卷邊角度與畸變屈曲應(yīng)力變化圖(固支)Fig 7 The distortional buckling ultimate bearing capacity change with angel between flange and lip of members under eccentric compression
3.2 結(jié)果分析
由圖4~7可見,隨著卷邊角度變化,槽鋼局部與整體相關(guān)屈曲臨界應(yīng)力變化不大,而畸變屈曲臨界應(yīng)力出現(xiàn)了先增大后減小的變化過(guò)程。由此可見,卷邊角度的改變可以顯著改變構(gòu)件的畸變屈曲臨界應(yīng)力。
通過(guò)對(duì)最優(yōu)角度的尋找,及最優(yōu)角度對(duì)應(yīng)的畸變屈曲臨界應(yīng)力計(jì)算,觀察表1~2可知,無(wú)論是兩端簡(jiǎn)支還是兩端固支,無(wú)論是不同偏心距還是不同尺寸試樣,其最優(yōu)角度的畸變屈曲臨界應(yīng)力與標(biāo)準(zhǔn)(卷邊角度為90°)構(gòu)件的畸變屈曲臨界應(yīng)力相比較均有提升,畸變屈曲承載力峰值主要集中在95°~105°。
表1 斜卷邊槽鋼構(gòu)件畸變屈曲臨界應(yīng)力(簡(jiǎn)支)
Table 1 The distortional buckling critical stress of inclined lipped channel steel members (simple support)
尺寸/mm最優(yōu)角度畸變屈曲臨界應(yīng)力/(N·mm-2)標(biāo)準(zhǔn)角度畸變屈曲臨界應(yīng)力/(N·mm-2)最優(yōu)角度與標(biāo)準(zhǔn)角度應(yīng)力差值/(N·cm-2)60?50?15?1.5?10208.95201.9370260?50?15?1.5?25136.98132.6243690?50?15?1.0?20126.73123.0436990?50?15?1.0?30101.0698.0938990?50?15?1.5?10265.35257.5977690?50?15?1.5?20198.94192.85606120?50?15?1.0?10138.57133.98459120?50?15?1.0?20106.48103.47301150?70?15?1.0?20115.95114.46149150?70?15?1.0?4081.0180.1190
表2 斜卷邊槽鋼畸變屈曲臨界應(yīng)力(固支)
Table 2 The distortional buckling critical stress of inclined lipped channel steel members (clamped support)
尺寸/mm最優(yōu)角度畸變屈曲臨界應(yīng)力/(N·mm-2)標(biāo)準(zhǔn)角度畸變屈曲臨界應(yīng)力/(N·mm-2)最優(yōu)角度與標(biāo)準(zhǔn)角度應(yīng)力差值/(N·cm-2)60?50?15?1.5?10359.53347.5120360?50?15?1.5?25235.71228.2374890?50?15?1.0?20216.63210.3662790?50?15?1.0?30172.8167.7450690?50?15?1.5?10444.41431.37130490?50?15?1.5?20332.89323.14975120?50?15?1.0?10233.06227.00606120?50?15?1.0?20180.61175.53508150?70?15?1.0?2068.5567.34121150?70?15?1.0?4047.5647.0749
注:表1,2為有限條CUFSM[15]計(jì)算結(jié)果,試件的編號(hào)規(guī)則為h-b-d-t-e,h為腹板高度,b為翼緣寬度,d為卷邊長(zhǎng)度,t為板厚,e代表偏心距。如60-50-15-1.5-10表示腹板高度為60 mm、翼緣寬度為50 mm、卷邊長(zhǎng)度為15 mm、板厚為1.5 mm,偏心距為10 mm。
