• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高中立體幾何中割補法教學研究

    2016-12-15 09:38:46江蘇省鎮(zhèn)江市丹陽六中212300
    數(shù)理化解題研究 2016年30期
    關(guān)鍵詞:六中補法多面體

    江蘇省鎮(zhèn)江市丹陽六中(212300)

    酈榮霞●

    ?

    高中立體幾何中割補法教學研究

    江蘇省鎮(zhèn)江市丹陽六中(212300)

    酈榮霞●

    新課改以來,高中的數(shù)學無論是在結(jié)構(gòu)還是在內(nèi)容上都改變了很多.其中,作為高中數(shù)學重點教學內(nèi)容之一的立體幾何也是改變了很多,立體幾何在高中數(shù)學的教學當中既是重點也是難點.不同學生之間的空間想象能力存在很大的差異,部分學生甚至看不懂圖形,難以理解題目的意思.因此,教師在教學中怎樣教好學生學習立體幾何是一個討論的要點.

    高中;立體幾何;割補法

    一、補形法

    補形法是高中幾何解題中最常見的一種方法,即補充原有的圖形,形成新的圖形模式,在新的圖形中進行問題的解答,從而找到簡單的補充方法得到結(jié)論.

    1.構(gòu)建成正方體或者是長方體

    例2 如圖,已知三棱臺ABC-A′B′C′的側(cè)面A′ACC′垂直底面ABC,且是梯形,梯形兩底角互余,且∠ACB=90°,求證:另兩個側(cè)面互相垂直.

    證明 延長三條側(cè)棱交于點P.因側(cè)面A′ACC′的底角互余,故∠APC=90°.即PA⊥PC.又面A′ACC′垂直于底面ABC,且BC⊥AC,故BC⊥面PAC.又PA?面PAC,故BC⊥PA.PA⊥面PBC.而PA?面PAB,所以面PAB⊥面PBC,即面A′ABB′與面B′BCC′垂直.

    2.構(gòu)建成其他的規(guī)則幾何體

    例3 如左圖,一圓柱被一平面所截最長側(cè)面母線為4,最短為1,圓柱底面半徑為2,計算幾何體的體積.

    分析 如右圖,再用相同的幾何體,兩個拼成一個圓柱,高為5.則幾何體的體積應該就是圓柱體積的一半,即V=1/2×π×22×5=10π.

    二、切割法

    在高中的立體幾何中,切割法屬于比較特殊的一種求解方法,通過切割成幾個部分的形式進行分析,簡化問題,得出結(jié)果.

    例4如圖,已知正四面體的棱長為a,P是正四面體內(nèi)部一點,求點P到各個面的距離之和.

    分析 因為P是可以移動的任何一個點,因此到各個面的距離是無法計算的.為簡化,假設P是頂點,到各個面積的距離可以認為是求解三棱錐的高,通過計算三棱錐的高得出結(jié)果.

    例5 已知多面體ABC-DEFG中,AB、AC、AD兩 兩 互 相 垂 直,平 面ABC∥平 面DEFG,平面BEF∥平面ADGC,AB=AD=DE=2,AC=EF=1,則該多面體的體積為( ).

    A.2 B.4 C.6 D.8

    分析 如圖,過點C作CH⊥DG于H,連結(jié)EH,這樣就把多面體分割成一個直三棱柱DEH-ABC和一個斜三棱柱BEF-CHG.

    V=S△DEH×AD+S△BEF×DE

    =(1/2×2×1)×2+(1/2×2×1)×2=4.

    本文主要是圍繞割補法對學生在學習立體幾何時容易遇到的問題進行分析和研究,希望這些問題能夠在教與解立體幾何時給教師和學生一些幫助.

    [1]郭敏.蘇教版高中必修教材中數(shù)學思想方法教學研究[D].南京師范大學,2014.

    G632

    B

    1008-0333(2016)30-0037-01

    猜你喜歡
    六中補法多面體
    瀏陽六中:以詩銘志“紅”以致遠
    科教新報(2024年10期)2024-05-04 23:22:24
    沁園春·喜學“六中”公報
    整齊的多面體
    鷓鴣天·喜學“六中”決議
    基于絡病理論探討絡虛通補法在氣虛血瘀型椎動脈型頸椎病中的應用
    獨孤信多面體煤精組印
    基于少數(shù)類過采樣的傾向得分匹配插補法
    響應傾向得分匹配插補法
    具有凸多面體不確定性的混雜隨機微分方程的鎮(zhèn)定分析
    傅琰東:把自己當成一個多面體
    金色年華(2016年11期)2016-02-28 01:42:38
    404 Not Found

    404 Not Found


    nginx
    绥滨县| 茂名市| 电白县| 全南县| 泉州市| 嘉黎县| 阳原县| 贵德县| 海晏县| 开原市| 汪清县| 青铜峡市| 永新县| 蒙山县| 彭阳县| 介休市| 务川| 右玉县| 莱芜市| 孟连| 大渡口区| 仪陇县| 吐鲁番市| 云梦县| 沽源县| 五指山市| 柳州市| 佛山市| 马山县| 文成县| 普定县| 湟源县| 盐津县| 绵竹市| 伊金霍洛旗| 新津县| 侯马市| 玉山县| 保山市| 若羌县| 南康市|