• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    奇異三階積分邊值問題正解的全局分歧

    2016-12-21 09:23:32沈文國
    關(guān)鍵詞:基礎(chǔ)學科三階邊值問題

    沈文國

    (蘭州工業(yè)學院基礎(chǔ)學科部,甘肅 蘭州 730050)

    奇異三階積分邊值問題正解的全局分歧

    沈文國

    (蘭州工業(yè)學院基礎(chǔ)學科部,甘肅 蘭州 730050)

    研究帶Riemann-Stieltjes積分邊值條件的奇異三階積分邊值問題正解的全局分歧結(jié)構(gòu).首先,利用相關(guān)文獻,獲得了此類問題的格林函數(shù)并推證其滿足的性質(zhì),同時可獲得此類問題等價于一個全連續(xù)算子方程;其次,在滿足所給的條件時,利用Krein-Rutmann定理建立了此類問題對應的線性問題存在簡單的主特征值;最后,當非線性項在零和無窮遠處滿足非漸進線性增長條件、參數(shù)滿足不同范圍的值時,利用Dancer全局分歧定理、Zeidler全局分歧定理和序列集取極限的方法,建立了此類問題正解的全局結(jié)構(gòu),進而獲得了正解的存在性.

    奇異三階積分邊值問題;全局分歧;正解

    1 引言

    2009年,文獻[1]研究了下列三階非局部邊值問題:

    受上述文獻的啟發(fā),本文研究下列奇異三階積分邊值問題:

    正解的全局分歧結(jié)構(gòu),其中a(t)在t=0和t=1處具有奇異性,r∈(0,∞)是一個參數(shù),

    注 1.1對于用分歧技巧研究其它的正解和結(jié)點解的存在性和多解性,可參考文獻[10-16].

    2 格林函數(shù)的性質(zhì)及推論

    3 預備知識

    4 主要結(jié)果

    [1]Graef J R,Webb J R L.Third order boundary value problems with nonlocal boundary conditions[J]. Nonlinear Anal.,2009,71:1542-1551.

    [2]Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin. Dyn.Syst.Ser.,2008,1:89-97.

    [3]Du Z,Lin X,Ge W.Solvability of a third-order nonlocal boundary value problem at resonance[J].Acta Math.Sinica(Chin.Ser.),2006,49:87-94.

    [4]Li S.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].J.Math. Anal.Appl.,2006,323:413-425.

    [5]Sun Y.Positive solutions of singular third-order three-point boundary value problem[J].J.Math.Anal. Appl.,2005,306:589-603.

    [6]Liu Z,Umeb J S,Kang S M.Positive solutions of a singular nonlinear third order two-point boundary value problem[J].J.Math.Anal.Appl.,2007,326(1):589-601.

    [7]Du Z,Ge W,Zhou M.Singular perturbations for third-order nonlinear multi-point boundary value problem[J]. J.Differential Equations,2005,218(1):69-90.

    [8]Ma R,An Y.Global structure of positive for superlinear second-order m-point boundary value problems[J]. Nonlinear Anal.,2009,34(2):279-290.

    [9]Shen W,He T.Global Structure of Positive Solutions for a Singular Fourth-Order Integral Boundary Value Problem[J].Discrete Dynamics in Nature and Society Volume 2014,Article ID 614376,7 pages.

    [10]Rynne B P.Infinitely many solutions of superlinear fourth order boundary value problems[J].Topol. Methods Nonlinear Anal.,2002,19(2):303-312.

    [11]Ma R,Nodal Solutions for a fourth-Order two-order boundary value problem[J].J.Math.Anal.Appl.,2006,314(1):254-265.

    [12]Shi J,Wang X.On global bifurcation for quasilinear elliptic systems on bounded domains[J].J.Differential Equations,2009,246:2788-2812.

    [13]Shen W.Global structure of nodal solutions for a fourth-order two-point boundary value problem[J].Appl. Math.Comput.,2012,219(1):88-98.