觀察表1~2可知,無(wú)論簡(jiǎn)支還是固支情況下,不同構(gòu)件在不同偏心距受壓下畸變屈曲臨界應(yīng)力隨卷邊角度變化的趨勢(shì)是一致的。其峰值主要集中在95°~105°,較標(biāo)準(zhǔn)角度(90°)均有不同程度的提高,最大可提升構(gòu)件畸變屈曲臨界應(yīng)力的3.5%,提高值為1 203 N·cm。
1)通過(guò)CUFSM計(jì)算斜卷邊槽鋼在不同偏心距受壓情況下畸變屈曲臨界應(yīng)力,計(jì)算結(jié)果顯示,隨著卷邊角度的變化,當(dāng)卷邊角度大于90°時(shí),構(gòu)件畸變屈曲臨界應(yīng)力都有著不同幅度的提升,而局部與整體相關(guān)屈曲臨界應(yīng)力則沒(méi)有明顯的變化。
2)本文提出的將Yao-Teng推導(dǎo)的畸變屈曲臨界應(yīng)力計(jì)算公式(偏心受壓)與遺傳算法相結(jié)合的技術(shù),可以快速準(zhǔn)確地找到最優(yōu)的卷邊角度,可為工程人員設(shè)計(jì)提供參考。
3)據(jù)優(yōu)化結(jié)果分析,構(gòu)件處于兩端簡(jiǎn)支或固支約束條件下,偏心距一定范圍內(nèi),使受壓構(gòu)件的畸變屈曲臨界應(yīng)力最大的最優(yōu)卷邊角度范圍均集中在95°~105°。此外,為了方便工程師設(shè)計(jì),建議卷邊角度可統(tǒng)一采用100°。
[1] ZEINODDINI V M, SCHAFER B W.Simulation of geometric imperfections in cold-formed steel members using spectral representation approach[J].Thin-Walled Structures,2012, 60: 105-117.
[2] LAU S C W, HANCOCK G J. Distortional buckling formulas for channel columns [J]. Journal of Structural Engineering, ASCE, 1987, 113(5): 1063-1078.
[3] HANCOCK G J. Design for distortional buckling of flexural members [J]. Thin Walled Structures, 1997, 27(1): 3-12.
[4] LI L Y,CHEN J K. An analytical model for analyzing distortional buckling of cold-formed steel sections [J]. Thin-Walled Structures, 2008, 64: 1430-1436.
[5] ZHOU X, LIU Z, HE Z. General distortional buckling formulae for both fixed-ended and pinned-ended C-section columns[J]. Thin-Walled Structures, 2015, 94:603-611.
[6] SONG H P, CAO H P, HANCOCK G J. Direct strength method of design for shear including sections with longitudinal web stiffeners[J]. Thin-Walled Structures, 2014, 81(81):19-28. (in Chinese)
[7] 楊娜, 彭雄, 楊慶山. 冷彎薄壁型鋼C型構(gòu)件滯回性能[J]. 土木建筑與環(huán)境工程, 2012, 34(2):69-76. YANG N,PENG X, YANG Q S.Analysis of hysteretic performance of C-section specimens of cold formed steel [J]. Joutnal of Civil, Architectural & Evironmental Engineering, 2012, 34(2):69-76.(in Chinese)
[8] TENG J G, YAO J, ZHAO Y. Distortional buckling of the channel beam- columns [J]. Thin-Walled Structures, 2003, 47(7): 595-617.