    [14]Dai G,Ma R.Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J].J.Differential Equations,2012,252:2448-2468.

    [15]Dai G.Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at 0 or∞[J].Appl.Math.Lett.,2013,26:46-50.

    [16]Dai G,Ma R.Unilateral global bifurcation for p-Laplacian with non-p-1-lineariza-tion nonlinearity[J]. Discrete contin.dyn.syst.,2015,35(1):99-116.

    [17]Krasnosel′skii M A.Positive Solutions of Operator Equations[M].The Netherlands:P.Noordhoff Ltd.,1964.

    [18]Zhang G,Sun J.Positive solutions of m-point boundary value problems[J].J.Math.Anal.Appl.,2004,291:406-418.

    [19]Guo D,Sun J.Nonlinear Integral Equations[M].Ji′nan:Shandong Science and Technology Press,1987(in Chinese).

    [20]Whyburn G T.Topological Analysis[M].Princeton:Princeton University Press,1958.

    [21]Dancer E.Global solutions branches for positive maps[J].Arch.Rat.Mech.Anal.,1974,55:207-213.

    [22]Zeidler E.Nonlinear Functional Analysis and its Applications:I.Fixed Point Theorems[M].New York:Springer-Verlag,1986.

    [23]Ambrosetti A,Calahorrano R M,Dobarro F R.Global branching for discontinuous problems[J].Comment. Math.Univ.Carolin.,1990,31:13-222.

    Global bifurcation of positive solutions for singular third order problems involving Stieltjes integral conditions

    Shen Wenguo
    (Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China)

    In this paper,we establish global bifurcation structure of positive solutions for a class of singular third-order boundary value problems.Firstly,according to the relevant literature,we obtain that the Green fuction and its property for the above problem.Meanwhile,we can obtain that the above problem is equivalent to the completely continuous operator equation.Secondly,we have that the above linear problem exists simple principal eigenvalue by the Krein-Rutman theorem.Finally,we establish the global bifurcation structure of positive solutions with non-asymptotic nonlinearity at or by Dancer and Zeidler global bifurcation theorems and the approximation of connected components.

    third order singular boundary problems,global bifurcation,positive solutions

    O175.8

    A

    1008-5513(2016)03-0221-14

    10.3969/j.issn.1008-5513.2016.03.001

    2015-05-27.

    國家自然科學基金(11561038);甘肅省自然科學基金(145RJZA087).

    沈文國(1963-),博士,教授,研究方向:非線性微分方程與分歧理論.

    2010 MSC:34B09,34C10,34C23

    猜你喜歡
    基礎(chǔ)學科三階邊值問題
    非線性n 階m 點邊值問題正解的存在性
    三階非線性微分方程周期解的非退化和存在唯一性
    以戰(zhàn)略遠見促進基礎(chǔ)學科人才培養(yǎng)
    帶有積分邊界條件的奇異攝動邊值問題的漸近解
    三類可降階的三階非線性微分方程
    臨床醫(yī)院培養(yǎng)基礎(chǔ)學科研究生的探索與思考
    三階微分方程理論
    非線性m點邊值問題的多重正解
    對中醫(yī)臨床基礎(chǔ)學科屬性的認識
    一類非線性向量微分方程無窮邊值問題的奇攝動
    普格县| 靖西县| 弥勒县| 阿坝县| 泽库县| 墨竹工卡县| 阜新市| 鸡泽县| 亚东县| 山东| 平罗县| 云梦县| 古浪县| 尼玛县| 依安县| 平谷区| 怀化市| 西乌| 崇阳县| 九龙坡区| 扎鲁特旗| 含山县| 长顺县| 肥乡县| 高碑店市| 岚皋县| 疏勒县| 清徐县| 陕西省| 广灵县| 普兰店市| 乌拉特中旗| 菏泽市| 南漳县| 开鲁县| 石狮市| 内乡县| 江北区| 定日县| 冕宁县| 福建省|