[9] 黃栩浩, 孫國(guó)軍, 吳夢(mèng)景,等. 冷彎薄壁卷邊槽鋼卷邊角度優(yōu)化設(shè)計(jì)[J].工業(yè)建筑, 2015, 45(11):167-171. HUANG X H, SUN G J, WU M J, et al. Optimizing design for stiffened angle of cold-formed thin-walled channel with edge stiffened flanges [J]. Industrial Construction, 2015, 45(11):167-171. (in Chinese)
[10] 孫國(guó)軍, 趙銀海, 黃栩浩,等. 卷邊角度對(duì)C型冷彎構(gòu)件抗畸變屈曲性能的影響[J]. 寧波大學(xué)學(xué)報(bào)(理工版), 2015(3):68-73. SUN G J, ZHAO Y H, HUANG X H,et al. Influence of angle of lip on performance against distortional buckling of C-section cold-formed members [J]. Journal of Ningbo University(Natural Science and Engineering Edition), 2015(3):68-73. (in Chinese)
[11] 馬永杰, 云文霞. 遺傳算法研究進(jìn)展[J]. 計(jì)算機(jī)應(yīng)用研究, 2012, 29(4):1201-1206. MA Y J,YUN W X. Research progress of genetic algorithm [J]. Application Research of Computers, 2012, 29(4):1201-1206. (in Chinese)
[12] 梁昊慶, 董石麟, 苗峰. 索穹頂結(jié)構(gòu)預(yù)應(yīng)力多目標(biāo)優(yōu)化的小生境遺傳算法[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2016(2):92-99. LIANG H Q,DONG S L, MIAO F. Multi-objective optimization analysis of cable dome structures prestress based on niche genetic algorithm [J]. Journal of Building Structures, 2016(2):92-99 . (in Chinese)
[13] 姚諫, 滕錦光.冷彎薄壁卷邊槽鋼的畸變屈曲荷載簡(jiǎn)化計(jì)算 [J].浙江大學(xué)學(xué)報(bào)(工學(xué)版), 2008, 42(9): 1494-1501. YAO J,TENG J G. Simple formulae for distortional buckling loads of cold-formed lipped channel sections [J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1494-1501. (in Chinese)
[14] 王海明, 張耀春. 直卷邊和斜卷邊受彎構(gòu)件畸變屈曲性能研究 [J]. 工業(yè)建筑, 2008, 38(6): 106-109. WANG H M, ZHANG Y C. Distortional buckling performance study on flexural memebers [J].Industrial Construction, 2008, 6(38): 106-109. (in Chinese)
[15] SCHAFER B W.CUFSM4.05-Elastic buckling analysis of thin-walled members by the finite strip method and constained finite strip method for general end boundary conditions [EB/OL].Department of Civil Engineering,http://www.ce.jhu.edu/bschafer/cufsm/,2012. Johns Hopkins University,2012.
(編輯 胡玲)
Optimization on angle of lip of cold-formed thin-walled channel under eccentric compression
WuMengjing1,HuangXuhao1,3,ZhangXu1,ZhuJue1,ZhaoYinhai2
(1. Faculty of Mechanical Engineering &Mechanics, Ningbo University, Ningbo 315211, Zhejiang, P.R. China;2. Zhejiang Er Jian Steel Structure Co., Ltd., Ningbo 315207, Zhejiang, P.R. China;3.School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiaotong University,Shanghai 200240, P.R. China)
The optimization of the sectional dimensions is studied to make the ratio between performance and steel amount of steel sections become optimal. However, the optimization analysis of lip angle involving the eccentric compression is lack. A technique with the genetic algorithm and formulae for predicting the distortional critical stresses of cold-formed lipped channels subjected to eccentric compression is developed to optimize the angles of lips of channels. The cold-formed lipped channel columns under eccentric compressing have been taken as examples. The genetic algorithm regards the angle of lip and eccentric distance as design parameters. This method not only can decrease workload and aimless calculation but also can obtain accurate optimal angles. The distortional critical stresses of cold-formed lipped channels with different dimensions under simply and clamped supports are obtained, based on the finite strip analyses. The optimal angles of cold-formed channel steel members with different eccentric distances are presented. For designer’s convenience of design and application, the degree of 100 is suggested.
inclined lipped cold-formed channel;eccentric compression;finite strip;optimal angle of lip
2016-03-09
國(guó)家自然科學(xué)基金(11572162);浙江省自然科學(xué)基金(LY13A020007)
吳夢(mèng)景(1996-),女,主要從事冷彎薄壁鋼構(gòu)件的穩(wěn)定性研究,(E-mail)mengjing_wu@163.com。 朱玨(通信作者)女,副教授,博士,(E-mail)zhujue@nbu.edu.cn。
Foundation item:National Natural Science Foundation of China (No.11572162);the Natural Science Foundation of Zhejiang Province (No. LY13A020007)
10.11835/j.issn.1674-4764.2016.06.012
TU391
A
1674-4764(2016)06-0091-06
Received:2016-03-09
Author brief:Wu Mengjing(1996-), main major interest :the stability of cold-formed thin-walled steel member,(E-mail)mengjing_wu@163.com. Zhu Jue (corresponding author),associate professor,PhD,(E-mail)zhujue@nbu.edu.cn.